Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T14:03:33.328Z Has data issue: false hasContentIssue false

7 - Climate model scenarios for global warming

Published online by Cambridge University Press:  05 June 2012

J. David Neelin
Affiliation:
University of California, Los Angeles
Get access

Summary

Greenhouse gases, aerosols and other climate forcings

Scenarios, forcings and feedbacks

Climate model predictions for global warming differ from predictions for ENSO because the system is responding to a forcing that is being continuously applied, namely the radiative effects of greenhouse gases (GHG) in the atmosphere. The term driver of climate change is sometimes now used for communicating to the public, but forcing is the standard scientific term. In Chapter 6, we saw that the top-of-atmosphere radiative imbalance caused by GHG provided a useful measure of the radiative forcing to which the climate system responds. In a forced system, in principle, if we know how the forcing behaves as a function of time we can obtain the system response. In the climate system, there is always chaotic natural variability about the forced response but if there is an ongoing forcing that tends to warm the climate, then the variations will occur about the forced warmer state. This is why, if the forcing were known, climate model predictions could be made a century ahead and have some meaning, whereas even the most perfect ENSO prediction system would have no skill after a couple of years.

Future GHG emissions are, of course, not actually known at this time. Instead climate researchers collaborate with economists and social scientists to construct possible scenarios of future emissions and the resulting concentrations. These scenarios may be quite complex attempts to project energy demand and population growth, taking into account assumptions such as a possible phase-out of nuclear energy or improvements in solar technology.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×