Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T14:05:42.635Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 August 2019

V. I. Naoumov
Affiliation:
Central Connecticut State University
V. G. Krioukov
Affiliation:
Kazan National Research Technical University, Russian Federation
A. L. Abdullin
Affiliation:
The Academy of Science of the Republic of Tatarstan, Russian Federation
A. V. Demin
Affiliation:
Kazan State Power Engineering University, Russian Federation
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Chemical Kinetics in Combustion and Reactive Flows
Modeling Tools and Applications
, pp. 397 - 417
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Алемасов, В. Е., Дрегалин, А. Ф., Черенков, А. С.. Основы Теории Физико-химических Процессов в Тепловых Двигателях и Энергоустановках. Москва: Химия, 2000. [V. Ye. Alemasov, A. F. Dregalin, and A. S. Cherenkov. Fundamentals of the Theory of Physicochemical Processes in Heat Engines and Power Generation Systems. Moscow: Chemistry, 2000.]Google Scholar
Oran, E. S. and Boris, J. P.. Numerical Simulation of Reactive Flow. New York: Elsevier, 1987.Google Scholar
Emanuel, N. M. and Knorre, D. G.. Chemical Kinetics. New York: Wiley, 1973.Google Scholar
Kee, R. J., Coltrin, M. E., and Glarborg, P.. Chemically Reacting Flow: Theory and Practice. Hoboken, NJ: Wiley, 2003.Google Scholar
Kee, R. J., Rupley, F. M., Miller, J. A., et al. Chemkin Collection, Release 3.7.1: A Software Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics. CHEMKIN Collection, Gas-Phase Kinetics Core Utility Manual; A Software Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics. CHEMKIN Collection, Aurora Application User Manual. San Diego, CA: Reaction Design Inc., 2003.Google Scholar
Williams, F. A.. Combustion Theory. 2nd edn. Boulder, CO: Westview Press, 1994.Google Scholar
Kuo, K. K.. Principles of Combustion. Singapore: J. Wiley & Sons, 1986.Google Scholar
Frank-Kamenetskii, D. A.. Diffusion and Heat Exchange in Chemical Kinetics. Princeton, NJ: Princeton University Press, 1955.Google Scholar
Архипов, В. А., Коротких, А. Г., Парпиев, А. Т.. “Анализ моделей горения частиц порошка алюминия в окислительных средах.” Известия Высших Учебных Заведений. Физика, Том 55, № 5, стр 1823, 2012. [V. A. Arkhipov, A. G. Korotkikh, and A. T. Parpiev. “Analysis of the models of combustion of aluminum powder particles in oxidizing environments.” News of the Higher Educational Institutions: Physics, vol. 55, no. 5, pp. 18–23, 2012.]Google Scholar
Коста, В. Ж., Крюков, В. Г., Гасилин, В. В.. “Математическая модель абсорбции окислов серы в реагирующем газоугольном потоке.” Труды Академэнерго, № 1, стр. 72–88, 2016. [V. Zh. Costa, V. G. Krioukov, and V. V. Gasilin. “A Mathematical Model for the Absorption of Sulfur Oxides in a Reacting Gas-Coal Flow.” Journal Proceedings of Academenergo, no. 1, pp. 72–88, 2016.]Google Scholar
Померанцев, В. В., Арефьев, К. М., Ахмедов и др, Д. Б.. Основы Практической Теории Горения. Ленинград: Энергоатомиздат, 1986. [V. V. Pomerantsev, K. M. Arefyev, and D. B. Akhmedov, et al. Fundamentals of Practical Combustion. Leningrad: Energoatomizdat, 1986.]Google Scholar
Mader, C. L., Numerical Modeling of Detonations. Berkeley, Los Angeles, and London: University of California Press, 1979.Google Scholar
Alemasov, V. E., Dregalin, A. F., Tishin, A. P., et al. Thermodynamic and Thermophysical Properties of Combustion Products. Volume I. Glushko, V. P, ed. Moskow: VINITI, 1971. Translated from Russian by Israel Program for Scientific Translations, Jerusalim, 1974.Google Scholar
The National Institute of Standards and Technology (NIST) [Electronic resource]. Retrieved from www.nist.gov.Google Scholar
Гурвич, Л. В., Вейц, И. В., Медведев и др, В. А.. Термодинамические Свойства Индивидуальных Веществ. Москва: Наука, 1982. [L. V. Gurvich, I. V. Weitz, and V. A. Medvedev, et al. Thermodynamic Properties of Individual Substances. Moscow: Science, 1982.]Google Scholar
Gordon, S. and McBride, B. J.. “Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations.” NASA SP-273 Interim Revision, March 1976. Retrieved from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780009781.pdf.Google Scholar
Burcat, A.. “Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables.” ARGONNE National Laboratory, TECHNION – Israel Institute of Technology ANL-05/20, TAE 960, 2005.Google Scholar
Белов, Г. В., Иориш, В. С., Юнгман, В. С.. “Моделирование равновесных состояний термодинамических систем с использованием IVTANTERMO для Windows.” Теплофизика Высоких Температур, т. 28, № 2, стр. 191196, 2000. [G. V. Belov, V. S. Yorish, and V. S. Jungman. “Modeling Equilibrium States of Thermodynamic Systems Using IVTANTERMO for Windows.” High-Temperature Thermophysics, vol. 28, no. 2, pp. 191–196, 2000.]Google Scholar
Reynolds, W. C.. “The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN, ver. 3.” Stanford University, 1986. Retrieved from https://scinapse.io/papers/1097734671.Google Scholar
Warnatz, J., Maas, U. and Dibble, R. W.. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 4th edn. Berlin: Springer, 2006.Google Scholar
Алемасов, В. Е., Дрегалин, А. Ф., and Тишин и др, А. П.. Термодинамические и Теплофизические Свойства Продуктов Сгорания. Справочник Том 3. Москва: ВИНИТИ, 1973. [V. Ye. Alemasov, A. F. Dregalin, and A. P. Tishin, et al. Thermodynamic and Thermophysical Properties of Combustion Products. vol. 3. Moscow: VINITI, 1973.]Google Scholar
Gardiner, W. C. Jr., ed. Combustion Chemistry. New York: Springer-Verlag, 1984.Google Scholar
Кондратьев, В. Н., Никитин, Е. E.. Кинетика и Механизм Газофазных Реакций. Москва: Наука, 1974. [V. N. Kondratiev and E. E. Nikitin. Kinetics and Mechanisms of Gas-Phase Reactions. Moscow: Science, 1974.]Google Scholar
Денисов, Е. Т.. Кинетика Гомогенных Химических Реакций. Москва: Высшая школа, 1988. [E. T. Denisov. Kinetics of Homogeneous Chemical Reactions. Moscow: High School, 1988.]Google Scholar
Кондратьев, В. Н.. Константы Скоростей Газофазных Реакций. Справочник. Москва: Наука, 1974. [V. N. Kondratiev. Rate Constants for Gas-Phase Reactions. Moscow: Science, 1974.]Google Scholar
“The Master Chemical Mechanism. Version 3.3.1, The MCM Project.” University of Leeds, Retrieved from http://mcm.leeds.ac.uk/MCM/project.htt.Google Scholar
Marinov, N. M., Pitz, W. J., Westbrook, C. K., et al.Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed N-Butane Flame.” Combustion and Flame, vol. 114, pp. 192213, 1998.Google Scholar
Smith, G. P., Golden, D. M., Frenklach, M., et al. “GRI-Mech Version 3.0,” 1999. Retrieved from www.me.berkeley.edu/gri_mech.Google Scholar
Konnov, A. A.. “Implementation of the NCN Pathway of Prompt-NO Formation in the Detailed Reaction Mechanism.” Combustion and Flame, vol. 156, pp. 20932105, 2009.Google Scholar
“The Kintecus Simulation Software.” Retrieved from www.kintecus.com.Google Scholar
“Computational Fluid Dynamics ANSYS CFX and Fluent CFD Software.” Retrieved from https://caeai.com/ansys-software-support.Google Scholar
Spalding, D. B.. Combustion and Mass Transfer. New York: Pergamon Press, Inc., 1979.Google Scholar
Eaton, A. M., Smooth, L. D., Hill, S. C., et al.Components, Formulations, Solutions, Evaluation and Application of Comprehensive Combustion Models.” Progress in Energy and Combustion Science, vol. 25, pp. 387436, 1999.Google Scholar
Jiang, T. L. and Chiu, H. H.. “Bipropellant Combustion in a Liquid Rocket Combustion Chamber.” Journal of Propulsion and Power, vol. 8, no 5, pp. 9951003, 1992.Google Scholar
Chernyi, G. G., Losev, S. A., Macheret, S. O., et al. Physical and Chemical Processes in Gas Dynamics: Physical and Chemical Kinetics and Thermodynamics of Gases and Plasmas, Volume II. Progress in Astronautics and Aeronautics. Zarchan, Paul, Editor-in-Chief, AIAA, Volume 197, 2004.Google Scholar
Coffee, T. P., Kotlar, A. J., and Miller, M. S.. “The Overall Reaction Concept in Premixed, Laminar, Steady-State Flames. I. Stoichiometries.” Combustion and Flame, vol. 54, pp. 155169, 1983.Google Scholar
Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., et al.Combustion Performance of an Aluminum Melting Furnace Operating with Natural Gas and Liquid Fuel.” Applied Thermal Engineering, vol. 31, pp. 841851, 2011.Google Scholar
Kobayashi, H., Howard, J. B., and Sarofim, A. F.. “Coal Devolatilization at High Temperatures.” Proceedings of 17th International Symposium on Combustion, The Combustion Institute, pp. 411–425, 1976.Google Scholar
Суржиков, С. Т.. Физическая Механика Газовых Разрядов. Москва: МГТУ им. Н.Э Баумана, 2006. [S. T. Surzhikov. Physical Mechanics of Gas Discharges. Moscow: Bauman Moscow Technical University, 2006.]Google Scholar
Nagnibeda, E. and Kustova, E.. Nonequilibrium Reacting Gas Flows: Kinetic Theory of Transport and Relaxation Processes. Berlin and Heidelberg: Springer-Verlag, 2009.Google Scholar
Кустова, Е. В., Облапенко, Г. П., Шарафутдинов, И. З.. “Модели колебательной релаксации в неравновесных многотемпературных течениях.” Физико-химическая Кинетика в Газовой Динамике. Retrieved from http://chemphys.edu.ru/issues/. [E. V. Kustova, G. P. Oblapenko, and I. Z. Sharafutdinov. “Models of Vibrational Relaxation in Non-Equilibrium Multi-Temperature Flows.” Physical-Chemical Kinetics in Gas Dynamics. Retrieved from http://chemphys.edu.ru/issues/.]Google Scholar
Погосбекян, М. Ю., Сергиевская, А. Л.. “Моделирование динамики молекулярных реакций и сравнительный анализ с теоретическими моделями применительно к термически неравновесным условиям.” Физико-химическая Кинетика в Газовой Динамике, Т. 15, вып. 3, 2014. Retrieved from http://chemphys.edu.ru/issues/. [M. Yu. Poghosbekyan and A. L. Sergievskaya. “Modeling the Dynamics of Molecular Reactions and Comparative Analysis with Theoretical Models as Applied to Thermal Nonequilibrium Conditions.” Physical-Chemical Kinetics in Gas Dynamics, vol. 15, no. 3, 2014. Retrieved http://chemphys.edu.ru/issues/.]Google Scholar
Denis, V., and Vervish, L.. “Turbulent Combustion Modeling.” Progress in Energy and Combustion Science, vol. 28, pp. 193266, 2001.Google Scholar
Blom, J. G. and Verwer, J. G.. “A Comparison of Integration Methods for Atmospheric Transport-Chemistry Problems.” Journal of Computational and Applied Mathematics, no. 126, pp. 381396, 2000.Google Scholar
Katta, V. R. and Roquemore, W. M.. “Numerical Studies on the Structure of Two-Dimensional H2/Air Premixed Jet Flame.” Combustion and Flame, vol. 102, pp. 2140, 1995.Google Scholar
Lindstedt, R. P. and Maurice, L. Q.. “Detailed Chemical–Kinetic Model for Aviation Fuels.” Journal of Propulsion and Power, vol. 16, no. 2, pp. 187195, 2000.Google Scholar
Jones, W. P. and Lindstedt, R. P.. “Global Reaction Schemes for Hydrocarbon Combustion.” Combustion and Flame, vol. 73, no. 1, 3, pp. 233242, 1988.Google Scholar
Yetter, R. A., Dryer, F. L., Allen, M. T., et al.Development of Gas Phase Reaction Mechanisms for Nitramine Combustion.” Journal of Propulsion and Power, vol. 11, no. 4, pp. 683697, 1995.Google Scholar
Суржиков, С. Т.. “Моделирование радиационно-конвективного нагрева модельных камер ПВРД на водородном и углеводородном топливе.” Физико-химическая Кинетика в Газовой Динамике, Т. 15, вып. 3, 2014. Retrieved from http://chemphys.edu.ru/issues/. [S. T. Surzhikov. “Simulation of Radiation-Convective Heating of Model Ramjet Cameras on Hydrogen and Hydrocarbon Fuels.” Physical-Chemical Kinetics in Gas Dynamics, vol. 15, no. 3, 2014. Retrieved from http://chemphys.edu.ru/issues/.]Google Scholar
Foelsche, R. O., Keen, J. M., Solomon, W. C. et al.Nonequilibrium Combustion Model for Fuel-Rich Gas Generators.” Journal of Propulsion and Power, vol. 10, no. 4, pp. 461472, 1994.Google Scholar
Williams, B. A. and Fleming, J. W.. “Comparison of Species Profiles between O2 and NO2 Oxidizers in Premixed Methane Flames.” Combustion and Flame, vol. 100, pp. 571590, 1995.Google Scholar
Abramovich, G. N.. The Theory of Turbulent Jets. Cambridge, MA: MIT Press, 1963.Google Scholar
Алемасов, В. Е., Глебов, Г. А., Козлов и др, А. П.. Турбулентные Струйные Течения в Каналах. Казань: Казанский филиал АН СССР, 1988. [V. Ye. Alemasov, G. A. Glebov, A. P. Kozlov, et al. Turbulent Jet Flows in Channels. Kazan: Kazan Scientific Centre of the Russian Academy of Sciences, 1988.]Google Scholar
Spilimbergo, A. P., Krioukov, V. G., and Fafurin, A. V.. “Mathematical Modelling of Ethane Pyrolysis in Tube Furnace.” Trends in Applied and Computational Mathematics, vol. 13, no. 3. pp. 291300, 2012.Google Scholar
Крюков, В. Г., Наумов, В. И., Демин и др, А. В.. Горение и Течение в Агрегатах Энергоустановок. Москва: Янус-К, 1997. [V. G. Krioukov, V. I. Naoumov, A. V. Demin, et al. Combustion and Flow in Power Generation Systems. Moscow: Janus-K, 1997.]Google Scholar
Naumov, V. I., Krioukov, V. G., Abdullin, A. L., et al. “Chemical Non-Equilibrium Model for Simulation of Combustion and Flow in Propulsion and Power Generation Systems.” ASME International Mechanical Engineering Congress and Exposition, vol. 1, pp. 1–11, Orlando, FL, 2005.Google Scholar
Алемасов, В. Е., Дрегалин, А. Ф., Крюков, В. Г., и др. Математическое Моделирование Высокотемпературных Процессов в Энергосиловых Установках. Москва: Наука, 1989. [V. Ye. Alemasov, A. F. Dregalin, V. G. Krioukov, et al. Mathematical Modeling of High-Temperature Processes in Power Generation Systems. Moscow: Science, 1989.]Google Scholar
Ватолин, Н. А., Моисеев, Г. К., Трусов, Б. Г.. Термодинамическое Моделирование в Высокотемпературных Неорганических Системах. Москва: Металлургия, 1994. [N. A. Vatolin, G. K. Moiseev, and B. G. Trusov. Thermodynamic Modeling in High-Temperature Inorganic Systems. Moscow: Metallurgy, 1994.]Google Scholar
Крюков, В. Г., Наумов, В. И., Абдуллин, А. Л., и др. “Математическое моделирование реагирующих течений на базе реакторного подхода.” Физико-химическая Кинетика в Газовой Динамике, Т. 2. 2004. http://chemphys.edu.ru/issues/2004–2/articles/65/. [V. G. Krioukov, V. I. Naumov, A. L. Abdullin, et al. “Mathematical Modeling of Reacting Flows on the Basis of the Reactor Approach,” Physical-Chemical Kinetics in Gas Dynamics, vol. 2. 2004.]Google Scholar
Naumov, V. I., Krioukov, V. G., Abdullin, A. L., et al. “Modeling of Combustion and Flow in the Combustors of Rocket Gas Generations.” 41st Aerospace Sciences Meeting and Exhibit, AIAA 2003–126, vol. 1, pp. 1–11, Reno, NV, 2003.Google Scholar
Аметистов, Е. В., Григорьев, В. А., Емцев и др, Б. Т.. Тепло- и Массообмен. Теплотехнический Эксперимент. Москва: Энергоатомиздат, 1982. [Ye V. Ametistov, V. A. Grigoriev, B. T. Yemtsev, et al. Heat and Mass Transfer: Thermal Engineering Experiment. Moscow: Energoatomizdat, 1982.]Google Scholar
Sissom, L. E. and Pitts, D. R., Fenômenos de Transporte. [Transport Phenomena.] Rio de Janeiro: Guanabara Dois, 1998.Google Scholar
Monson, R. C., Germane, G. J., Blackham, A. U., et al.Char Oxidation at Elevated Pressures.” Combustion and Flame, vol. 100, pp. 669683, 1995.Google Scholar
Nack, H., Litt, R. D., Kim, B. C., et al. “Coffering Coal with Waste Material.” Coal Combustion Congresses, Peking, China. pp. 452–459, 1988.Google Scholar
Ouyang, Z., Zhu, J., Lu, Q., et al.The Effect of Limestone on SO2 and NOX Emissions of Pulverized Coal Combustion Preheated by Circulating Fluidized Bed.” Fuel, vol. 120, no. 15, pp. 116121, 2014.Google Scholar
Shirai, H., Ikeda, M., and Aramaki, H.. “Characteristics of Hydrogen Sulfide Formation in Pulverized Coal Combustion.” Fuel, vol. 113, pp. 114119, 2013.Google Scholar
Liu, H. and Gibbs, B. M.. “The Influence of Limestone Addition at Different Positions on Gaseous Emissions from a Coal-Fired Circulating Fluidized Bed Combustor.” Fuel, vol. 77, no. 14, pp. 15691577, 1998.Google Scholar
Nair, R. B., and Yavuzkurt, S.. “Modeling Sulfur Dioxide Capture in a Pulverized Coal Combustor.” Journal of Engineering for Gas Turbines and Power, vol. 119, pp. 291297, 1997.Google Scholar
Stouffer, M. R., and Yoon, H.. “An Investigation of CaO Sulfation Mechanisms in Boiler Sorbent Injection.” AIChE Journal, vol. 35, pp. 12531262, 1989.Google Scholar
Press, W. H., Flinnery, B. P, Vetterling, W. T., et al. Numerical Recipes in C: The Art of Scientific Equation Models by Polynomial Approximation. Upper Saddle River, NJ: Prentice-Hall, 1988.Google Scholar
Lambert, J. D.. Numerical Methods for Ordinary Differential Systems. New York: John Wiley & Sons, 1993.Google Scholar
Butcher, J. C.. “Numerical Methods for Ordinary Differential Equations in the 20th Century.” Journal of Computational and Applied Mathematics, vol. 125, pp. 129, 2000.Google Scholar
Калиткин, Н. Н.. Численные методы. Москва: Наука, 1978. [N. N. Kalitkin. Numerical Methods. Moscow: Science, 1978.]Google Scholar
Butcher, J. C..“Coefficients for the Study of Runge-Kutta Integration Processes.” Journal of Australian Mathematical Society, vol. 3, pp. 185201, 1963.Google Scholar
Butcher, J. C.. “A Modified Multistep Method for the Numerical Integration of Ordinary Differential Equations.” Journal of Association Computer Mathematics, vol. 12, pp. 124135, 1965.Google Scholar
Заусаев, А.Ф.. Разностные Методы Решения Обыкновенных Дифференциальных Уравнений. Самара: Самарский Государственный Технический Университет, 2010. [A. F. Zausayev. Difference Methods for Solving Ordinary Differential Equations. Samara: Samara State Technical University, 2010.]Google Scholar
Hairer, E., and Vanner, G.. Solving Ordinary Differential Equations II. New York: Springer, 1996.Google Scholar
Лебедев, В. И.., Медовиков, А. А.. “Явный метод второго порядка точности для решения жестких систем обыкновенных дифференциальных уравнений.” Известия ВУЗов. Математика, № 9, стр. 55–63, 1998. [V. I. Lebedev and A. A. Medovikov. “Explicit Second Order Accuracy Method for Solving Stiff Systems of Ordinary Differential Equations.” University News: Mathematics, no. 9, pp. 55–63, 1998.]Google Scholar
Новиков, Е. А.. Явные Методы для Жестких Систем, Новосибирск: Наука, 1997. [E. A. Novikov. Explicit Methods for Stiff Systems. Novosibirsk: Science, 1997.]Google Scholar
Скворцов, Л. М. «Явные адаптивные методы численного решения жестких систем», Математическое Моделирование, Т.12, № 12, стр. 97107, 2000. [L. M. Skvortsov. “Explicit Adaptive Methods for the Numerical Solution of Stiff Systems,” Mathematical Modeling, vol. 12, no. 12, pp. 97–107, 2000.]Google Scholar
Скворцов, Л. М.. “Простые явные методы численного решения жестких обыкновенных дифференциальных уравнений,” Вычислительные Методы и Программирование, Т. 9, № 12, стр. 154162, 2008. [L. M. Skvortsov. “Simple Explicit Methods for the Numerical Solution of Stiff Ordinary Differential Equations,” Computational Methods and Programming, vol. 9, no. 12, pp. 154–162, 2008.]Google Scholar
Gear, C. W.. “The Automatic Integration of Ordinary Differential Equations,” Communication of ACM, vol. 14, no. 3, pp. 176180, 1971.Google Scholar
Gear, C. W.. “DIFSUB for Solution of Ordinary Differential Equations,” Communication of ACM, vol. 14, no. 3, pp. 185190, 1971.Google Scholar
Камзолов, В. И., Пирумов, У. Г.. “Расчет неравновесных течений в соплах,” Известия АН СССР. Механика жидкости и газа, № 6, pp. 25– 33, 1966. [V. I. Kamzolov, and U. G. Pirumov, “Calculation of Non-Equilibrium Flows in Nozzles,” Izvestiya AN SSSR. Fluid and Gas Mechanics, no. 6, pp. 25–33, 1966.]Google Scholar
Pirumov, U. G., and Roskyakov, G. S.. Gas Flow in Nozzles. Berlin and Heidelberg: Springer-Verlag, 1986.Google Scholar
Burin, C., Iskhakova, R. L., Krioukov, V. G., et al.Application of the Spline-Integration Method of for Solving of Chemical Kinetics Equations,” Tendencies in Applied and Computational Mathematics, vol. 4, no. 3, pp. 313322, 2003.Google Scholar
Durigon, A., Abdullin, A. L., and Krioukov, V. G.. “Method of Spline-Integration: Application in Chemical Kinetic Equations,” XVII Brazilian Congress of Mechanical Engineering, vol. 1, pp. 110, 2003.Google Scholar
Sallam, S.. “Stable Quadratic Spline Integration Method for Solving Stiff Ordinary Differential Equations,” Applied Mathematics, vol. 116, no. 3, pp. 245255, 2000.Google Scholar
Marinov, N. M., Pitz, W. J., Westbrook, C. K., et al.Modeling of Aromatic and Polycyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flame,” Combustion Science & Technology, vol. 116–117, pp. 211287, 1996.Google Scholar
Kalamatianos, S., Park, Y. K., and Vlachos, D. G.. “Two-Parameter Continuation Algorithms for Sensitivity Analysis, Parametric Dependence, Reduced Mechanisms, and Stability Criteria of Ignition and Extinction,” Combustion and Flame, vol. 112, pp. 4561, 1998.Google Scholar
З. Андрианова, С., Деюн, Е. В., Самойленко, Н. Г., и др. “Автоколебания в проточном реакторе идеального смешения с двухстадийной последовательной реакцией,” Химическая Физика, Т. 28, № 7, pp. 8793, 2009. [Z. S. Andrianova, E. V. Deyun, N. G. Samoylenko, et al. “Self-Oscillations in a Perfectly Stirred Moving Reactor with a Two-Stage Sequential Reaction,” Chemical Physics, vol. 28, no. 7, pp. 87–93, 2009.]Google Scholar
Ströhle, J., and Myhrvold, T.. “Reduction of a Detailed Reaction Mechanism for Hydrogen Combustion under Gas Turbine Conditions,” Combustion and Flame, vol. 144, pp. 545557, 2006.Google Scholar
Glarborg, P., Miller, J. A., and Kee, R. J.. “Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-Stirred Reactors,” Combustion and Flame, vol. 65, pp. 177202, 1986.Google Scholar
Li, J., Zhao, Z., Kazakov, A., and Dryer, F.. “An Updated Comprehensive Kinetic Model of Hydrogen Combustion,” International Journal of Chemical Kinetics, vol. 36, pp. 566575, 2004.Google Scholar
Glaude, P. A., Battin-Leclerc, F., and Fournet, R.. “Construction and Simplification of a Model for the Oxidation of Alkanes,” Combustion and Flame, vol. 122, pp. 451462, 2000.Google Scholar
Brown, R. C., Kolb, C. E., Yetter, R. A., et al.Kinetic Modeling and Sensitivity Analysis for B/H/O/C/F Combination Systems,” Combustion and Flame, vol. 101, pp. 221238, 1995.Google Scholar
Nagy, T. and Turanyi, T.. “Reduction of Very Large Reaction Mechanisms Using Methods Based on Simulation Error Minimization,” Combustion and Flame, vol. 156, pp. 417428, 2009.Google Scholar
Sun, W. A., Chen, Z., Gou, X., et al.A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms,” Combustion and Flame, vol. 157, pp. 12981307, 2010.Google Scholar
Лебедев, А. В., Окунь, М. В., Баранов, А. Е., и др. “Упрощение кинетических механизмов физико-химических процессов на основе комбинированных математических методов,” Химическая Физика и Мезоскопия, Т. 13, № 1, pp. 4352, 2011. [A. V. Lebedev, M. V. Okun, A. E. Baranov, et al. “Simplification of the Kinetic Mechanisms of Physicochemical Processes Based on Combined Mathematical Methods,” Chemical Physics and Mesoscopy, vol. 13, no. 1, pp. 43–52, 2011.]Google Scholar
Коста, В. Ж.., Крюков, В. Г.. “Математическое моделирование горения распыленного угля в потоке с учетом абсорбции окислов серы,” Физико-Химическая Кинетика в Газовой Динамике, Институт механики, МГУ, Т. 13, вып. 2, 2012. Retrieved from http://chemphys.edu.ru/issues/. [V. J. Costa and V. G. Krioukov. “Mathematical Modeling of the Combustion of Pulverized Coal in a Stream with Regard to the Absorption of Sulfur Oxides,” Physical with Chemical Kinetics in Gas Dynamics, Institute of Mechanics, Moscow State University, vol. 13, no. 2, 2012. Retrieved from http://chemphys.edu.ru/issues/.]Google Scholar
Дрегалин, А. Ф., Зенуков, И. А., Крюков, В. Г., и др. Математическое Моделирование Высокотемпературных Процессов в Энергоустановках, Казань: Казанский государственный университет, 1985. [A. F. Dregalin, I. A. Zenukov, V. G. Krioukov, et al. Mathematical Modeling of High-Temperature Processes in Power Generation Systems, Kazan: Kazan State University, 1985.]Google Scholar
Kee, R. J., Miller, J. A and Jefferson, T. H.. CHEMKIN: A General-Purpose Transportable: Fortran Chemical Kinetics Code Package, Sandia National Laboratories Report SAND80–8003, 1980.Google Scholar
Forsth, M.. “Sensitivity Analysis of the Reaction Mechanism for Gas-Phase Chemistry of H2 + O2 Mixtures Induced by a Hot Pt surface,” Combustion and Flame, vol. 130, pp. 241260, 2002.Google Scholar
Byrne, G. D. and Dean, A. M.. “The Numerical Solution of Some Kinetics Models with VODE and CHEMKIN II,” Computers & Chemistry, vol. 17, no. 3, pp. 297302, 1993.Google Scholar
Gear, C. W.. Numerical Initial Value Problems in Ordinary Differential Equations, Englewood Cliffs, NJ: Prentice-Hall, 1971.Google Scholar
Westbrook, C. K. and Dryer, F. L.. “Chemical Kinetic Modeling of Hydrocarbon Combustion,” Progress. Energy Combustion Sciences, vol. 10, pp. 157, 1984.Google Scholar
“HTU Chemical Reaction and Equilibrium Software HTU.”Google Scholar
Абдуллин, А. Л., Крюков, В. Г., Березовская, К. А.. “Алгоритм конверсии и передачи информации между базами данных веществ,” Вестник Казанского Технологического Университета, Т. 16, № 10, pp. 299303, 2013. [A. L. Abdullin, V. G. Krioukov and K. A. Berezovskaya. “Algorithm for the Conversion and Transfer of Information between Databases of Substances,” Bulletin of Kazan Technical University, vol. 16, no. 10, pp. 299–303, 2013.]Google Scholar
Никандрова, М. В., Крюков, В. Г., Исхакова, Р. Л.. “Аналитическое определение коэффициентов чувствительности реакций для условий реактора идеального смешения,” Физико-Химическая Кинетика в Газовой Динамике, Т. 4, 2006. [M. V. Nikandrova, V. G. Krioukov, and R. L. Iskhakova. “Analytical Determination of Reaction Sensitivity Coefficients for Conditions of a Perfectly Stirred Reactor,” Physico-Chemical Kinetics in Gas Dynamics, vol. 4, 2006.]Google Scholar
Alzueta, M. U., Bilbao, R. and Glarborg, P.. “Inhibition and Sensitization of Fuel Oxidation by SO2,” Combustion and Flame, vol. 127, pp. 22342251, 2001.Google Scholar
Dickinson, R. P. and Gelinas, R. J.. “Sensitivity Analysis of Ordinary Differential Equation Systems,” Journal Computer Physics, vol. 21, pp. 123143, 1976.Google Scholar
Lam, S. H. and Goussis, D. A.. “The CSP Method for Simplifying Kinetics,” International Journal of Chemical Kinetics, vol. 26, pp. 461486, 1994.Google Scholar
Durigon, A., Krioukov, V. G., and Claeyssen, J. C. R.. “Análise da Integração das Equações da Cinética Química com o Uso dos Autovalores do Jacobiano” [“Analysis of the Integration of the Chemical Kinetics Equations with the Use of the Eigenvalues of the Jacobian”], XXV Iberian Latin American Congress on Computational Methods in Engineering, Recife, vol. 1, pp. 112, 2004.Google Scholar
Eggels, R. L. and Goey, L. P. H.. “Mathematically Reduced Reaction Mechanisms Applied to Adiabatic Flat Hydrogen/Air Flames,” Combustion and Flame, vol. 100, pp. 559570, 1995.Google Scholar
Никандрова, М. В., Крюков, В. Г., Исхакова, Р. Л.. “Сокращение механизмов реакций методом «зацепления»,” Физико-Химическая Кинетика в Газовой Динамике, Т. 5, 2007. [M. V. Nikandrova, V. G. Krioukov and R. L. Iskhakova, “Reduction of Reaction Mechanisms by the ‘Engagement’ Method,” Physical-Chemical Kinetics in Gas Dynamics, vol. 5, 2007.]Google Scholar
Chen, J. Y.. “A General Procedure for Constructing Reduced Reaction Mechanisms with Given Independent Reactions,” Combustion Science and Technology, vol. 57, pp. 8994, 1988.Google Scholar
Martin, R. J. and Brown, N. J.. “The Importance of Thermodynamics to the Modeling of Nitrogen Combustion Chemistry,” Combustion and Flame, vol. 78, pp. 365376, 1989.Google Scholar
Westbrook, C. K. and Chase, L. L.. Chemical Kinetics and Thermochemical Data for Combustion Applications, Lawrence Livermore Laboratory, UCID-17833, Rev. 3, 1983.Google Scholar
Chase, M. W. Jr., Davies, C. A., Downey, J. R. Jr. et al. JANAF Thermochemical Tables, 3rd edn., vol. 14, no. 1, 1985. Retrieved from www.scribd.com/doc/173465161/JPCRDS1V14-JANAF-Thermochemical-Tables-3rd-Edition-JPCRD-14-Supplement-No-1–1985.Google Scholar
Гурвич, Л. В., Хачкурузов, Г. А., Вейц, И. В. и др. Термодинамические Свойства Индивидуальных Веществ: Справочник в 2 томах, Moscow: АН СССР, 1962. [L. V. Gurvich, G. A. Khachkuruzov, I.V. Weitz et al. Thermodynamic Properties of Individual Substances: A Handbook in 2 Volumes. Moscow: USSR Academy of Sciences, 1962.]Google Scholar
Gurvich, L. V., Veyts, I. V., and Alcock, C. B.. Thermodynamic Properties of Individual Substances, 4th edn. New York: Hemisphere Publishing Corporation, vol. 1 in 2 parts, 1989.Google Scholar
Иориш, В. С., Белов, Г. В.. “О качестве информации в базах данных по термодинамическим свойствам веществ,” Физико-Химическая Кинетика в Газовой Динамике, Т. 5, 2007. [V. S. Iorish and G. V. Belov. “On the Quality of Information in Databases on the Thermodynamic Properties of Substances,” Physico-Chemical Kinetics in Gas Dynamics, vol. 5, 2007.]Google Scholar
Costa, V. J., Krioukov, V. G. and Maliska, C. R.. “Pulverized Coal Combustion and Its Interaction with Moisture,” Proceedings of 35th National Heat Transfer Conference – NTHC, Anaheim, CA, vol. 1, 2001.Google Scholar
Miller, D. and Frenklach, M.. “Sensitivity Analysis and Parameter Estimation in Dynamic Modeling of Chemical Kinetics,” International Journal of Chemical Kinetics, vol. 15, pp. 677696, 1983.Google Scholar
Rabitz, H., Kramer, M. and Dacol, D.. “Sensitivity Analysis in Chemical Kinetics,” Annual Review of Physical Chemistry, vol. 34, pp. 419461, 1983.Google Scholar
Tilden, J. W., Constanza, V., McRae, G. J., et al.Sensitivity Analysis of Chemically Reacting Systems.” In Modeling of Chemical Reaction Systems, eds. Ebert, K. H., Deuflhard, P., and Jager, W., New York: Springer-Verlag, pp. 6991, 1981.Google Scholar
Constanza, V. and Seinfeld, J. H.. “Stochastic Sensitivity Analysis in Chemical Kinetics,” The Journal of Chemical Physics, vol. 74, pp. 38523858, 1981.Google Scholar
Gelinas, R. J. and Vajk, J. P.. Systematic Sensitivity Analysis of Air Quality Simulation Models, Sandia Technical Report PB-80–112162, Science Pleasanton, CA: Applications Inc., 1978.Google Scholar
Kramer, M. A., Kee, R. J. and Rabitz, H.. CHEMSEN: A Computer Code for Sensitivity Analysis of Elementary Chemical Reaction Models, Sandia Technical Report SAND-82–8230, Albuquerque, NM: Sandia National Laboratories, 1984.Google Scholar
Tianfeng, L., Yiguang, J. and Lam, C. K.. “Complex CSP for Chemistry Reduction and Analysis,” Combustion and Flame, vol. 126, pp. 14451455, 2001.Google Scholar
Николас, Г., Пригожин, И.. Самоорганизация в Неравновесных Системах. Москва: Мир, 1979. [G. Nicholas and I. Prigogine, Self-Organization in Nonequilibrium Systems. Moscow: Mir, 1979.]Google Scholar
Пискунов, Н. С.. Дифференциальное и Интегральное Исчисление для ВТУЗов, Москва: Физматгиз, 1963. [N. S. Piskunov, Differential and Integral Calculus for Technical High Schools, Moscow: Fizmatgiz, 1963.]Google Scholar
Stoer, J. and Bulirsch, R.. Introduction to Numerical Analysis, New York: Springer-Verlag, 1980.Google Scholar
Wilkinson, J. H. and Reinsch, C.. Handbook for Automatic Computation. Vol. II: Linear Algebra, Berlin: Springer-Verlag, 1971.Google Scholar
Korn, G. A. and Korn, T. M.. Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1961.Google Scholar
Acton, F. S.. Numerical Methods That Work, New York: Harper and Row, 1970.Google Scholar
Peters, N. and Kee, R. J.. “The Computation of Stretched Laminar Methane-Air Diffusion Flames Using a Reduced Four-Step Mechanism,” Combustion and Flame, vol. 68, pp. 1729, 1987.Google Scholar
Maas, U. and Pope, S. B.. “Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space,” Combustion and Flame, vol. 88, pp. 239264, 1992.Google Scholar
Hiemann, H., Schmidt, D., and Maas, U.. “An Efficient Storage Scheme for Reduced Chemical Kinetics on Orthogonal Polynomials,” Journal of Engineering Mathematics, vol. 31, pp. 131142, 1997.Google Scholar
Norris, A. T. and Pope, S. B.. “Modeling of Extinction in Turbulent Diffusion Flames by the Velocity-Dissipation-Composition PDF Method,” Combustion and Flame, vol. 100, pp. 211220, 1995.Google Scholar
Xin, Y., Song, Z., Tan, Y. Z., et al.The Directed Relation Graph Method for Mechanism Reduction in the Oxidative Coupling of Methane,” Catalysis Today, vol. 131, pp. 483488, 2008.Google Scholar
Pepiot-Desjardins, P. and Pitsch, H.. “An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms,” Combustion and Flame, vol. 154, pp. 6781, 2008.Google Scholar
Coffee, T. P., Kotlar, A. J., and Miller, M. S.. “The Overall Reaction Concept in Premixed, Laminar, Steady-State Flames: II. Initial Temperatures and Pressures,” Combustion and Flame, vol. 58, pp. 5967, 1984.Google Scholar
Vlachos, D. G.. “Mathematically Reduced Reaction Mechanisms Applied to Adiabatic Flat Hydrogen/Air Flames,” Chemical Engineering Science, vol. 51, no. 16, pp. 39793993, 1996.Google Scholar
Алемасов, В. Е., Даутов, Э. А., Дрегалин, А. Ф.. Номографическая Аппроксимация Термогазодинамических Параметров Энергоустановок. Казань: ФЭН, 1993. [V. E. Alemasov, E. A. Dautov, and A. F. Dregalin, Nomographic Approximation of Thermogasdynamic Parameters of Power Generation Systems. Kazan: FENG, 1993.]Google Scholar
Clenshaw, C. W.. Chebyshev Series for Mathematical Functions in Mathematical Tables, vol. 5, London: National Physical Laboratory, H.M. Stationery Office, 1962.Google Scholar
Бартеньев, О. В.. Современный Фортран, 3-е изд., М: ДИАЛОГ МИФИ, 2000. [O.V. Bartenev, Modern Fortran, 3rd edn., Moscow: DIALOG MEPI, 2000.]Google Scholar
Керниган, Б. У., Ритчи, Д. М.. Программирование на Языке С. Изд. Вильямс, 2016. [Brian W. Kernighan, and Dennis M. Ritchie. The C Programming Language. Prentice Hall, 1988.]Google Scholar
Алемасов, В. Е., Дрегалин, А. Ф., Тишин и др, А. П.. Термодинамические и Теплофизические Свойства Продуктов Сгорания, Справочник. Том 2, Москва: ВИНИТИ, 1973. [V. Ye. Alemasov, A. F. Dregalin, A. P. Tishin, et al. Thermodynamic and Thermophysical Properties of Combustion Products: Handbook Volume 2. Moscow: VINITI, 1973.]Google Scholar
Alemasov, V. E., Dregalin, A. F., A, Tishin, P., et al. Thermodynamic and Thermophysical Properties of Combustion Products: Handbook Volume IV. ed. Glushko, V. P.. Moscow: VINITI, 1973. Translated from Russian by Israel Program for Scientific Translations, Jerusalim, 1976.Google Scholar
Алемасов, В. Е., Дрегалин, А. Ф., Тишин и др, А. П.. Термодинамические и Теплофизические Свойства Продуктов Сгорания, Справочник. Том 5, Москва: ВИНИТИ, 1973b. [V. Ye. Alemasov, A. F. Dregalin, A. P. Tishin, et al. Thermodynamic and Thermophysical Properties of Combustion Products: Handbook Volume 5. Moscow: VINITI, 1973b.]Google Scholar
Алемасов, В. Е., Дрегалин, А. Ф., Тишин и др, А. П.. Термодинамические и Теплофизические Свойства Продуктов Сгорания, Справочник. Том 6, Москва: ВИНИТИ, 1973c. [V. Ye. Alemasov, A. F. Dregalin, A. P. Tishin, et al. Thermodynamic and Thermophysical Properties of Combustion Products: Handbook Volume 6. Moscow: VINITI, 1973c.]Google Scholar
Алемасов, В. Е., Дрегалин, А. Ф., Тишин и др., А. П., Термодинамические и Теплофизические Свойства Продуктов Сгорания, Справочник. Том 7, Москва: ВИНИТИ, 1974a. [V. Ye. Alemasov, A. F. Dregalin, A. P. Tishin, et al. Thermodynamic and Thermophysical Properties of Combustion Products: Handbook Volume 7. Moscow: VINITI, 1974a.]Google Scholar
Алемасов, В. Е., Дрегалин, А. Ф., Тишин и др, А. П.. Термодинамические и Теплофизические Свойства Продуктов Сгорания, Справочник. Том 8, Москва: ВИНИТИ, 1974b. [V. Ye. Alemasov, A. F. Dregalin, A. P. Tishin, et al. Thermodynamic and Thermophysical Properties of Combustion Products: Handbook Volume 8. Moscow: VINITI, 1974b.]Google Scholar
Соколов, Б. И., Черенков, А. С., Саломыков, А. И.. Термодинамические и Теплофизические Свойства Твердых Ракетных Топлив и их Продуктов Сгорания: Пособие для курсового и дипломного проектирования. Москва: Министерство обороны СССР, 1977. [B. I. Sokolov, A. S. Cherenkov, and A. I. Salomykov. Thermodynamic and Thermophysical Properties of Solid Rocket Fuels and Their Combustion Products: A Manual for Course and Graduation Design Projects. Moscow: USSR Ministry of Defense, 1977.]Google Scholar
Abdullin, A. L., Naoumov, V. I., and Krioukov, V. G.. “Evaluation of Eigenvalues for the Analysis of Combustion and Chemical Non-Equilibrium Flows,” AIAA SciTech Forum. 55th AIAA Aerospace Science Meeting, AIAA 20017–0662, Grapevine, TX, pp. 1–12, 2017.Google Scholar
Скворцов, Л. М.. “Явные двухшаговые методы Рунге–Кутты,” Математическое Моделирование, Т. 21, № 9, стр. 5465, 2009. [L. M. Skvortsov. “Explicit Two-Step Runge–Kutta Methods,” Mathematical Modeling, vol. 21, no. 9, pp. 54–65, 2009.]Google Scholar
Гидаспов, В. Ю.. “Численное моделирование химически неравновесного течения в сопле жидкостного ракетного двигателя,” Вестник МАИ, Т. 20, стр. 9097, 2013. [V. Yu. Gidaspov. “Numerical Modeling of Chemical Nonequilibrium Flow in the Nozzle of a Liquid-Propellant Rocket Engine,” MAI Bulletin, vol. 20, pp. 90–97, 2013.]Google Scholar
Шустов, С. А.. “Численное моделирование термогазодинамических процессов в ЖРДМТ с учетом их неидеального протекания,” Вестник МАИ, Т. 16, № 2. стр. 146153, 2009. [S. A. Shustov. “Numerical Simulation of Non-Ideal Thermogasdynamic Processes in Micro-Liquid Propellant Rocket Engines,” MAI Bulletin, vol. 16, no. 2. pp. 146–153, 2009.]Google Scholar
Алемасов, В. Е., Дрегалин, А. Ф., Тишин, А. П.. Теория Ракетных Двигателей, М.: Машиностроение, 1989. [V. Ye. Alemasov, A. F. Dregalin, and A. P. Tishin. Theory of Rocket Engines, Moscow: Mashinostroenie, 1989.]Google Scholar
Boccaletto, L. and Dussauge, J. P.. “High-Performance Rocket Nozzle Concept,” Journal of Propulsion and Power, vol. 26, no. 5, pp. 969979, 2010.Google Scholar
Krioukov, V. G., Iskhakova, R. L., Niwa, M., et al.Mathematical Modeling of Two-Phase Reacting Flow in Supersonic Nozzle,” XVII Brazilian Congress of Mechanical Engineering, vol. 1, pp. 110, 2003.Google Scholar
Таймаров, М. А., Шарипов, М. Р.. “Котёл пульсирующего горения природных и пиролизных газов,” Вестник Казанского Технологического Университета, Т. 16, №21, стр.133135, 2013. [M. A. Taimarov and M .R. Sharipov. “Boiler of Pulsating Combustion of Natural and Pyrolysis Gases,” Bulletin of Kazan Technological University, vol. 16, no. 21, pp. 133–135, 2013.]Google Scholar
Павлов, Г. И., Кочергин, А. В., Ситников, О. Р., и др. “Переработка изношенных шин и резинотехнических изделий в инертную крошку при использовании установок пульсирующего горения,” Вестник Казанского Технологического Университета, № 19, стр. 174–179, 2011. [G. I. Pavlov, A. V. Kochergin, O. R. Sitnikov, et al. “Reprocessing Used Tires and Rubber Products Recycling into Inert Crumb Using Pulsating Combustion Installations,” Kazan Technological University, no. 19, pp. 174– 179, 2011.]Google Scholar
Филиппов, С. Е., Ларионов, В. М., Рукавишников, Д. В.. “Механизмы возбуждения и теоретическая модель вибрационного горения твердого топлива в трубе,” Проблемы энергетики, № 1, стр. 20–28, 2006. [S. E. Filippov, V. M. Larionov, and D. V. Rukavishnikov. “Excitation Mechanisms and the Theoretical Model of the Vibration Combustion of Solid Fuel in a Pipe,” Challenges in Power Engineering, no. 1, pp. 20–28, 2006.]Google Scholar
Раушенбах, Б. В., Вибрационное Горение, М: Государственное издательство физико-математической литературы, 1961. [B. V. Rauschenbakh. Vibration Combustion. Moscow: State Publishing House of Physics and Mathematics, 1961.]Google Scholar
Stazio, A. D., Chauveau, C., Dayma, G., et al.Oscillating Flames in Micro-Combustion,” Combustion and Flame, vol. 167, pp. 392394, 2016.Google Scholar
Christiansen, E. W., Law, C. K., and Sung, C. J.. “Steady and Pulsating Propagation and Extinction of Rich Hydrogen/Air Flames at Elevated Pressures,” Combustion and Flame, vol. 124, pp. 3549, 2001.Google Scholar
Карасевич, Ю. К., Нейгауз, М. Г.. “Метод отбора определяющих стадий для сложных кинетических схем,” В сб.: Быков, В. И. и др. Прямые и обратные задачи в химической кинетике, стр. 248–254, 1993. [Yu. K. Karasevich and M. G. Neuhauz. “Method of Selection of Determining Stages for Complex Kinetic Schemes,” In eds. Bykov V. I. et al., Direct and Inverse Problems in Chemical Kinetics, pp. 248–254, 1993.]Google Scholar
Spilimbergo, A. P, Veloso, G. O., Krioukov, V. G. et. al. “Engagement Method: Application in Area of Alteration of the Parameters of the Reacting Medium,” XXVIII CILAMCE (Iberian Latin American Congress on Computational Methods in Engineering), Porto, Portugal, pp. 1–10, 2007.Google Scholar
Крюков, В. Г., Абдуллин, А. Л., Сафиуллин, И. И.. “Метод поэтапного сокращения механизма реакций для сложных реагирующих систем,” Вестник Казанского Технологического Университета, Т. 17, № 11, стр. 168173, 2014. [V. G. Krioukov, A. L. Abdullin, and I. I. Safiullin. “Method of Phased Reduction of the Reaction Mechanism for Complex Reactive Systems,” Bulletin of Kazan Technological University, vol. 17, no. 11, pp. 168–173, 2014.]Google Scholar
Dijkstra, Edsger W.. A Discipline of Programming. Upper Saddle River, NJ: Prentice-Hall Series in Automatic Computation, 1976.Google Scholar
Spilimbergo, A. P., Krioukov, V. G., and Safiullin, I. I.. “Redução do Mecanismo de Combustão para Fluxos Reagentes com Base em Reatores Sucessivos” [“Reduction of the Combustion Mechanism for Reactive Flows Based on Successive Reactors”], XXXVI Iberian Latin-American Congress on Computational Methods in Engineering, CILAMCE, November 2015, Rio de Janeiro, Brazil, pp. 1–12, 2015.Google Scholar
Bianchi, D., Turchi, A., Nasuti, F., et al.Chemical Erosion of Carbon-Phenolic Rocket Nozzles with Finite-Rate Surface Chemistry,” Journal of Propulsion and Power, vol. 29, no. 5, pp. 12201230, 2013.Google Scholar
Barbour, E. A. and Hanson, R. K.. “Chemical Nonequilibrium, Heat Transfer, and Friction in a Detonation Tube with Nozzles,” Journal of Propulsion and Power, vol. 26, no. 2, pp. 230239, 2010.Google Scholar
Janbozorgi, M. and Metgalchi, H.. “Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow,” Journal of Propulsion and Power, vol. 28, no. 4, pp. 677684, 2012.Google Scholar
Law, C. K., “Fuel Options for Next-Generation Chemical Propulsion,” AIAA Journal, vol. 50, no. 1, pp. 1936, 2012.Google Scholar
Powers, J. M. and Paolucci, S.. “Accurate Spatial Resolution Estimates for Reactive Supersonic Flow with Detailed Chemistry,” AIAA Journal, vol. 43, no. 5, pp. 10881099, 2005.Google Scholar
Katta, V. R. and Roquemore, W. M.. “Calculation of Multidimensional Flames Using Large Chemical Kinetics,” AIAA Journal, vol. 46, no. 7, pp. 16401650, 2008.Google Scholar
Law, C. K.. Combustion Physics, Cambridge: Cambridge University Press, 2006.Google Scholar
Ragland, K. W. and Bryden, K. M.. Combustion Engineering, 2nd edn. Boca Raton, FL: CRC Press, 2011.Google Scholar
Sung, C. J., Law, C. K. and Chen, J. Y.. “Augmented Reduced Mechanisms for NO Emission in Methane Oxidation,” Combustion and Flame, vol. 125, pp. 906919, 2001.Google Scholar
Olsson, J. O. and Anderson, L. L.. “Sensitivity Analysis Based in an Efficient Brute-Force Method, Applied to an Experimental CH4/O2 Premixed Laminar Flame,” Combustion and Flame, vol. 67, pp. 99109, 1987.Google Scholar
Pilawska, M., Butler, C. J., Hayhurst, A. N., et al.The Production of Nitric Oxide during the Combustion of Methane and Air in a Fluidized Bed,” Combustion and Flame, vol. 127, pp. 21812193, 2001.Google Scholar
Rafael, S. and Sher, E.. “Reaction Kinetics of Hydrogen-Enriched Methane-Air and Propane-Air Flame: Stoichiometries,” Combustion and Flame, vol. 78, pp. 326338, 1989.Google Scholar
Westbrook, C. K., Dryer, F. L., and Schuy, R. P.. “A Comprehensive Mechanism for the Pyrolysis and Oxidation of Ethylene,” 19th Symposium on Comustion, pp. 153–166, 1982.Google Scholar
Льюис, Б., Пиз, Р. Н., Тэйлор, Х. С.. Процессы Горения, Москва: Физ-мат.лит., 1961. [B. Lewis, R. N. Pease, and H. S. Taylor, Combustion, Moscow: Physics and Mathematics, 1961.]Google Scholar
Fukutani, S. and Jinno, H.. “Mechanism of Flame Propagation in Hydrogen-Air and Methane-Air Systems.” Notes on Numerical Fluid Mechanics, no. 6, pp. 167–181, 1982.Google Scholar
Tsatsaronis, G.. “Prediction of Propagating Laminar Flames in Methane, Oxygen, Nitrogen Mixtures,” Combustion and Flame, vol. 33, pp. 217239, 1978.Google Scholar
Shizgal, B. and Karplus, M.. “Nonequilibrium Contributions to the Rate of Reactions: II. Isolated Multicomponent Systems,” The Journal of Chemical Physics, vol. 54, pp. 43454356, 1971Google Scholar
Щукин, В. А.. “Явление флуктуационного реагирования в газах,” Рабочие Процессы в Камерах Сгорания Воздушно- Реактивных Двигателей. Межвузовский Cборник, Казань: Казанский авиационный институт, стр. 46, 1987. [V. A. Shchukin. “Phenomenon of a Fluctuating Response in Gases,” Processes in the Combustion Chambers of Air-Jet Engines. Kazan: Interuniversity Collection Papers, Kazan Aviation Institute, pp. 4–6, 1987.]Google Scholar
Widom, B.. “Reaction Kinetics in Stochastic Models,” The Journal of Chemical Physics, vol. 55, pp. 4452, 1971.Google Scholar
Glass, G. P. and Chaturvedi, B. K.. “The Effect of Vibrational Excitation of H2 and of OH on the Rate of the Reaction H2+OH→H2O+H,” The Journal of Chemical Physics, vol. 75, pp. 27492752, 1981.Google Scholar
Levy, J., Taylor, B., Longwell, J., et al. “C1 and C2 Chemistry in Rich Mixture Ethylene-Air Flames,” 19th Symposium on Comustion, pp. 167–169, 1982.Google Scholar
Басевич, В. Я., Когарко, С. М., Посвянский, В. С.. “Кинетика реакций при распространении этилено-кислородного пламени,” Физика Горения и Взрыва, № 2, с. 193–200, 1977. [V. Ya. Basevich, S. M. Kogarko and V. S. Posvyansky, “Kinetics of Reactions during the Propagation of Ethylene-Oxygen Flame,” Physics of Combustion and Explosion, no. 2, pp. 193–200, 1977.]Google Scholar
Andrews, G. E. and Bradley, D.. “The Burning Velocity of Methane-Air Mixture,” Combustion and Flame, vol. 19, pp. 275288, 1972.Google Scholar
Cathonnet, M., Boettner, I., and James, H.. “Experimental Study and Numerical Modeling of High Temperature Oxidation of Propane and n-Butane,” 18th Symposium on Combustion, pp. 903–913, 1981.Google Scholar
Caymay, M. and Peeters, J.. “The Reaction of Ethane with Atomic Oxygen at T= 600–1030 K,” 19th Symposium on Combustion, pp. 51–59, 1982.Google Scholar
Levy, J. and Sarofim, A.. “Higher Hydrocarbon Combustion: 2. Fuel-Rich C1/C2 Mechanism,” Combustion and Flame, vol. 53, pp. 115, 1983.Google Scholar
Notzold, D. and Algermissen, J.. “Chemical Kinetics of the Ethane – Oxygen Reaction: Part 1; High Temperature Oxidation at Ignition Temperatures between 1400 K and 1800 K,” Combustion and Flame, vol. 40, pp. 293313. 1981.Google Scholar
Warnatz, J.. “Chemistry of High Temperature Combustion of Alkanes Up to Octane,” 20th Symposium on Combustion, vol. 20, no. 1, pp. 845856. 1984.Google Scholar
Ying, S. J.. “Reduced Chemical Kinetics for Propane Combustion,” 28th Aerospace Sciences Meeting, AIAA Paper, no. 0546. рр. 1–9. 1990.Google Scholar
Duo, W., Dam-Johansen, K., and Stergaard, K.. “Kinetics of the Gas-Phase Reaction between Nitric Oxide, Ammonia and Oxygen,” The Canadian Journal of Chemical Engineering, vol. 70, pp. 10141020, 1992.Google Scholar
Glarborg, P., Dam-Johansen, K., and Miller, J.. “The Reaction of Ammonia with Nitrogen Dioxide in a Flow Reactor: Implications for the NH2 + NO2 Reaction,” International. Journal of Chemical Kinetics, vol. 27, pp. 12071220, 1995.Google Scholar
Gradon, B. and Tomeczek, J.. “Prediction of N2O and NH3 in Fuel-Rich Gaseous Flames,” Combustion and Flame, vol. 126, pp. 18561859, 2001.Google Scholar
Jodal, M., Lauridsen, T., and Johansen, K.. “NOx Removal on a Coal-Fired Utility Boiler by Selective Non-Catalytic Reduction,” Environmental Progress, vol. 11, no. 4, pp. 296301, 1992.Google Scholar
Schmidt, C. C. and Bowman, C. T.. “Flow Reactor Study of the Effect of Pressure on the Thermal De-NOx Process,” Combustion and Flame, vol. 127, pp. 19581970, 2001.Google Scholar
Sullivan, N., Jensen, A., Glarborg, P., et al.Ammonia Conversion and NOx Formation in Laminar Coflowing Nonpremixed Methane-Air Flames,” Combustion and Flame, vol. 131, pp. 285298, 2002.Google Scholar
Tomeczek, J. and Gradon, B.. “The Role of N2O and NNH in the Formation of NO via HCN in Hydrocarbon Flames,” Combustion and Flame, vol. 133, pp. 311322, 2003.Google Scholar
Zamansky, V. M., Lissianski, V. V., Maly, P. M., et al.Reactions of Sodium Species in the Promoted SNCR Process,” Combustion and Flame, vol. 117, pp. 821831, 1999.Google Scholar
Заказнов, В. Ф., Куршева, Л. А., Федина, З. И.. “Определение нормальных скоростей и критических диаметров гашения пламени аммиачно-воздушных смесей,” Физика Горения и Взрыва, Т. 14, № 6, стр. 2226, 1978. [V. F. Zakaznov, L. A. Kursheva, and Z. I. Fedina. “Study of Normal Velocities and Critical Diameters of Quenching a Flame of Ammonia–Air Mixtures,” Physics of Combustion and Explosion, vol. 14, no. 6, pp. 22–26, 1978.]Google Scholar
Faravelli, T., Frassoldati, A., and Ranzi, E.. “Kinetic Modeling of the Interactions between NO and Hydrocarbons in the Oxidation of Hydrocarbons at Low Temperatures,” Combustion and Flame, vol. 132, pp. 188207, 2003.Google Scholar
Konnov, A. and De Ruyck, J.. “Kinetic Modeling of the Decomposition and Flames of Hydrazine,” Combustion and Flame, vol. 125, pp. 106126, 2001.Google Scholar
Локай, В.И., Максутова, М.К., Стрункин, В.А.. Газовые турбины двигателей летательных аппаратов, Москва: Машиностроение, 1996.[V. I. Lokai, M. K. Maksutova, and V. A. Strunkin, Gas Turbines of Aircraft Engines. Moscow: Mashinostroenie, 1996.]Google Scholar
Sutton, G. P. and Bilblarz, O.. Rocket Propulsion Elements. 7th edn., Hoboken, NJ: Wiley Interscience, 2001.Google Scholar
El-Sayed, A. F.. Aircraft Propulsion and Gas Turbine Engines. Boca Raton, FL: CRC Press. Taylor & Francis Group, 2008.Google Scholar
Heywood, J. B.. Internal Combustion Engine Fundamentals, New York: McGraw-Hill, 1988.Google Scholar
Ильяшенко, С. М., Талантов, А. В.. Теория и расчет прямоточных камер сгорания. Москва: Машиностроение, 1964. [S. M. Ilyashenko and A. V. Talantov. Theory and Calculation of Ramjet Engines Combustion Chambers. Moscow: Mechanical Engineering, 1964.]Google Scholar
Зверев, И. Н., Смирнов, Н. Н.. Газодинамика горения. Москва: Изд-во МГУ, 1987. [I. N. Zverev and N. N. Smirnov. Gas Dynamics of Combustion. Moscow: Moscow State University Publishing House, 1987.]Google Scholar
Смирнов, Н. Н.. “Химические реакции и тепломассоперенос в многокомпонентном газе над слоем жидкого горючего,” Вестник МГУ, Москва. Cерия: Математика. Механика, № 2. стр. 46–55, 1986. [N. N. Smirnov. “Chemical Reactions and Heat and Mass Transfer in a Multicomponent Gas over a Layer of Liquid Fuel,” Bulletin of MGU, Moscow, Mathematics Series, no. 2. pp. 46–55, 1986.]Google Scholar
Смирнов, Н. Н.. “Горение слоя топлива при обдувании поверхности потоком окислителя,” Физика Горения и Взрыва, Т. 18, № 5, стр. 6370, 1982. [N. N. Smirnov. “Combustion of a Layer of Fuel while Blowing a Surface with an Oxidant Flow,” Physics of Combustion and Explosion, vol. 18. no. 5, pp. 63–70, 1982.]Google Scholar
Lafon, P., Habiballah, M., and Scherrer, D.. “Lox Droplet Combustion in a High Pressure Hydrogen Atmosphere,” 9th World Hydrogen Energy Conference, Paris, pp. 81–90, 22–25 June 1992.Google Scholar
Бояршинов, Б. Ф., Волчков, Э. П., Терехов, В. И.. “Конвективный тепломассообмен при испарении жидкости в газовый поток,” Известия СО АН СССР. Сер. Техн. Наук, T. 16, № 3, стр. 1322, 1985. [B. F. Boyarshinov, E. P. Volchkov and V. I. Terekhov. “Convective Heat and Mass Transfer at the Evaporation of a Liquid into a Gas Flow,” News of the Siberian Branch of the USSR Academy of Sciences: Technical Sciences Series, vol. 16, no. 3, pp. 13–22, 1985.]Google Scholar
Ranz, W. E. and Marshall, W. R.. “Evaporation from Drops,” Chemical Engineering Progress, vol. 48. Part I, pp. 141146, Part II, pp. 173–180, 1952.Google Scholar
Loitsyanskiy, L. G. and Nunn, R. H.. Mechanics of Liquids and Gases. 6th edn. New York and Wallington: Begell House, 1995.Google Scholar
Naumov, V. I., and Kotov, V. Y.. “Micro-Scale Investigation of Non-Equilibrium Thermo-Fluid Transport during Droplet Evaporation and Combustion,” 43rd Aerospace Science Meeting and Exhibit, AIAA 2005–1431, Reno, NV, pp. 1–14, 2005.Google Scholar
Добровольский, М. В.. Жидкостные Ракетные Двигатели. Основы Проектирования. Под ред. Д.А. Ягодникова, 3-е издание. Москва: Издательство МГТУ им. Н.Э. Баумана, 2016. [M. V. Dobrovolsky. Liquid Propellant Rocket Engines: Design Basics. ed. Ye. S. Yagodnikov, 3rd edn. Moscow: Publishing House of Bauman Moscow State Technical University, 2016.]Google Scholar
Humble, R. W., Henry, G. N. and Larson, W. J.. Space Propulsion Analysis and Design. New York: McGraw-Hill, Technology & Engineering, 1995.Google Scholar
Priem, P. J., and Heidmann, M. F.. “Propellant Vaporization as a Design Criterion for Rocket-Engine Combustion Chambers,” NASA Tech. Rep., R-67, 1960.Google Scholar
Червински, А.. “Горение жидких капель при сверхкритических условиях в неподвижной среде,” Ракетная Техника и Космонавтика, № 8, стр. 1815–1817, 1969. [A. Chervinsky. “Combustion of Liquid Droplets under Supercritical Conditions in a Stationary Medium,” Rocket Technique and Cosmonautics, no. 8. pp. 1815–1817, 1969.]Google Scholar
Law, C. K.. “Internal Boiling and Superheating in Vaporizing Multicomponent Droplets,” AISChe Journal, vol. 4, no. 24, pp. 626632, 1978.Google Scholar
Law, C .K. and Law, H. K.. “A d2-Law for Multicomponent Droplet Vaporization and Combustion,” AIAA Journal, vol. 20, no. 4, pp. 522527, 1982.Google Scholar
Law, C. K.. “Multicomponent Droplet Combustion with Rapid Internal Mixing,” Combustion and Flame, vol. 26, pp. 219233, 1976.Google Scholar
Mattingly, J. D., and von Ohain, H.. Elements of Propulsion: Gas Turbines and Rockets, 2nd edn. Reston, VA: American Institute of Aeronautics and Astronautics, 2006.Google Scholar
Cebeci, Т. and Bradshaw, P.. Physical and Computational Aspects of Convective Heat Transfer. New York: Springer-Verlag, XII, 1984.Google Scholar
Stengele, J., Willmann, M. and Wittig, S.. “Experimental and Theoretical Study of Droplet Vaporization in High Pressure Environment,” ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, ASME Paper 97-GT-151, Orlando, FL, pp. 1–8, 1997.Google Scholar
Marinov, N. M., Pitz, W. J., Westbrook, C. K., et al.An Experimental and Kinetic Calculation of the Promotion Effect of Hydrocarbons on the NO-NO2 Conversion in a Flow Reactor,” Symposium (International) on Combustion. Proceedings of the Combustion Institute, vol. 27, pp. 389396,. 1998.Google Scholar
Ingenito, A., Agresta, A., Andriani, R., et al. “RQL Combustion as an Effective Strategy to NOx Reduction in Gas Turbine Engines,” ASME 2014 International Mechanical Engineering Congress and Exposition, Vol. 1: Advances in Aerospace Technology, Paper No. IMECE 2014–36898. Montreal, Quebec, pp. 1–12, 2014.Google Scholar
Oates, G. C.. Aerothermodynamics of Gas Turbine and Rocket Propulsion, 3rd edn. Reston, VA: American Institute of Aeronautics and Astronautics, 1997.Google Scholar
Flack, R. D.. Fundamentals of Jet Propulsion Application. Cambridge: Cambridge University Press. 2005.Google Scholar
Yang, V., Habiballah, M., Popp, M., et al. Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design. Reston, VA: American Institute of Aeronautics and Astronautics, 2004.Google Scholar
Martin, J. and Turner, L.. Rocket and Spacecraft Propulsion. New York: Springer. 2009.Google Scholar
Ring, E.. Rocket Propellant and Pressurization Systems. New York: Prentice-Hall. 1964.Google Scholar
Раушенбах, Б. В., Белый, С. А., Беспалов, И. В., и др. Физические Основы Рабочего Процесса в Камерах Сгорания Воздушно-реактивных Двигателей. Москва: Машиностроение, 1964. [B. V. Rauschenbach, S. A. Bely, I. V. Bespalov, et al. Physical Principles of the Working Process in Combustion Chambers of Air-Jet Engines. Moscow: MachineBuilding, 1964.]Google Scholar
Бакиров, Ф.Г., Захаров, В.М., Полещук, И.З., и др. Образование и Выгорание Сажи при Сжигании Углеводородных Топлив, Москва: Машиностроение, 1989. [F. G. Bakirov, V. M. Zakharov, I. Z. Poleshchuk, et al. Soot Formation and Burnout during the Burning of Hydrocarbon Fuels. Moscow: MachineBuilding, 1989.]Google Scholar
Chigier, N. A., Weinberg, F. J., Bowman, C. T., et al.Pollution Formation and Destruction in Flames.” In Progress in Energy & Combustion Science, Vol. 1, ed. Chigier, N. A., Oxford: Pergamon Press, 1976.Google Scholar
Самойлов, Н. П., Игонин, Е. И., Кашеваров, О. А., и др. Токсичность Автотракторных Двигателей и Способы ее Снижения, Казань: КГУ, 1997. [N. P. Samoilov, E. I. Igonin, O. A. Kashevarov, et al. Ways of Reduction of Toxic Emission of Automotive and Tractor Engines. Kazan: KSU, 1997.]Google Scholar
Петриченко, Р. М.. Элементы Системы Автоматизированного Проектирования ДВС: Алгоритмы Прикладных Программ, Ленинград: Машиностроение, 1990. [R. M. Petrichenko. Elements Internal Combustion Engines Coputer-Aided Design and Algorithms of Applied Computer Codes. Leningrad: MachineBuilding, 1990.]Google Scholar
Andrae, J., Bjornbom, P., and Edsberg, L.. “Numerical Studies of Wall Effects with Laminar Methane Flames,” Combustion and Flame, vol. 128, pp. 165180, 2002.Google Scholar
Balthasar, M., Mauss, F., and Wang, H.. “A Computational Study of the Thermal Ionization of Soot Particles and Its Effect on Their Growth in Laminar Premixed Flames,” Combustion and Flame, vol. 129, pp. 204216, 2002.Google Scholar
Balthasar, M., Mauss, F., Knobel, A., et al.Detailed Modeling of Soot Formation in a Partially Stirred Plug Flow Reactor,” Combustion and Flame, vol. 128, pp. 395409, 2002.Google Scholar
Balthasar, M. and Kraft, M.. “A Stochastic Approach to Calculate the Particle Size Distribution Function of Soot Particles in Laminar Premixed Flames,” Combustion and Flame, vol. 133, pp. 289298, 2003.Google Scholar
Beltrame, A., Porshnev, P., Merchan-Merchan, W., et al.Soot and NO Formation in Methane–Oxygen Enriched Diffusion Flames,” Combustion and Flame, vol. 124, pp. 295310, 2001.Google Scholar
Brookes, S. J. and Moss, J. B.. “Measurements of Soot Production and Thermal Radiation from Confined Turbulent Jet Diffusion Flames of Methane,” Combustion and Flame, vol. 116, pp. 4961, 1999.Google Scholar
Hayashi, S., Hisaeda, Y., Asakuma, Y., et al.Simulation of Soot Aggregates Formed by Benzene Pyrolysis,” Combustion and Flame, vol. 117, pp. 851860, 1999.Google Scholar
Inal, F. and Senkan, S. M.. “Effects of Equivalence Ratio on Species and Soot Concentrations in Premixed n-Heptane Flames,” Combustion and Flame, vol. 131, pp. 1628, 2002.Google Scholar
Cuenot, J. B., Poinsot, T., and Haworth, D.. “Numerical Simulation and Modeling for Lean Stratified Propane-Air Flames,” Combustion and Flame, vol. 128, pp. 121, 2002.Google Scholar
Liu, F., Guo, H., Smallwood, G. J., et al.The Chemical Effects of Carbon Dioxide as an Additive in an Ethylene Diffusion Flame: Implications for Soot and NOx Formation,” Combustion and Flame, vol. 125, pp. 778787, 2001.Google Scholar
Maricq, M. M., Harris, S. J., and Szente, J. J.. “Soot Size Distributions in Rich Premixed Ethylene Flames,” Combustion and Flame, vol. 132, pp. 328342, 2003.Google Scholar
Tesner, P. A. and Shurupov, S. V.. “Soot Formation from Acetylene-Benzene Mixture,” Combustion Science and Technology, vol. 92, pp. 6167, 1993.Google Scholar
Tesner, P. A. and Shurupov, S. V.. “Some Physico-Chemical Parameters of Soot Formation during Pyrolysis of Hydrocarbons,” Combustion Science and Technology, vol. 105, pp. 147161, 1995.Google Scholar
Warnatz, J., Bockhorn, H., Moser, A., et al. “Expelimental Investigations and Computational Simulation of Acetilene-Oxigen Flames from Near Stoichiometric to Sooting Conditions,” 19th Symposium (International) on Combustion. Pittsburg, PA: The Combustion Institute, pp. 197–209, 1982.Google Scholar
Westbrook, C. K. and Dryer, F. L.. “Chemical Kinetics and Modeling of Combustion Processes,” 18th Symposium on Combustion, pp. 749–767, 1981.Google Scholar
Westbrook, C. K., Pitz, W., Thornton, M., et al.A Kinetic Modeling Study of n-Pentane Oxidation in a Well-Stirred Reactor,” Combustion and Flame, vol. 72, pp. 4562, 1988.Google Scholar
Xu, F., El-Leathy, A. M., Kim, C. H., et al.Soot Surface Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure,” Combustion and Flame, vol. 132, pp. 4357, 2003.Google Scholar
Xu, F. and Faeth, G. M.. “Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure,” Combustion and Flame, vol. 125, pp. 804819, 2001.Google Scholar
Zhao, B., Yang, Z., Johnston, M. V., et al.Measurement and Numerical Simulation of Soot Particle Size Distribution Functions in a Laminar Premixed Ethylene-Oxygen-Argon Flame,” Combustion and Flame, vol. 133, pp. 173188, 2003.Google Scholar
Kim, C. H., Xu, F., Sunderland, P. B., et al. “Soot Formation and Oxidation in Laminar Flames,” 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006–1508, Reno, NV, pp. 1–17, 2006.Google Scholar
Теснер, П. А.. “Образование сажи при горении,” Физика Горения и Взрыва, № 2, стр. 3–14, 1979. [P. A. Tesner. “Soot Formation in Combustion,” Physics of Combustion and Explosion, no. 2, p. 3–14, 1979.]Google Scholar
Frenklach, M., Taki, S., Durgaprasad, M. B., et al.Soot Formation in Shock-Tube Pyrolisis of Acetylene, Allene and 1, 3-Butadiene,” Combustion and Flame, vol. 54. pp. 81103, 1983.Google Scholar
Зенуков, И. А., Крюков, В. Г., Магсумов, Т. М.. “Методика расчета физико-химических параметров двухфазных потоков,” В сборнике: Тепловые Процессы и Свойства Рабочих Тел Двигателей Летательных Аппаратов. Казанский авиационный институт: Казань, стр. 7177, 1980. [I. A. Zenukov, V. G. Kryukov, and T. M. Magsumov. “Method of Calculating the Physicochemical Parameters of Two-Phase Flows.” In the collection of publications, Thermal Processes and Properties of the Working Bodies of Aircraft Engines. Kazan, Kazan Aviation Institute, pp. 71–77, 1980.]Google Scholar
Челомей, В. Н., Полухин, Д. А., Миркин, Н. Н., и др. Пневмо-гидравлические Системы Двигательных Установок с Жидкостными Ракетными Двигателями. Москва: Машиностроение, 1978. [V. N. Chelomey, D. A. Polukhin, N. N. Mirkin, et al., Pneumo-Hydraulic Systems of Propulsion Systems with Liquid Rocket Engines. Moscow: MachineBuilding, 1978.]Google Scholar
Беляев, Н. М.. Системы Наддува Топливных Баков Ракет. Москва: Машиностроение, 1976. [N. M. Belyaev. Systems of Pressurization of Liquid Rocket Tanks Fuel Tanks. Moscow: MachineBuilding, 1976.]Google Scholar
Naoumov, V.. “Simulation of High-Temperature Pressurization of the Liquid-Propellant Rocket Tanks.” 47th Aerospace Science Meeting Including the New Horison Forum and Aerospace Exposition, AAA 2009–1600, Orlando, FL, pp. 1–7, 2009.Google Scholar
Kendle, D. W.. “Ullage Mixing Effects on Tank Pressurization Performance,” Journal Spacecrafts and Rockets, vol. 8, no. 9, pp. 990992, 1977.Google Scholar
Денисов, К. П., Луковский, А. П., Леднева, Л. П.. “Экспериментальное исследование влияния скорости ввода газа на тепломассообменные процессы в газовом объеме емкости,” Известия Высших Учебных Заведений СССР. Авиационная Техника. № 1, cтр. 84–86, 1981. [K. P. Denisov, A. P. Lukovsky, and L. P. Ledneva. “An Experimental Study of the Influence of the Rate of Gas Injection on Heat and Mass Transfer Processes in the Gas Volume,” News of Higher Educational Institutions of the USSR: Aviation Technique. no. 1, pp. 84–86, 1981.]Google Scholar
Козлов, А. А., Новиков, В. Н., Соловьев, Е. В.. Системы Питания и Управления Жидкостными Ракетными Двигательными Установками. Москва: Машиностроение, 1988. [A. A. Kozlov, V. N. Novikov, and E. V. Solovyov. Propellant Supply and Control Systems of Liquid Propellant Rocket Engines. Moscow: MachineBuilding, 1988.]Google Scholar
Глебов, Г.А., Козлов, А.П.. “Расчет процесса наполнения емкости сжатым газом,” Инженерно-Физический Журнал, Т. 46, № 4, стр. 696697, 1984. [G. A. Glebov and A. P. Kozlov. “Calculation of the Process of Filling a Container with Compressed Gas,” Engineering Physics Journal, vol. 46, no. 4, pp. 696–697, 1984.]Google Scholar
Беляев, Н. М., Уваров, Е. И., Степанчук, Ю. М.. Пневмо-Гидравлические Системы. Расчет и Проектирование. Москва, Высшая школа, 1988. [N. M. Belyaev, E. I. Uvarov, and Yu. M. Stepanchuk. Pneumo-Hydraulic Systems: Calculation and Design. Moscow: High School, 1988.]Google Scholar
Cady, E. C.. “An Investigation of Fluorine-Hydrogen Main Tank Injection Pressurization,” Journal Spacecrafts and Rockets, vol. 6, no. 11, pp. 12481253, 1969.Google Scholar
Cady, E. C. and Kendle, D. W.. “Vehicle-Scale Investigation of a Fluorine Jet-Pump Liquid Hydrogen Tank Pressurization System,” Journal Spacecrafts and Rockets, vol. 10, no. 11, pp. 735740, 1973.Google Scholar
Faster, D. A. and Howell, T. C.. “Main Tank Injection for Packaged Liquid Missiles,” 6th Aerospace Sciences Meeting, AIAA Paper, no. 627, New York, pp. 1–11, 1968.Google Scholar
Дрегалин, А. Ф., Крюков, В. Г., Наумов, В. И.. “Метод расчета и анализ свойств вертикальной неизотермической струи с учетом выталкивающей силы,” Известия Высших Учебных Заведений СССР. Авиационная Техника, № 1, стр. 29–33, 1983. [A. F. Dregalin, V. G. Krioukov, and V. I. Naumov. “Method of Calculation and Analysis of the Properties of a Vertical Non-Isothermal Jet, Taking into Account Buoyancy Force,” Proceedings of the Higher Educational Institutions of the USSR. Aviation Engineering, no. 1, pp. 29–33, 1983.]Google Scholar
Кутаталадзе, С.С., Основы Теории Теплообмена. 5-е издание. Атомиздат, 1979. [S. S. Kutateladze, Fundamentals of Heat Transfer Theory, 5th edn. Atomizdat, 1979.]Google Scholar
Исаев, С. И., Кожинов, И. А., Кофанов, В. И., и др. Теория Тепломассообмена. Москва: Высшая школа, 1979. [S. I. Isaev, I. A. Kozhinov, V. I. Kofanov, et al. Theory of Heat and Mass Transfer. Moscow: High School, 1979.]Google Scholar
Кутаталадзе, С.С., Леонтьев, А.И.. Турбулентный Пограничный Слой Сжимаемого Газа. Новосибирск: Изд-во Сиб. отд. АН СССР, 1962. [S. S. Kuataladze and A.I. Leontyev. Turbulent Boundary Layer of Compressible Gas. Novosibirsk: Publishing House Sib. Dep. Academy of Sciences of the USSR, 1962.]Google Scholar
Глебов, Г. А., Габитов, Р. Н., Кузьмин, В. В. и др. “Течение и теплообмен при взаимодействии турбулетнной осесимметричной струи с поверхностью компонента в топливном баке,” В сборнике: Тепловые Процессы и Свойства Рабочих Тел Двигателей Летательных Аппаратов. Казань: КАИ, стр. 9499, 1982. [G. A. Glebov, R. N. Gabitov, V. V. Kuzmin et al. “Flow and Heat Exchange in the Interaction of a Turbulet Axisymmetric Jet with a Component Surface in a Fuel Tank,” In the collection of publications, Thermal Processes and Working Properties of Aircraft Engines. Kazan: KAI, pp. 94–99, 1982.]Google Scholar
Глебов, Г. А., Кузьмин, В. В., Щелков, А. Н.. “Конвективный теплообмен в цилиндрическом канале при вдуве в него турбулентной струи. Течение и теплообмен при взаимодействии турбулентной осесимметричной струи с поверхностью компонента в топливном баке,” В сборнике: Тепловые Процессы и Свойства Рабочих Тел Двигателей Летательных Аппаратов. Казань: КАИ, стр. 9093, 1982. [G. A. Glebov, V. V. Kuzmin, and A. N. Shchelkov. “Convective Heat Transfer in a Cylindrical Channel at Turbulent Jet Injection. Flow and heat Transfer in the Interaction of a Turbulent Axisymmetric Jet with the Surface of Component in Fuel Tank. In Collection: thermal Processes and Properties of the Working Bodies of Aircraft Engines. Kazan: KAI, pp. 90–93, 1982.]Google Scholar
Калинин, Э. К., Дрейцер, Г. А., Костюк и др, В. В.. Методы Расчета Сопряженных Задач Тепломассообмена. Москва: Машиностроение, 1983. [E. K. Kalinin, G. A. Dreitser, V. V. Kostyuk, et al. Methods for Calculating Conjugate Problems of Heat and Mass Transfer. Moscow: MachineBuilding, 1983.]Google Scholar
Лыков, А. В.. Тепломассообмен. Справочник. 2-е издание. Москва: Энергия, 1978. [A. V. Lykov. Heat and Mass Transfer, 2nd edn. Moscow: Energy, 1978.]Google Scholar
Naoumov, V. I., Kriukov, V. G., and Abdullin, A. L.. “Chemical Kinetics Software System for the Propulsion and Power Engineering,” 41st Aerospace Science Meeting and Exhibit, AIAA 2003–854, Reno, NV, pp. 1–11, 2003.Google Scholar
Eriksson, L., Nielsen, L., and Nytompt, J.. “Ignition Control by Ionization Current Interpretation,” SAE International Congress, SAE Technical Paper 960045, pp. 73–79, 1996.Google Scholar
Saitzkoff, A., Reinmann, R., and Berglind, T.. “An Ionization Equilibrium Analysis of the Spark Plug as an Ionization Sensor.” SAE International Congress, SAE Technical Paper 960337, pp. 1–13, 1996.Google Scholar
Saitzkoff, A., Reinmann, R., Mauss, F., et al. “In-Cylinder Pressure Measurements Using the Spark Plug as an Ionization Sensor,” SAE International Congress, SAE Technical Paper 970857, pp. 1–13, 1997.Google Scholar
Reinmann, R., Saitzkoff, A., and Mauss, F.. “Local Air-Fuel Ratio Measurements Using the Spark Plug as an Ionization Sensor,” SAE International, SAE Technical Paper 970856, pp. 1–13, 1997.Google Scholar
Hajireza, S., Sunden, B., and Mauss, F.. “A Three-Zone Model for Investigation of Gas Behaviour in the Combustion Chamber of SI Engines in Relation to Knock,” SAE 1999 World Congress, SAE Technical Paper 1999–01-0219, pp. 1–12, 1999.Google Scholar
Hellring, M., Munther, T., Rognvaldsson, T., et al. “Robust Air-Fuel Ratio Estimation Using the Ion Current and Neural Networks,” SAE 1999 World Congress, SAE Technical Paper 991161, pp. 1–12, 1999.Google Scholar
Anderson, I. and Eriksson, L.. “Ion Sensing for Combustion Stability Control of a Spark Ignited Direct Injected Engine,” SAE 2000 World Congress, SAE Technical Paper 01–0552, pp. 1–8, 2000.Google Scholar
Person, L., Charlet, A., Higelin, P., et al. “Limitations of Ionization Current Sensors and Comparison with Cylinder Pressure Sensors,” SAE 2000 World Congress, SAE Technical Paper 2000–01-2830, pp. 1–14, 2000.Google Scholar
Yoshiyama, S., Tomita, E., and Hamamoto, Y.. “Fundamental Study on Combustion Diagnostics Using a Spark Plug as Ion Probe,” SAE 2000 World Congress, SAE Technical Paper 2000–012828, pp. 1–15, 2000.Google Scholar
Byttner, S., Rognvaldsson, T., and Wickstrom, N.. “Estimation of Combustion Variability Using In-Cylinder Ionization Measurements,” SAE 2001 World Congress, SAE Technical Paper 2001–01-3485, pp. 1–8, 2001.Google Scholar
Franke, A.. “Characterization of an Electrical Sensor for Combustion Diagnostics.” Doctoral Thesis. Lund Institute of Technology, 2002.Google Scholar
Einewall, P., Tunestal, P., and Johansson, B.. “The Potential of Using the Ion-Current Signal for Optimizing Engine Stability – Comparisons of Lean and EGR (Stoichiometric) Operation,” SAE 2003 World Congress, SAE Technical Paper 2003–01-0717, pp. 1–11, 2003.Google Scholar
Thele, M., Selle, S., Riedel, U., et al. “Detailed Two-Dimensional Numerical Study of Spark Ignition Including Ionization,” SAE 2002 World Congress, SAE Technical Paper 2002–01-1110, pp. 1–10, 2002.Google Scholar
Kusuhara, T., Shinkai, T., Yoshida, K., et al. “Development on Internal EGR Feedback Control Based on Ion Current,” SAE 2017 World Congress, SAE Technical Paper 2017–01-0793, pp. 1–10, 2017.Google Scholar
Lawton, J. and Weinberg, F. J.. Electrical Aspects of Combustion, London: Clarendon Press, 1969.Google Scholar
Shuler, K. E., ed. Ionization in High-Temperature Gases. New York and London: Academic Press, 1963.Google Scholar
Calcote, H. F.. “Ion Production and Recombination in Fames,” In 8th (International) Symposium on Combustion. Pittsburgh, PA: The Combustion Institute, pp. 184199, 1960.Google Scholar
Calcote, H .F.. “Ion and Electron Profiles in Fames,” In 9th (International) Symposium on Combustion. Pittsburgh, PA: The Combustion Institute, pp. 638658, 1963.Google Scholar
Fialkov, A. B.. “Investigations on Ions in Fames,” Progress in Energy and Combustion Science, vol. 23, no. 5–6, pp. 399528, 1997.Google Scholar
Naoumov, V., Demin, A., Anderson, I. et al. “Modeling of Combustion and Non-Equilibrium Ionization in Spark Ignition Engines,” SAE 2002 World Congress, SAE Technical Paper 2002–01-0009, pp. 1–8, 2002.Google Scholar
Naoumov, V. I., Demin, A. V., and Sokolov, A. B.. “Numerical Study and Analysis of Pollutant Production and Emission Control Using Ion Current Prediction in the SI Engine,” SAE 2003 World Congress, SAE Technical Paper 2003–01-0724, pp. 1–11, 2003.Google Scholar
Naoumov, V. I., Demin, A. V., and Sokolov, A. B.. “Three-Zone Model of Combustion and Chemical Non-Equilibrium Ionization in the SI Engine,” SAE 2004 World Congress, SAE Technical Paper 2004–01-0622, pp. 1–10, 2004.Google Scholar
Алемасов, В. И., Дрегалин, А. Ф., Тишин, А. П.. Теория ракетных двигателей. Москва: Машиностроение, 1969. [V. I. Alemasov, A. F. Dregalin, and A. P. Tishin. Theory of Rocket Engines. Moscow: MachineBuilding, 1969.]Google Scholar
Mitchner, M. and Kruger, C. H.. Partially Ionized Gases. New York: Wiley, 1973.Google Scholar
Zeldovich, Y. B., Sadonikov, P. Y., and Frank-Kamenetskii, D. A.. Oxidation of Nitrogen in Combustion. Translated by Shelef, M.. Moscow–Leningrad: Academy of Science of USSR, Institute of Chemical Physics, 1947.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×