Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-06T09:03:04.410Z Has data issue: false hasContentIssue false

13 - Bryophytes and Lichens in a Changing Climate: An Antarctic Perspective

Published online by Cambridge University Press:  05 October 2012

Rodney D. Seppelt
Affiliation:
Australian Antarctic Division, Australia
Nancy G. Slack
Affiliation:
Sage Colleges, New York
Lloyd R. Stark
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Introduction

The Antarctic continent occupies about 14.4 million square kilometers, about 99% of which is covered by ice with an average thickness of around 1.8 km. It is the coldest, driest, windiest continent and has the highest mean elevation of all continents. Precipitation, as low as 20 mm on the inland ice plateau and significantly higher in coastal regions (as much as 250 mm annual rainfall equivalent), falls mostly as snow but occasionally as rain, particularly in the climatically milder maritime part of the northern Antarctic Peninsula.

The terrestrial and limnetic plant biota of Antarctica is impoverished and limited to lichens, bryophytes, mostly microscopic algae, cyanobacteria, mostly microscopic fungi, and two small vascular plants found only in the Maritime Antarctic. Invertebrates dominate the terrestrial and limnetic fauna, although large numbers of seabirds breed onshore over the summer months. Despite the severe climate and limited habitat availability, terrestrial plant life flourishes in ice-free areas where moisture is available. The continent of Antarctica with its nearby offshore islands is unique in being the only major land mass with a flora composed almost entirely of cryptogams (Longton 1979; Kappen 1993a; Broady 1996; Green et al. 1999; Vincent 2000; Øvstedal & Lewis Smith 2001; Ochyra et al. 2008).

The strong negative trend of the global thermal budget from the equator towards the poles is regionally altered by the presence of land masses and by general oceanic circulation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, D. A., Whetton, P. & Selkirk, P. M. (1988). An analysis of air temperature records for Macquarie Island: decadal warming, ENSO cooling and Southern Hemisphere circulation patterns. Papers and Proceedings of the Royal Society of Tasmania 122: 107–12.Google Scholar
Adamson, H., Wilson, M., Selkirk, P. & Seppelt, R. (1988). Photoinhibition in Antarctic mosses. Polarforschung 58(2/3): 103–11.Google Scholar
Allen, S. E., Grimshaw, H. M. & Holdgate, M. W. (1967). Factors affecting the availability of plant nutrients on an Antarctic island. Journal of Ecology 55: 381–96.Google Scholar
Allison, I. F. & Keage, P. L. (1986). Recent changes in the glaciers of Heard Island. Polar Record 23: 255–71.Google Scholar
Andrássy, I. (1998). Nematodes in the sixth continent. Journal of Nematode Systematics and Morphology 1: 107–86.Google Scholar
Austin, A. T., Yahdjaian, L., Stark, J. M.et al. (2004). Water pulses and biogeochemical cycle in arid and semiarid ecosystems. Oecologia 141: 221–35.Google Scholar
Bargagli, R., Broady, P. A. & Walton, D. W. H. (1996). Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles (northern Victoria Land, Antarctica). Antarctic Science 8: 121–6.Google Scholar
Barrett, J. E., Wall, D. H., Virginia, R. A.et al. (2004). Biogeochemical parameters and constraints on the structure of soil biodiversity. Ecology 85: 3105–18.Google Scholar
Barrett, J. E., Virginia, R. A., Wall, D. H.et al. (2008). Persistent effects of a discrete warming event on a polar desert ecosystem. Global Change Biology 14: 2249–61.Google Scholar
Bates, J. W. (2000). Mineral nutrition, substratum ecology, and pollution. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 248–311. Cambridge: Cambridge University Press.CrossRef
Beyer, L., Bölter, M. & Seppelt, R. D. (2000). Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill Islands region of East Antarctica (Wilkes Land). Arctic, Antarctic and Alpine Research 32: 30–9.Google Scholar
Björn, L.-O. (1999). Ultraviolet-B radiation, the ozone layer and ozone depletion. In Stratospheric Ozone Depletion – the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems, ed. Rozema, J., pp. 21–38. Leiden: Backhuys.
Block, W. R. (1996). Cold or drought – the lesser of two evils for terrestrial arthropods? European Journal of Entomology 93: 325–39.Google Scholar
Bölter, M. (1990). Microbial ecology of soils from Wilkes Land, Antarctica. I. The bacterial population and its activity in relation to dissolved organic matter. Proceedings of the National Institute of Polar Research: Symposium of Polar Biology 3: 104–19.Google Scholar
Broady, P. A. (1996). Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation 5: 1307–35.Google Scholar
Broady, P. A., Given, D., Greenfield, L. & Thompson, K. (1987). The biota and environment of fumaroles on Mount Melbourne, northern Victoria Land. Polar Biology 7: 97–113.Google Scholar
Caldwell, M. M., Bornman, J. F., Ballare, C. L., Flint, S. D. & Kulandaivelu, G. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical and Photobiological Sciences 6: 252–66.Google Scholar
Callaghan, T. V., Sonesson, M. & Sømme, L. (1992). Responses of terrestrial plants and invertebrates to environmental change at high latitudes. Philosophical Transactions of the Royal Society of London B 338: 279–88.Google Scholar
Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology 70: 1–9.Google Scholar
Christianson, M. L. (2000). Control of morphogenesis in bryophytes. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 199–244. Cambridge: Cambridge University Press.CrossRef
Clarke, L. J. & Robinson, S. A. (2008). Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytologist 179: 776–83.Google Scholar
Cockell, C. S., Rettberg, P., Horneck, G.et al. (2002). Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies. Journal of Photochemistry and Photobiology B 68: 23–32.Google Scholar
Convey, P. & Block, W. (1996). Antarctic dipterans: ecology, physiology and distribution. European Journal of Entomology 93: 1–13.Google Scholar
Convey, P. & McInnes, S. J. (2005). Exceptional tardigrade-dominated ecosystems from Ellsworth Land, Antarctica. Ecology 86: 519–27.Google Scholar
Crittenden, P. D. (1998). Nutrient exchange in an Antarctic macrolichen during summer snowfall snow melt events. New Phytologist 139: 697–707.Google Scholar
Day, T. A., Ruhland, C. T., Grobe, C. W. & Xiong, F. (1999). Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119: 24–35.Google Scholar
Dunn, J. L. & Robinson, S. A. (2006). Ultraviolet B screening potential is higher in two cosmopolitan moss species than in a co-occurring Antarctic endemic moss: implications of continuing ozone depletion. Global Change Biology 12: 2282–96.Google Scholar
Farman, J. C., Gardiner, B. G. & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315: 207–10.Google Scholar
Foreman, C., Wolf, C. E. & Priscu, J. C. (2004). Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry 10: 239–68.Google Scholar
Fowbert, J. A. & Lewis Smith, R. I. (1994). Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arctic and Alpine Research 26: 290–6.Google Scholar
Freckman, D. W. & Virginia, R. A. (1997). Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78: 363–9.Google Scholar
Frederick, J. E. & Snell, H. E. (1988). Ultraviolet levels during the Antarctic spring. Science 241: 438–40.Google Scholar
Friedmann, E. I. (1977). Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarctic Journal of the United States 12: 6–30.Google Scholar
Friedmann, E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science 215: 1045–54.Google Scholar
Friedmann, E. I., Garty, J. & Kappen, L. (1980). Fertile stages of cryptoendolithic lichens in the dry valleys of southern Victoria Land. Antarctic Journal of the United States 15: 166.Google Scholar
Friedmann, E. I., Hua, M. & Ocampo-Friedmann, R. (1988). Cryptoendolithic and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58 (2–3): 251–9.Google Scholar
Gebauer, R. L. & Ehleringer, J. R. (2000). Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81: 1415–24.Google Scholar
Gerighausen, U., Bräutigam, K., Mustafa, O. & Peter, H.-U. (2003). Expansion of vascular plants on an Antarctic island – a consequence of climate change? In Antarctic Biology in a Global Context, ed. Huiskes, A. H. L., Gieskes, W. W. C., Rozema, J.et al., pp. 79–83. Leiden: Backhaus Publishers.
Godard, A. & André, M.-F. (1999). Les Milieux Polaires. Paris: Armand Colin.
Goodwin, I. D. (1993). Holocene deglaciation, sea level change, and the emergence of the Windmill Islands, Budd Coast, Antarctica. Quaternary Research 40: 70–80.Google Scholar
Gould, K. S. (2004). Nature's Swiss army knife: the diverse protective roles of anthocyanins in leaves. Journal of Biomedicine and Biotechnology 5: 314–20.Google Scholar
Green, T. G. A., Kulle, D., Pannewitz, S., Sancho, L. G. & Schroeter, B. (2005). UV-A protection in mosses growing in continental Antarctica. Polar Biology 28: 822–7.Google Scholar
Green, T. G. A. & Lange, O. L. (1994). Photosynthesis in poikilohydric plants: A comparison of lichens and bryophytes. In Ecophysiology of Photosynthesis, ed. Schulze, E.-D. & Caldwell, M. C.. Ecological Studies100: 319–41.
Green, T. G. A., Schroeter, B. & Sancho, L. G. (1999). Plant life in Antarctica. In Handbook of Functional Plant Ecology, ed. Pugnaire, F. I. & Valladares, F., pp. 495–543. Basel: Dekker.
Green, T. G. A., Schroeter, B. & Seppelt, R. D. (2000). Effect of temperature, light and ambient UV on the photosynthesis of the moss Bryum argenteum Hedw. in continental Antarctica. In Antarctic Ecosystems: Models for Wider Ecological Understanding, ed. Davison, W., Howard-Williams, C. & Broady, P., pp. 165–70. Christchurch: Caxton Press.
Greenberg, B. M., Wilson, M. I., Huang, X. D.et al. (1997). The effects of ultraviolet-B radiation on higher plants. In Plants for Environmental Studies, ed. Wang, W., Gorusuch, J. W. & Hughes, J. S., pp. 1–36. New York: Lewis Publishers.
Greenfield, L. G. (1992a). Retention of precipitation nitrogen by Antarctic mosses, lichens and fellfield soils. Antarctic Science 4: 205–6.Google Scholar
Greenfield, L. G. (1992b). Precipitation nitrogen at maritime Signy Island and continental Cape Bird, Antarctica. Polar Biology 11: 649–53.Google Scholar
Greenslade, P. (1995). Collembola from the Scotia Arc and Antarctic Peninsula including descriptions of two new species and notes on biogeography. Polskie Pismo Entomologiczne 64: 305–19.Google Scholar
Grémillet, D. & Maho, Y. (2003). Arctic and Antarctic ecosystems: poles apart? In Antarctic Biology in a Global Context, ed. Huiskes, A. H. L., Gieskes, W. W. C., Rozema, J.et al., pp. 169–75. Leiden: Backhuys.
Gremmen, N. J. M., Huiskes, A. H. L. & Francke, J. W. (1994). Epilithic macrolichen vegetation of the Argentine Islands, Antarctic Peninsula. Antarctic Science 6: 463–71.Google Scholar
Hansom, J. G. & Gordon, J. E. (1998). Antarctic Environments and Resources. A Geographical Perspective. Harlow: Longman.
Havström, M., Callaghan, T. V., Jonasson, S. & Svoboda, J. (1995). Little Ice Age temperature reduction measured by the reduced growth of an arctic heather. Functional Ecology 9: 650–4.Google Scholar
Hawes, I., Howard-Williams, C. & Vincent, W. F. (1992). Desiccation and recovery of antarctic cyanobacterial mats. Polar Biology 12: 587–94.Google Scholar
Hempel, G. (1995). Epilog. In Biologie der Polarmeere. Erlebnisse und Ergebnisse, ed. Hempel, I. & Hempel, G., pp. 348–57. Jena: Gustav Fischer.
Hennion, F., Huiskes, A., Robinson, S. & Convey, P. (2006). Physiological traits of organisms in a changing environment. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M., Convey, P. & Huiskes, A. H. L., pp. 127–57. Dordrecht: Springer.CrossRef
Horikawa, Y. & Ando, H. (1967). The mosses of Ongul Islands and adjoining coastal areas of the Antarctic continent. Japanese Antarctic Research Expedition Scientific Reports, Special Issue 1: 245–52.Google Scholar
Hovenden, M. J. & Seppelt, R. D. (1995). Exposure and nutrients as delimiters of lichen communities in continental Antarctica. Lichenologist 27: 505–16.Google Scholar
Hughes, K. A., Lawley, B. & Newsham, K. K. (2003). Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Applied and Environmental Microbiology 69: 1488–91.Google Scholar
Hurst, J. L., Pugh, G. J. F. & Walton, D. W. H. (1985). The effects of freeze-thaw cycle and leaching on the loss of soluble carbohydrates from leaf material of two subantarctic plants. Polar Biology 4: 27–31.Google Scholar
Husain, S. R., Cillard, J. & Cillard, P. (1987). Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26: 2489–91.Google Scholar
Jentsch, A., Kreyling, J. & Beierkuhnlein, C. (2007). A new generation of climate change experiments: events, not trends. Frontiers in Ecology and the Environment 5: 365–74.Google Scholar
Kappen, L. (1993a). Lichens in the Antarctic region. In Antarctic Microbiology, ed. Friedmann, E. I., pp. 433–90. Mannheim: Wiley.
Kappen, L. (1993b). Plant activity under snow and ice, with particular reference to lichens. Arctic 46: 297–302.Google Scholar
Kappen, L. & Breuer, M. (1991). Ecological and physiological investigations in continental Antarctic cryptogams. II. Moisture relations and photosynthesis of lichens near Casey Station, Wilkes Land. Antarctic Science 3: 273–8.Google Scholar
Kappen, L., Friedmann, E. I. & Garty, J. (1981). Ecophysiology of lichens in the Dry Valleys of southern Victoria land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora 171: 216–35.Google Scholar
Kappen, L., Lewis Smith, R. I. & Meyer, M. (1989). Carbon dioxide exchange of two ecodemes of Schistidium antarctici in continental Antarctica. Polar Biology 9: 415–22.Google Scholar
Kappen, L., Sommerkorn, M. & Schroeter, B. (1995). Carbon acquisition and water relations of lichens in polar regions – potentials and limitations. Lichenologist 27: 531–45.Google Scholar
Kennedy, A. D. (1993). Water as a limiting factor in the Antarctic terrestrial environment. Arctic and Alpine Research 25: 308–15.Google Scholar
Kimball, S. L., Bennet, S. D. & Salisbury, F. B. (1973). The growth and development of montane species at near freezing temperatures. Ecology 54: 168–73.Google Scholar
Lappalainen, N. M., Huttunen, S. & Suokanerva, H. (2008). Acclimation of a pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced ultraviolet radiation in situ. Global Change Biology 14: 321–33.Google Scholar
Larson, R. A. & Berenbaum, M. R. (1988). Environmental phototoxicity. Solar ultraviolet radiation affects the toxicity of natural and man-made chemicals. Environmental Science and Technology 22: 354–60.Google Scholar
Leishman, M. R. & Wild, C. (2001). Vegetation abundance and diversity in relation to soil nutrients and soil water content in the Vestfold Hills, East Antarctica. Antarctic Science 13: 126–34.Google Scholar
Lewis Smith, R. I. (1985). Nutrient cycling in relation to biological productivity in Antarctic and sub-Antarctic terrestrial and freshwater ecosystems. In Antarctic nutrient cycles and food webs. Proceedings of the 4th SCAR Symposium on Antarctic Biology, ed. Siegfried, W. R., Condy, P. R. & Laws, R. M., pp. 138–55. Berlin: Springer-Verlag.
Lewis Smith, R. I. (1994). Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99: 322–8.Google Scholar
Lewis Smith, R. I. (2005). The thermophilic bryoflora of Deception Island: unique plant communities as a criterion for designating an Antarctic Specially Protected Area. Antarctic Science 17: 17–27.Google Scholar
Ling, H. U. (1996). Snow algae of the Windmill Islands region, Antarctica. Hydrobiologia 336: 99–106.Google Scholar
Ling, H. & Seppelt, R. D. (1993). Snow algae of the Windmill Islands, continental Antarctica. 2. Chloromonas rubroleosa sp. nov. (Volvocales, Chlorophyta), an alga of red snow. European Journal of Phycology 28: 77–84.Google Scholar
Ling, H. U. & Seppelt, R. D. (1998a). Non-marine algae and cyanobacteria of the Windmill Islands region, Antarctica, with description of two new species. Archiv für Hydrobiologie, Supplement Volume 124, Algological Studies 89: 49–62.Google Scholar
Ling, H. U. & Seppelt, R. D. (1998b). Snow algae of the Windmill Islands, continental Antarctica. 3. Chloromonas polyptera (Volvocales, Chlorophyta) Polar Biology 20: 320–4.Google Scholar
Longton, R. E. (1979). Vegetation ecology and classification in the Antarctic Zone. Canadian Journal of Botany 57: 2264–78.Google Scholar
Longton, R. E. (1988). The Biology of Polar Bryophytes and Lichens. Cambridge: Cambridge University Press.CrossRef
Lovelock, C. E., Osmond, C. B. & Seppelt, R. D. (1995a). Photoinhibition in the Antarctic moss Grimmia antarctici Card. when exposed to cycles of freezing and thawing. Plant, Cell & Environment 18: 1395–402.Google Scholar
Lovelock, C. E., Jackson, A. E., Melick, D. R. & Seppelt, R. D. (1995b). Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiology 109: 955–61.Google Scholar
Markham, K. R., Franke, A., Given, D. R. & Brownsey, P. (1996). Historical Antarctic ozone level trends from herbarium specimen flavonoids. Bulletin de Liaison du Groupe Polyphenols 15: 230–5.Google Scholar
Markham, K. R., Ryan, K. G., Bloor, S. J. & Mitchell, K. A. (1998). An increase in the luteolin:apigenin ratio in Marchantia polymorpha on UV-B enhancement. Photochemistry 48: 791–4.Google Scholar
McKay, C. P., Freidmann, E. I., Gomex-Silva, B., et al. (2003). Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Niño of 1997–1998. Astrobiology 3: 393–406.Google Scholar
McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O. & Ilyas, M. (2007). Changes in biologically active ultraviolet radiation reaching the Earth's surface. Photochemical and Photobiological Sciences 6: 218–31.Google Scholar
McKnight, D. M., Tate, C. M., Andrews, E. D.et al. (2007). Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: a long-term geomorphological experiment. Geomorphology 89(1/2): 186–204.Google Scholar
McRae, C. F., Hocking, A. D. & Seppelt, R. D. (1999). Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species Penicillium antarcticum. Polar Biology 21: 97–111.Google Scholar
Melick, D. R. & Seppelt, R. D. (1992). Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarctic Science 4: 399–404.Google Scholar
Melick, D. R. & Seppelt, R. D. (1994). Seasonal investigations of soluble carbohydrates and pigment levels in Antarctic bryophytes and lichens. Bryologist 97: 13–19.Google Scholar
Melick, D. R. & Seppelt, R. D. (1997). Vegetation patterns in relation to climatic and endogenous changes in Wilkes Land, continental Antarctica. Journal of Ecology 85: 43–56.Google Scholar
Mues, R. (2000). Chemical constituents and biochemistry. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 150–81. Cambridge: Cambridge University Press.CrossRef
Newsham, K. K., Hodgson, D. A., Murraya, A. W. A., Peat, H. J. & Lewis Smith, R. I. (2002). Responses of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biology 8: 972–83.Google Scholar
Nienow, J. A., McKay, C. P. & Friedmann, E. I. (1988). The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microbial Ecology 16: 271–89.Google Scholar
Oberbauer, S. F. & Starr, G. (2002). The role of anthocyanins for photosynthesis of Alaskan arctic evergreens during snowmelt. Advances in Botanical Research 37: 129–45.Google Scholar
Ochyra, R., Lewis Smith, R. I. & Bednarek-Ochyra, H. (2008). The Illustrated Moss Flora of Antarctica. Cambridge: Cambridge University Press.
Øvstedal, D. O. & Lewis Smith, R. I. (2001). Lichens of Antarctica and South Georgia. A Guide to their Identification and Ecology. Cambridge, Cambridge University Press.
Pannewitz, S., Green, T. G. A., Maysek, K.et al. (2005). Photosynthetic responses of three common mosses from continental Antarctica. Antarctic Science 17: 341–52.Google Scholar
Pannewitz, S., Schlensog, M., Green, T. G. A., Sancho, L. G. & Schroeter, B. (2003). Are lichens active under snow in continental Antarctica? Oecologia 135: 30–8.Google Scholar
Paul, N. D. & Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology and Evolution 18: 48–55.Google Scholar
Peters, D. P. C. (2000). Climatic variation and simulated patterns in seedling establishment of two grasses at a semi-arid grassland ecotone. Journal of Vegetation Science 11: 493–504.Google Scholar
Poage, M. A., Barrett, J. E., Virginia, R. A. & Wall, D. H. (2008). Geochemical control over nematode distribution in soils of the McMurdo Dry Valleys, Antarctica. Arctic, Antarctic and Alpine Research 40: 119–28.Google Scholar
Post, A. (1990). Photoprotective pigment as an adaptive strategy in the Antarctic moss Ceratodon purpureus. Polar Biology 10: 241–5.Google Scholar
Post, A. & Larkum, A. W. D. (1993). UV-absorbing pigments, photosynthesis and UV exposure in Antarctica: comparison of terrestrial and marine algae. Aquatic Botany 45: 231–43.Google Scholar
Post, A. & Vesk, M. (1992). Photosynthesis, pigments, and chloroplast ultrastructure of an Antarctic liverwort from sun-exposed and shaded sites. Canadian Journal of Botany 70: 2259–64.Google Scholar
Proctor, M. C. F. (2000). Physiological ecology. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 225–47. Cambridge: Cambridge University Press.CrossRef
Pugh, P. J. A. (1993). A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic Islands and the Southern Ocean. Journal of Natural History 27: 232–41.Google Scholar
Quesada, A. & Vincent, W. F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology 32: 335–42.Google Scholar
Reynolds, J. F., Kemp, P. R., Ogle, K. & Fernandez, R. J. (2004). Modifying the “pulse-reserve” paradigm for deserts in North America: precipitation pulses, soil water, and plant responses. Oecologia 141: 194–210.Google Scholar
Roy, C. R., Gies, H. P. & Elliot, G. (1990). Ozone depletion. Nature 347: 235–6.Google Scholar
Rozema, J., Björn, L. O., Bornman, J. F.et al. (2002). The role of UV-B radiation in aquatic and terrestrial ecosystems – an experimental and functional analysis of the evolution of UV-absorbing compounds. Journal of Photochemistry and Photobiology B: Biology 66: 2–12.Google Scholar
Rozema, J., Staaij, J., Björn, L. O. & Caldwell, M. (1997). UV-B as an environmental factor in plant life: stress and regulation. Trends in Ecology and Evolution 12: 22–8.Google Scholar
Ryan, K. G., Markham, K. R., Bloor, S. J.et al. (1998). UVB radiation induced increase in quercetin:kaempferol ratio in wild-type and transgenic lines of Petunia. Photochemical Photobiology 68: 323–30.Google Scholar
Ryan, K. G., Burne, A. & Seppelt, R. D. (2009). Historical ozone concentrations and flavonoid levels in herbarium specimens of the Antarctic moss Bryum argenteum. Global Change Biology 15: 1694–1702.Google Scholar
Santarius, K. A. & Giersch, C. (1983). Cryopreservation of spinach chloroplast membranes by low-molecular weight carbohydrates. II. Discrimination between colligative and noncolligative protection. Cryobiology 20: 90–9.Google Scholar
Schlensog, M., Pannewitz, S., Green, T. G. A. & Schroeter, B. (2004). Metabolic recovery of continental Antarctic cryptogams after winter. Polar Biology 27: 399–408.Google Scholar
Schwinning, S. & Ehleringer, J. R. (2001). Water use trade-offs and optimal adaptation to pulse-driven arid ecosystems. Journal of Ecology 89: 464–80.Google Scholar
Scott, J. J. (1990). Changes in vegetation on Heard Island 1947–1987. In Antarctic Ecosystems: Ecological Change and Conservation, ed. Kerry, K. R. & Hempel, G., pp. 61–76. Berlin: Springer-Verlag.CrossRef
Searles, P. S., Flint, S. D. & Caldwell, M. M. (2001). A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127: 1–10.Google Scholar
Selbmann, L., Hoog, G. S., Mazzaglia, A., Friedmann, E. I. & Onofri, S. (2005). Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Studies in Mycology 51: 1–32.Google Scholar
Selkirk, P. M., Seppelt, R. D. & Selkirk, D. R. (1990). Subantarctic Macquarie Island: Environment and Biology. Cambridge: Cambridge University Press.
Shar, C., Vidale, P. L., Luthi, D.et al. (2004). The role of increasing temperature variability in European summer heatwaves. Nature 427: 332–6.Google Scholar
Skotnicki, M. L., Selkirk, P. M., Broady, P., Adam, K. D. & Ninham, J. A. (2001). Dispersal of the moss Campylopus pyriformis on geothermal ground near the summits of Mount Erebus and Mount Melbourne, Victoria Land, Antarctica. Antarctic Science 13: 280–5.Google Scholar
Smith, G. J. & Markham, K. R. (1996). The dissipation of excitation energy in methoxyflavones by internal conversion. Journal of Photochemistry and Photobiology, A 99: 97–101.Google Scholar
Smith, R. I. L. (1990). Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In Antarctic Ecosystems: Ecological Change and Conservation, ed. Kerry, K. R. & Hempel, G., pp. 32–50. Berlin: Springer-Verlag.CrossRef
Smith, V. R. & Steenkamp, M. (1990). Climatic change and its ecological implications at a subantarctic island. Oecologia 85: 14–24.Google Scholar
Snell, K. R., Convey, P. & Newsham, K. K. (2007). Metabolic recovery of the Antarctic liverwort Cephaloziella varians during snowmelt. Polar Biology 30: 1115–22.Google Scholar
Sømme, L. (1995). Invertebrates in Hot and Cold Arid Environments. Berlin: Springer-Verlag.CrossRef
Stafford Smith, D. M. & Morton, S. R. (1990). A framework for the ecology of arid Australia. Journal of Arid Environments 18: 255–78.Google Scholar
Stevens, M. I., Frati, F., McGaughran, A., Spinsanti, G. & Hogg, I. D. (2007). Phytogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi (Collembola, Isotomidae). Zoologica Scripta 36: 201–12.Google Scholar
Stevens, M. I. & Hogg, I. D. (2006a). Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biology and Biochemistry 38: 3171–80.Google Scholar
Stevens, M. I. & Hogg, I. D. (2006b). The molecular ecology of Antarctic terrestrial and limnetic invertebrates and microbes. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M., Convey, P. & Huiskes, A. D. L., pp. 177–92. Dordrecht: Springer.
Stoner, W. A., Miller, P. & Miller, P. C. (1982). Seasonal dynamics of standing crops of biomass and nutrients in a subarctic tundra vegetation. Holarctic Ecology 5: 172–9.Google Scholar
Takács, Z., Csintalan, Z., Sass, L.et al. (1999). UV-B tolerance of bryophyte species with different degrees of desiccation tolerance. Journal of Photochemistry and Photobiology B: Biology 48: 210–15.Google Scholar
Tarnawski, M., Melick, D., Roser, D.et al. (1992). In situ carbon dioxide levels in cushion and turf forms of Grimmia antarctici at Casey Station, East Antarctica. Journal of Bryology 17: 241–9.Google Scholar
Tearle, P. V. (1987). Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield fines. Soil Biology and Biochemistry 19: 381–90.Google Scholar
Tosi, S., Casado, B., Gerdol, R. & Caretta, G. (2002). Fungi isolated from Antarctic mosses. Polar Biology 25: 262–8.Google Scholar
Vincent, W. F. (2000). Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Science 12: 374–85.Google Scholar
Vishniac, H. S. (1995). Biodiversity of yeasts and filamentous microfungi in terrestrial Antarctic ecosystems. Biodiversity and Conservation 5: 1365–78.Google Scholar
Walter, H. (1931). Die Hydratur der Pflanze und ihre physiologisch-ökologische Bedeutung. Jena: Fischer.
Wasley, J., Robinson, S. A., Lovelock, C. E. & Popp, M. (2006). Some like it wet – biological characteristics and underpinning tolerance of extreme water stress events in Antarctic bryophytes. Functional Plant Ecology 33: 443–55.Google Scholar
Weatherhead, E. C. & Andersen, S. B. (2006). The search for signs of recovery of the ozone layer. Nature 441: 39–45.Google Scholar
Wilson, M. (1990). Morphology and photosynthetic physiology of Grimmia antarctici from wet and dry habitats. Polar Biology 10: 337–41.Google Scholar
Woodin, S. J. & Marquiss, M. (eds.) (1997). Ecology of Arctic Environments. Oxford: Blackwell.
Wynn-Williams, D. D. (1980). Seasonal fluctuations in microbial activity in Antarctic moss peat. Biological Journal of the Linnean Society 14: 11–28.Google Scholar
Wynn-Williams, D. D. (1996). Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microbial Ecology 31: 177–88.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×