Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-05T06:40:20.250Z Has data issue: false hasContentIssue false

14 - Polysaccharide hydrogels for regenerative medicine applications

from Part III - Hydrogel scaffolds for regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Jacob A. Simson
Affiliation:
The Johns Hopkins University
Jennifer H. Elisseeff
Affiliation:
The Johns Hopkins University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

This chapter begins by reviewing the structure and origin of polysaccharides commonly used in hydrogels and then moves on to a brief discussion of the role of structural polysaccharides throughout tissues in the body. Common chemical modification techniques are discussed, followed by approaches used to crosslink polysaccharides into insoluble hydrogels. The authors will also describe recent research approaches for polysaccharide hydrogel materials as scaffolds for tissue engineering, vehicles for drug delivery, and tissue adhesives. The goal of this chapter is to provide the reader with an overview of the exciting potential of polysaccharide-based hydrogels in medicine.

Structure and origin of common polysaccharides

Polysaccharides are large linear or branched carbohydrate molecules composed of repeating monomer units. They can perform structurally, as in the extracellular matrix of animals and cell walls of plants [1], or provide energy storage capacity in the instances of glycogen and starch [2]. Every organism on the planet has the ability to produce polysaccharides. Solubilities of polysaccharides in water vary depending on the chemical structure [3]. Monomer units often contain chemical groups that can be functionalized chemically in order to modify their material properties. Important structural polysaccharides in the human body are known as glycosaminoglycans (GAGs), which are anionic, linear polysaccharides composed of repeating disaccharide units. The repeat unit is comprised of a hexosamine and either a hexose or hexuronic acid.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buckeridge, M. S. 2010. Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol., 154(3), 1017–23.CrossRefGoogle ScholarPubMed
Robyt, J. F. 2001. Polysaccharides: Energy Storage. In eLS. New York: John Wiley & Sons, Ltd.Google Scholar
Whistler, R. L. 1973. Solubility of Polysaccharides and Their Behavior in Solution, in Carbohydrates in Solution. Washington, DC: American Chemical Society, pp. 242–55.Google Scholar
Hadler, N. M. and Napier, M. A. 1977. Structure of hyaluronic acid in synovial fluid and its influence on the movement of solutes. Semin Arthritis Rheum., 7(2), 141–52.CrossRefGoogle ScholarPubMed
Chong, B. F., Blank, L. M., McLaughlin, R., Nielsen, L. K. 2005. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol., 66(4), 341–51.CrossRefGoogle ScholarPubMed
Shimada, E. and Matsumura, G. 1975. Viscosity and molecular weight of hyaluronic acids. J. Biochem., 78(3), 513–17.CrossRefGoogle ScholarPubMed
Schulz, T., Schumacher, U. and Prehm, P. 2007. Hyaluronan export by the ABC transporter MRP5 and its modulation by intracellular cGMP. J. Biol. Chem., 282(29), 20999–1004.CrossRefGoogle ScholarPubMed
Gandhi, N. S. and Mancera, R. L. 2008. The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug Des., 72(6), 455–82.CrossRefGoogle ScholarPubMed
Nandini, C. D. and Sugahara, K. 2006. Role of the sulfation pattern of chondroitin sulfate in its biological activities and in the binding of growth factors. Adv. Pharmacol., 53, 253–79.CrossRefGoogle ScholarPubMed
Desaire, H., Sirich, T. L. and Leary, J. A. 2001. Evidence of block and randomly sequenced chondroitin polysaccharides: sequential enzymatic digestion and quantification using ion trap tandem mass spectrometry. Anal. Chem., 73(15), 3513–20.CrossRefGoogle ScholarPubMed
Barnhill, J. G., Fye, C. L., Williams, D. W. et al. 2006. Chondroitin product selection for the glucosamine/chondroitin arthritis intervention trial. J. Am. Pharm. Assoc., 46(1), 14–24.CrossRefGoogle ScholarPubMed
Cox, M. N. and Lehninger, D. 2004. Principles of Biochemistry. New York: Freeman.Google Scholar
Gatti, G., Casu, B., Hamer, G. K. and Perlin, A. S. 1979. Studies on the conformation of heparin by 1H and 13C NMR spectroscopy. Macromolecules, 12(5), 1001–7.CrossRefGoogle Scholar
Triplett, D. A. 1979. Heparin: biochemistry, therapy, and laboratory monitoring. Ther. Drug Monit., 1(2), 173–97.CrossRefGoogle ScholarPubMed
Linhardt, R. J. and Gunay, N. S. 1999. Production and chemical processing of low molecular weight heparins. Semin. Thromb. Hemost., 25(Suppl. 3), 5–16.Google ScholarPubMed
Suh, J. K. and Matthew, H. W. 2000. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 21(24), 2589–98.Google ScholarPubMed
Chandy, T. and Sharma, C. P. 1990. Chitosan – as a biomaterial. Biomater. Artif. Cells Artif. Organs, 18(1), 1–24.CrossRefGoogle ScholarPubMed
Kumar, G., Smith, P. J. and Payne, G. F. 1999. Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions. Biotechnol. Bioeng., 63(2), 154–65.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Baldwin, A. D. and Kiick, K. L. 2010. Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers, 94(1), 128–40.CrossRefGoogle ScholarPubMed
Lansdown, A. B. and Payne, M. J. 1994. An evaluation of the local reaction and biodegradation of calcium sodium alginate (Kaltostat) following subcutaneous implantation in the rat. J. R. Coll. Surg. Edinb., 39(5), 284–8.Google ScholarPubMed
Gilchrist, T. and Martin, A. M. 1983. Wound treatment with Sorbsan – an alginate fibre dressing. Biomaterials, 4(4), 317–20.CrossRefGoogle ScholarPubMed
Augst, A. D., Kong, H. J. and Mooney, D. J. 2006. Alginate hydrogels as biomaterials. Macromol. Biosci., 6(8), 623–33.CrossRefGoogle ScholarPubMed
Rowley, J. A., Madlambayan, G. and Mooney, D. J. 1999. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20(1), 45–53.CrossRefGoogle ScholarPubMed
Naessens, M., Cerdobbel, A., Soetaert, W. and Vandamme, E. J. 2005. Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol., 80(8), 845–60.CrossRefGoogle Scholar
Kamath, K. R. and Park, K. 1995. Study on the release of invertase from enzymatically degradable dextran hydrogels. Polymer Gels Networks, 3(3), 243–54.CrossRefGoogle Scholar
Massia, S. P., Stark, J. and Letbetter, D. S. 2000. Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials, 21(22), 2253–61.CrossRefGoogle ScholarPubMed
Franssen, O., van Ooijen, R. D., de Boer, D., Maes, R. A. A. and Hennink, W. E. 1999. Enzymatic degradation of cross-linked dextrans. Macromolecules, 32(9), 2896–902.CrossRefGoogle Scholar
Kiani, C., Chen, L., Wu, Y. J., Yee, A. J. and Yang, B. B. 2002. Structure and function of aggrecan. Cell Res., 12(1), 19–32.CrossRefGoogle ScholarPubMed
Fthenou, E., Zafiropoulos, A., Tsatsakis, A. et al. 2006. Chondroitin sulfate A chains enhance platelet derived growth factor-mediated signalling in fibrosarcoma cells. Int. J. Biochem. Cell Biol., 38(12), 2141–50.CrossRefGoogle ScholarPubMed
Swann, D. A., Radin, E. L., Nazimiec, M. et al. 1974. Role of hyaluronic acid in joint lubrication. Ann. Rheum. Dis., 33(4), 318–26.CrossRefGoogle ScholarPubMed
Damus, P. S., Hicks, M. and Rosenberg, R. D. 1973. Anticoagulant action of heparin. Nature, 246(5432), 355–7.CrossRefGoogle ScholarPubMed
Lindahl, U. and Roden, L. 1966. The chondroitin 4-sulfate-protein linkage. J. Biol. Chem., 241(9), 2113–19.Google ScholarPubMed
Doege, K. J., Sasaki, M., Kimura, T. and Yamada, Y. 1991. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J. Biol. Chem., 266(2), 894–902.Google ScholarPubMed
Mow, V. C., Radcliffe, A. and Poole, A. R. 1992. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials, 13, 67–97.CrossRefGoogle ScholarPubMed
Sanchez-Adams, J., Willard, V. P. and Athanasiou, K. A. 2011. Regional variation in the mechanical role of knee meniscus glycosaminoglycans. J. Appl. Physiol., 111(6), 1590–6.CrossRefGoogle ScholarPubMed
Le Maitre, C. L., Pockert, A., Buttle, D. J., Freemont, A. J. and Hoyland, J. A. 2007. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem. Soc. Trans., 35(Part 4), 652–5.CrossRefGoogle ScholarPubMed
Lapčík, L., Lapčík, L., De Smedt, S., Demeester, J. and Chabrecek, P. 1998. Hyaluronan: preparation, structure, properties, and applications. Chem. Rev., 98(8), 2663–84.CrossRefGoogle Scholar
van der Harst, M. R., Brama, P. A., van de Lest, C. H. et al. 2004. An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone. Osteoarthritis Cartilage, 12(9), 752–61.CrossRefGoogle ScholarPubMed
Prince, C. W. and Navia, J. M. 1983. Glycosaminoglycan alterations in rat bone due to growth and fluorosis. J. Nutr., 113(8), 1576–82.CrossRefGoogle ScholarPubMed
Miyazaki, T., Miyauchi, S., Tawada, A., Anada, T. and Matsuzaka, S. 2010. Effect of chondroitin sulfate-E on the osteoclastic differentiation of RAW264 cells. Dent. Mater. J., 29(4), 403–10.CrossRefGoogle ScholarPubMed
Fujii, Y., Fujii, K., Nakano, K. and Tanaka, Y. 2003. Crosslinking of CD44 on human osteoblastic cells upregulates ICAM-1 and VCAM-1. FEBS Lett., 539(1–3), 45–50.CrossRefGoogle ScholarPubMed
Pivetta, E., Scapolan, M., Wassermann, B. et al. 2011. Blood-derived human osteoclast resorption activity is impaired by hyaluronan–CD44 engagement via a p38-dependent mechanism. J. Cell Physiol., 226(3), 769–79.CrossRefGoogle Scholar
Miyazaki, T., Miyauchi, S., Tawada, A. et al. 2008. Oversulfated chondroitin sulfate-E binds to BMP-4 and enhances osteoblast differentiation. J. Cell Physiol., 217(3), 769–77.CrossRefGoogle ScholarPubMed
Nikitovic, D., Zafiropoulos, A., Tzanakakis, G. N., Karamanos, N. K. and Tsatsakis, A. M. 2005. Effects of glycosaminoglycans on cell proliferation of normal osteoblasts and human osteosarcoma cells depend on their type and fine chemical compositions. Anticancer Res., 25(4), 2851–6.Google ScholarPubMed
Bernstein, E. F., Underhill, C. B., Hahn, P. J., Brown, D. B. and Uitto, J. 1996. Chronic sun exposure alters both the content and distribution of dermal glycosaminoglycans. Br. J. Dermatol., 135(2), 255–62.CrossRefGoogle ScholarPubMed
Witt, D. P. and Lander, A. D. 1994. Differential binding of chemokines to glycosaminoglycan subpopulations. Curr. Biol., 4(5), 394–400.CrossRefGoogle ScholarPubMed
Termeer, C., Benedix, F., Sleeman, J. et al. 2002. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med., 195(1), 99–111.CrossRefGoogle ScholarPubMed
West, D. C., Shaw, D. M., Lorenz, P., Adzick, N. S. and Longaker, M. T. 1997. Fibrotic healing of adult and late gestation fetal wounds correlates with increased hyaluronidase activity and removal of hyaluronan. Int. J. Biochem. Cell Biol., 29(1), 201–10.CrossRefGoogle ScholarPubMed
Novak, U. and Kaye, A. H. 2000. Extracellular matrix and the brain: components and function. J. Clin. Neurosci., 7(4), 280–90.CrossRefGoogle ScholarPubMed
Pratt, R. M., Larsen, M. A. and Johnston, M. C. 1975. Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix. Dev. Biol., 44(2), 298–305.CrossRefGoogle Scholar
Yamaguchi, Y. 2000. Lecticans: organizers of the brain extracellular matrix. Cell Mol. Life Sci., 57(2), 276–89.CrossRefGoogle ScholarPubMed
Prabhakar, V., Capila, I., Bosques, C. J., Pojasek, K. and Sasisekharan, R. 2005. Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification. Biochem. J., 386(Part 1), 103–12.CrossRefGoogle ScholarPubMed
Silver, J. and Miller, J. H. 2004. Regeneration beyond the glial scar. Nature Rev. Neurosci., 5(2), 146–56.CrossRefGoogle ScholarPubMed
Hassell, J. R., Cintron, C., Kublin, C. and Newsome, D. A. 1983. Proteoglycan changes during restoration of transparency in corneal scars. Arch. Biochem. Biophys., 222(2), 362–9.CrossRefGoogle ScholarPubMed
Chakravarti, S., Petroll, W. M., Hassell, J. R. et al. 2000. Corneal opacity in lumican-null mice: defects in collagen fibril structure and packing in the posterior stroma. Invest. Ophthalmol. Vis. Sci., 41(11), 3365–73.Google ScholarPubMed
Hart, G. W. 1976. Biosynthesis of glycosaminoglycans during corneal development. J. Biol. Chem., 251(21), 6513–21.Google ScholarPubMed
Trochon, V., Mabilat, C., Bertrand, P. et al. 1996. Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int. J. Cancer, 66(5), 664–8.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Ausprunk, D. H. 1982. Synthesis of glycoproteins by endothelial cells in embryonic blood vessels. Dev. Biol., 90(1), 79–90.CrossRefGoogle ScholarPubMed
Ofosu, F. A., Modi, G. J., Smith, L. M. et al. 1984. Heparan sulfate and dermatan sulfate inhibit the generation of thrombin activity in plasma by complementary pathways. Blood, 64(3), 742–7.Google ScholarPubMed
Wight, T. N. 2002. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr. Opin. Cell Biol., 14(5), 617–23.CrossRefGoogle ScholarPubMed
Hinek, A., Wrenn, D. S., Mecham, R. P. and Barondes, S. H. 1988. The elastin receptor: a galactoside-binding protein. Science, 239(4847), 1539–41.CrossRefGoogle ScholarPubMed
Hocking, A. M., Shinomura, T. and McQuillan, D. J. 1998. Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol., 17(1), 1–19.CrossRefGoogle ScholarPubMed
Lee, Y., Chung, H. J., Yeo, S. et al. 2010. Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol–thiol reaction. Soft Matter, 6(5), 977–83.CrossRefGoogle Scholar
Ryu, J. H., Lee, Y., Kong, W. H. et al. 2011. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules, 12(7), 2653–9.CrossRefGoogle ScholarPubMed
Bhattarai, N., Ramay, H. R., Gunn, J., Matsen, F. A. and Zhang, M. 2005. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release, 103(3), 609–24.CrossRefGoogle ScholarPubMed
Huang, X., Zhang, Y., Donahue, H. J. and Lowe, T. L. 2007. Porous thermoresponsive-co-biodegradable hydrogels as tissue-engineering scaffolds for 3-dimensional in vitro culture of chondrocytes. Tissue Eng., 13(11), 2645–52.CrossRefGoogle ScholarPubMed
Mørch, Y. A., Donati, I., Strand, B. L. and Skjåk-Braek, G. 2006. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, 7(5), 1471–80.CrossRefGoogle ScholarPubMed
Hoffman, A. S. 2002. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 54(1), 3–12.CrossRefGoogle ScholarPubMed
Denuzière, A., Ferrier, D., Damour, O. and Domard, A. 1998. Chitosan–chondroitin sulfate and chitosan–hyaluronate polyelectrolyte complexes: biological properties. Biomaterials, 19(14), 1275–85.CrossRefGoogle ScholarPubMed
Villanueva, I., Gladem, S. K., Kessler, J. and Bryant, S. K. 2010. Dynamic loading stimulates chondrocyte biosynthesis when encapsulated in charged hydrogels prepared from poly(ethylene glycol) and chondroitin sulfate. Matrix Biol., 29(1), 51–62.CrossRefGoogle ScholarPubMed
Gerecht, S., Burdick, J. A., Ferreira, L. S. et al. 2007. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Nat. Acad. Sci. USA, 104(27), 11298–303.CrossRefGoogle ScholarPubMed
Zhang, Y. and Chu, C. C. 2001. Biodegradable dextran–polylactide hydrogel network and its controlled release of albumin. J. Biomed. Mater. Res., 54(1), 1–11.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Kolb, H. C., Finn, M. G. and Sharpless, K. B. 2001. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 40(11), 2004–21.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Manzl, C., Enrich, J., Ebner, H., Dallinger, R. and Krumschnabel, G. 2004. Copper-induced formation of reactive oxygen species causes cell death and disruption of calcium homeostasis in trout hepatocytes. Toxicology, 196(1–2), 57–64.CrossRefGoogle ScholarPubMed
Hu, X., Li, D., Zhou, F. and Gao, C. 2011. Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry. Acta Biomater., 7(4), 1618–26.CrossRefGoogle ScholarPubMed
Tan, H., Rubin, J. P. and Marra, K. G. 2009. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2499–506.CrossRefGoogle ScholarPubMed
Hiemstra, C., Aa, L. J., Zhong, Z., Dijkstra, P. J. and Feijen, J. 2007. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition. Biomacromolecules, 8(5), 1548–56.CrossRefGoogle ScholarPubMed
Strehin, I., Ambrose, W. M., Schein, O., Salahuddin, A. and Elisseeff, A. 2009. Synthesis and characterization of a chondroitin sulfate–polyethylene glycol corneal adhesive. J. Cataract Refract. Surg., 35(3), 567–76.CrossRefGoogle ScholarPubMed
Jin, R., Moreira Teixeira, L. S., Dijkstra, P. J. 2009. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2544–51.CrossRefGoogle ScholarPubMed
Chen, T., Embree, H. D., Brown, E. M., Taylor, M. M. and Payne, G. F. 2003. Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials, 24(17), 2831–41.CrossRefGoogle ScholarPubMed
Kurisawa, M., Chung, J. E., Yang, Y. Y., Gao, S. J. and Uyama, H. 2005. Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chem. Commun., (34), 4312–14.
Ko, C. S., Huang, J. P., Huang, C. W. and Chu, I. M. 2009. Type II collagen–chondroitin sulfate–hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. J. Biosci. Bioeng., 107(2), 177–82.CrossRefGoogle ScholarPubMed
Selmi, T. A., Verdonk, P., Chambat, P. et al. 2008. Autologous chondrocyte implantation in a novel alginate–agarose hydrogel: outcome at two years. J. Bone Joint Surg. Br., 90(5), 597–604.CrossRefGoogle Scholar
Varghese, S., Hwang, N. S., Canver, A. C. et al. 2008. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol., 27(1), 12–21.CrossRefGoogle ScholarPubMed
Jin, R., Teixeira, L. S., Dijkstra, P. J. et al. 2010. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials, 31(11), 3103–13.CrossRefGoogle ScholarPubMed
Wang, D. A., Varghese, S., Sharma, B. et al. 2007. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nature Mater., 6(5), 385–92.CrossRefGoogle ScholarPubMed
Kon, E., Gobbi, A., Filardo, G. et al. 2011. Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am. J. Sports Med., 39(8), 1668–75.CrossRefGoogle ScholarPubMed
Nehrer, S., Domayer, S., Dorotka, R. et al. 2006. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur. J. Radiol., 57(1), 3–8.CrossRefGoogle ScholarPubMed
Buschmann, M. D. H., Hoemann, C. D., Hurtig, M. B. and Shive, M. S. 2007. Cartilage repair with chitosan–glycerol phosphate-stabilized blood clots. In Cartilage Repair Strategies, ed. Williams, R. J.. Totowa, NJ: Humana Press.Google Scholar
Shive, M. S., Hoemann, C. D., Restrepo, A. et al. 2006. BST-CarGel: in situ chondroinduction for cartilage repair. Operative Techniques Orthopaedics, 16(4), 8.CrossRefGoogle Scholar
Stephan, S. J., Tholpady, S. S., Gross, B. et al. 2010. Injectable tissue-engineered bone repair of a rat calvarial defect. Laryngoscope, 120(5), 895–901.Google ScholarPubMed
Alsberg, E., Anderson, K. W., Albeiruti, A., Franceschi, R. T. and Mooney, D. J. 2001. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res., 80(11), 2025–9.CrossRefGoogle ScholarPubMed
Tanaka, K., Goto, T., Miyazaki, T. et al. 2011. Apatite-coated hyaluronan for bone regeneration. J. Dent. Res., 90(7), 906–11.CrossRefGoogle ScholarPubMed
Yannas, I. V. and Burke, J. F. 1980. Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res., 14(1), 65–81.CrossRefGoogle ScholarPubMed
Sun, G., Zhang, X., Shen, Y. I. et al. 2011. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Nat. Acad. Sci. USA, 108(52), 20976–81.CrossRefGoogle ScholarPubMed
Lee, W. R., Park, J. H., Kim, K. H. et al. 2009. The biological effects of topical alginate treatment in an animal model of skin wound healing. Wound Repair Regen., 17(4), 505–10.CrossRefGoogle Scholar
Uccioli, L., Giurato, L., Ruotolo, V. et al. 2011. Two-step autologous grafting using HYAFF scaffolds in treating difficult diabetic foot ulcers: results of a multicenter, randomized controlled clinical trial with long-term follow-up. Int. J. Low Extrem. Wounds, 10(2), 80–5.CrossRefGoogle ScholarPubMed
Leipzig, N. D., Giurato, L., Ruotolo, V. et al. 2011. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials, 32(1), 57–64.CrossRefGoogle ScholarPubMed
Park, J. S., Chu, J. S., Tsou, A. D. et al. 2011. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials, 32(16), 3921–30.CrossRefGoogle ScholarPubMed
Wei, Y. T., He, Y., Xu, C. L. et al. 2010. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-l-lysine to promote axon regrowth after spinal cord injury. J. Biomed. Mater. Res. B Appl. Biomater., 95(1), 110–17.CrossRefGoogle ScholarPubMed
Raines, A. L., Sunwoo, M., Gertzmann, A. A. et al. 2011. Hyaluronic acid stimulates neovascularization during the regeneration of bone marrow after ablation. J. Biomed. Mater. Res. Part A, 96(3), 575–83.CrossRefGoogle ScholarPubMed
Liu, Y. and Chan-Park, M. B. 2009. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials, 30(2), 196–207.CrossRefGoogle ScholarPubMed
Pandis, L., Zavan, B., Abatangelo, B. et al. 2010. Hyaluronan-based scaffold for in vivo regeneration of the rat vena cava: preliminary results in an animal model. J. Biomed. Mater. Res. Part A, 93(4), 1289–96.Google Scholar
Re’em, T., Kaminer-Israeli, Y., Ruvinov, E. and Cohen, S. 2012. Chondrogenesis of hMSC in affinity-bound TGF-β scaffolds. Biomaterials, 33(3), 751–61.CrossRefGoogle ScholarPubMed
Lee, K. W., Yoon, J. J., Lee, J. H. et al. 2004. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan. Transplant. Proc., 36(8), 2464–5.CrossRefGoogle ScholarPubMed
Ruvinov, E., Leor, J. and Cohen, S. 2011. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials, 32(2), 565–78.CrossRefGoogle Scholar
Sánchez, M., Anitua, E., Azofra, J. et al. 2007. Comparison of surgically repaired Achilles tendon tears using platelet-rich fibrin matrices. Am. J. Sports Med., 35(2), 245–51.CrossRefGoogle ScholarPubMed
Fortier, L. A., Potter, H. G., Rickey, E. J. et al. 2010. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J. Bone Joint Surg. Am., 92(10), 1927–37.CrossRefGoogle ScholarPubMed
Gobbi, A., Karnatzikos, G., Scotti, C. 2011. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage, 2(3), 14.CrossRefGoogle ScholarPubMed
Marx, R. E. 2001. Platelet-rich plasma (PRP): what is PRP and what is not PRP?Implant. Dent., 10(4), 225–8.CrossRefGoogle Scholar
Wong, D. A., Kumar, A., Jatana, S., Ghiselli, G. and Wong, K. 2008. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). Spine J., 8(6), 1011–18.CrossRefGoogle Scholar
Canter, H. I., Vargel, I., Korkusuz, P. et al. 2010. Effect of use of slow release of bone morphogenetic protein-2 and transforming growth factor-β-2 in a chitosan gel matrix on cranial bone graft survival in experimental cranial critical size defect model. Ann. Plast. Surg., 64(3), 342–50.CrossRefGoogle Scholar
Kolambkar, Y. M., Dupont, K. M., Boerckel, J. D. et al. 2011. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials, 32(1), 65–74.CrossRefGoogle ScholarPubMed
Jeon, O., Powell, C., Solorio, L. D., Krebs, M. D. and Alsberg, E. 2011. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control. Release, 154(3), 258–66.CrossRefGoogle ScholarPubMed
Wood, M. D., Moore, A. M., Hunter, D. A. et al. 2009. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater., 5(4), 959–68.CrossRefGoogle ScholarPubMed
Xu, H., Yan, Y. and Li, S. 2011. PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials, 32(20), 4506–16.CrossRefGoogle ScholarPubMed
Marx, R. E., Carlson, E. R., Eichstaedt, R. M. et al. 1998. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 85(6), 638–46.CrossRefGoogle ScholarPubMed
Lu, H. H., Vo, J. M., Chin, H. S. et al. 2008. Controlled delivery of platelet-rich plasma-derived growth factors for bone formation. J. Biomed. Mater. Res. Part A, 86(4), 1128–36.CrossRefGoogle ScholarPubMed
Oktay, E. O., Demiralp, B., Demiralp, B. et al. 2010. Effects of platelet-rich plasma and chitosan combination on bone regeneration in experimental rabbit cranial defects. J. Oral Implantol., 36(3), 175–84.CrossRefGoogle Scholar
Strehin, I., Nahas, Z., Arora, K., Nguyen, T. and Elisseeff, J. 2010. A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials, 31(10), 2788–97.CrossRefGoogle ScholarPubMed
Chenault, H. K., Bhatia, S. K., Dimaio, W. G. et al. 2011. Sealing and healing of clear corneal incisions with an improved dextran aldehyde-PEG amine tissue adhesive. Curr. Eye Res., 36(11), 997–1004.CrossRefGoogle ScholarPubMed
Artzi, N., Shazly, T., Crespo, C. et al. 2009. Characterization of star adhesive sealants based on PEG/dextran hydrogels. Macromolec. Biosci., 9(8), 754–65.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×