Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-16T23:37:16.758Z Has data issue: false hasContentIssue false

4 - Carbon cycle trends and vulnerabilities

Published online by Cambridge University Press:  04 April 2011

Katherine Richardson
Affiliation:
University of Copenhagen
Will Steffen
Affiliation:
Australian National University, Canberra
Diana Liverman
Affiliation:
University of Arizona and University of Oxford
Get access

Summary

‘We are only a tool in the cycle of things … (we) go out into the world and help keep the balance of nature. It's a big cycle of living with the land, and eventually going back to it …’

The Earth's element cycles – nitrogen, carbon, phosphorus, sulphur, silicon and others – are central to the functioning of the climate system, and to life itself. In the context of climate change, the carbon cycle has assumed centre stage, primarily through the rapid rise in human-induced emissions of the important greenhouse gases carbon dioxide (CO2) and methane (CH4). The political debate on responses to the climate change challenge has focused primarily on one aspect of the carbon cycle – reducing the emissions of CO2 to the atmosphere. However, the carbon cycle is very complex and human activities affect other parts of the cycle – for example, the ability of natural processes on the land and in the ocean (carbon ‘sinks’) to take up a significant fraction of the CO2 emitted to the atmosphere. The human imprint also operates indirectly on the carbon cycle via climate change itself, as several important feedback processes are predicted to be activated as the planet warms. For example, pools of carbon in the natural world, such as the CH4 stored in frozen soils in the northern high latitudes, that have hitherto been stable could become an important new source of a powerful greenhouse gas as the planet warms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, T. P., Pierce, D. W., AchutaRao, K. M.et al. (2005). Penetration of human-induced warming into the world's oceans. Science, 309, 284–87.CrossRefGoogle ScholarPubMed
Bendtsen, J., Hilligsøe, K. M., Hansen, J. L. S. and Richardson, K. (submitted). Temperature sensitive remineralisation rates of organic matter in the mesopelagic zone.
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S. and Frankenberg, C. (2010). Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science, 327, 322–25.CrossRefGoogle ScholarPubMed
Brown, J., Ferrians, O. J. Jr., Heginbottom, J. A. and Melnikov, E. S. (1998). Circum-Arctic Map of Permafrost and Ground-ice Conditions. Revised February 2001. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.Google Scholar
Butler, J. (2009). The NOAA Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi.
Canadell, J. G., Quéré, C., Raupach, M. R.et al. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences (USA), 104, 18866–70.CrossRefGoogle ScholarPubMed
Canadell, J. G., Raupach, M. R. and Houghton, R. A. (2009). Anthropogenic CO2 emissions in Africa. Biogeosciences, 6, 463–68.CrossRefGoogle Scholar
ChapinIII, F. S., Randerson, J. T., McGuire, A. D., Foley, J. A. and Field, C. B. (2008). Changing feedbacks in the climate-biosphere system. Frontiers in Ecology and the Environment, 6, 313–20.CrossRefGoogle Scholar
Ciais, P., Reichstein, M., Viovy, N.et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529–33.CrossRefGoogle ScholarPubMed
Cook, K. H. and Vizy, E. K. (2008). Effects of 21st century climate change on the Amazon rainforest. Journal of Climate, 21, 542–60.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–87.CrossRefGoogle Scholar
Crutzen, P. J. (2002). Geology of mankind: The Anthropocene. Nature, 415, 23.CrossRefGoogle Scholar
Crutzen, P. J. and Stoermer, E. F. (2000). The ‘Anthropocene’. Global Change Newsletter, 41.Google Scholar
Denman, K. L., Chidthaisong, G. B. A., Ciais, P.et al. (2007). Couplings between changes in the climate system and biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L.. Cambridge, UK and New York, NY: Cambridge University Press, pp. 499–587.Google Scholar
Dunne, J. P., Armstrong, R. A., Gnanadesikan, A. and Sarmiento, J. L. (2005). Empirical and mechanistic models for the particle export ratio. Global Biogeochemical Cycles, 19, GB4026.CrossRefGoogle Scholar
Eby, M., Zickfeld, K., Montenegro, A.et al. (2009). Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. Journal of Climate, 22, 2501–11.CrossRefGoogle Scholar
Etheridge, D. M., Steele, L. P., Langenfelds, R. L.et al. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 101, 4115–28.CrossRefGoogle Scholar
Falkowski, P., Scholes, R. J., Boyle, E.et al. (2000). The global carbon cycle: A test of our knowledge of Earth as a system. Science, 290, 291–96.CrossRefGoogle ScholarPubMed
Field, C. B., Behrenfield, M. J., Randerson, J. T. and Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–40.CrossRefGoogle ScholarPubMed
Field, C. B., Lobell, D. B., Peters, H. A. and Chiariello, N. R. (2007). Feedbacks of terrestrial ecosystems to climate change. Annual Review of Environment and Resources, 32, 1–29.CrossRefGoogle Scholar
Friedlingstein, P., Cox, P., Betts, R.et al. (2006). Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 19, 3337–53.CrossRefGoogle Scholar
Goodwin, P., Williams, R. G., Ridgwell, A. and Follows, M. J. (2009). Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry. Nature Geoscience, 2, 145–50.CrossRefGoogle Scholar
Gruber, N., Friedlingstein, P., Field, C. B.et al. (2004). The vulnerability of the carbon cycle in the 21st century: an assessment of carbon–climate–human interactions. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. Field, C. B. and Raupach, M. R.. Washington, D.C.: Island Press, pp. 45–76.Google Scholar
Hilbert, D. W., Canadell, J. G., Metcalfe, D. and Bradford, M. (2009). New observations suggest vulnerability of the carbon sink in tropical rainforests. IOP Conference Series: Earth and Environmental Science, 6, 042003.CrossRefGoogle Scholar
Hofmann, M. and Schellnhuber, H.-J. (2009). Ocean acidification affects marine carbon pump and triggers extended marine oxygen holes. Proceedings of the National Academy of Sciences (USA), 106, 3017–22.CrossRefGoogle Scholar
Hooijer, A., Page, S., Canadell, J. G.et al. (2009). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences Discussions, 6, 7207–30.CrossRefGoogle Scholar
,IMF (2009). World Economic Outlook: Sustaining the Recovery. Washington, D.C.: International Monetary Fund.Google Scholar
,Intergovernmental Panel on Climate Change (IPCC) (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., Miller, H. L. Jr and Chen, Z., Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar
Jaenicke, J., Rieley, J. O., Mott, C., Kimman, P. and Siegert, F. (2008). Determination of the amount of carbon stored in Indonesian peatlands. Geoderma, 147, 151–58.CrossRefGoogle Scholar
Keeling, C. D. and Whorf, T. P. (2000). Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.Google Scholar
Khatiwala, S., Primeau, F. and Hall, T. (2009). Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346–49.CrossRefGoogle Scholar
Khvorostyanov, D. V., Krinner, G., Ciais, P., Heimann, M. and Zimov, S. A. (2008a). Vulnerability of permafrost carbon to global warming. Part I Model description and role of heat generated by organic matter decomposition. Tellus, 60, 250–64.CrossRefGoogle Scholar
Khvorostyanov, D. V., Ciais, P., Krinner, G.et al. (2008b). Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming. Tellus, 60B, 265–75.CrossRefGoogle Scholar
Knorr, W. (2009). Is the airborne fraction of anthropogenic CO2 emissions increasing?Geophysical Research Letters, 36, L21710.CrossRefGoogle Scholar
Körner, Ch. (2006). Plant CO2 responses: An issue of definition, time and resource supply. New Phytologist, 172, 393–411.CrossRefGoogle ScholarPubMed
Krey, V., Canadell, J. G., Nakicenovic, N.et al. (2009). Gas hydrates: entrance to a methane age or climate threat?Environmental Research Letters, 4, 034007.CrossRefGoogle Scholar
Kurz, W. A. and Apps, M. J. (1999). A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications, 9, 526–47.CrossRefGoogle Scholar
Kurz, W. A., Dymond, C. C., Stinson, G.et al. (2008a). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452, 987–90.CrossRefGoogle ScholarPubMed
Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. and Neilson, E. T. (2008b). Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences (USA), 105, 1551–55.CrossRefGoogle ScholarPubMed
Kwon, E. Y., Primeau, F. and Sarmiento, J. L. (2009). The impact of remineralization depth on the air–sea carbon balance. Nature Geoscience, 2, 630.CrossRefGoogle Scholar
Lawrence, D. M. and Slater, A. G. (2005). A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters, 32, L24401.CrossRefGoogle Scholar
Quéré, C., Rodenbeck, C., Buitenhuis, E. T.et al. (2007). Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 1735–38.CrossRefGoogle ScholarPubMed
Quéré, C., Raupach, M. R., Canadell, J. G.et al. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–36.CrossRefGoogle Scholar
Lenton, T. M., Held, H., Kriegler, E.et al. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences (USA), 105, 1786–93 (supporting information).CrossRefGoogle ScholarPubMed
Levitus, S., Antonov, J. and Boyer, T. (2005) Warming of the world ocean, 1955–2003. Geophysical Research Letters, 32, L02604.CrossRefGoogle Scholar
López-Urrutia, A., San Martin, E., Harris, R. P. and Irigoien, X. (2006). Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences (USA), 103, 8739–44.CrossRefGoogle ScholarPubMed
Lovenduski, N. S., Gruber, N., Doney, S. C. and Lima, I. D. (2007). Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochemical Cycles, 21, GB2026.CrossRefGoogle Scholar
Luo, Y. (2007). Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology, Evolution, and Systematics, 38, 683–712.CrossRefGoogle Scholar
McConchie, P. (ed.) (2003). Elders: Wisdom from Australia's Indigenous Leaders. Cambridge University Press.
Mooney, H., Canadell, J., Chapin, F. S.et al. (1999). Ecosystem physiology responses to global change. In The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems, eds. Walker, B. H., Steffen, W. L., Canadell, J. and Ingram, J. S. I.. Cambridge, UK: Cambridge University Press, pp. 141–89.Google Scholar
Nobre, C. A. and Simone, L. (2009). Tipping points for the Amazon forest. Current Opinion in Environmental Sustainability, 1, 28–36.CrossRefGoogle Scholar
Norby, R. J., Warren, J. M., Iversen, C. M.et al. (2009). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Nature Proceedings, http://hdl.handle.net/10101/npre.2009.3747.1.Google Scholar
Page, S. E., Siegert, F., Rieley, J. O.et al. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65.CrossRefGoogle ScholarPubMed
Page, S. E., Wust, R. A. J., Weiss, D.et al. (2004). A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. Journal of Quaternary Science, 19, 625–35.CrossRefGoogle Scholar
Petit, J. R., Jouzel, J., Raynaud, D.et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–36.CrossRefGoogle Scholar
Phillips, O.L., Aragão, L. E. O. C., Lewis, S. L.et al. (2009). Drought sensitivity of the Amazon rainforest. Science, 323, 1344–47.CrossRefGoogle ScholarPubMed
Plattner, G.-K. (2009). Long-term commitment of CO2 emissions on the global carbon cycle and climate. IOP Conference Series: Earth and Environmental Science, 6, 042008.CrossRefGoogle Scholar
Raupach, M. R., Marland, G., Ciais, P.et al. (2007). Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences (USA), 104, 10288–93.CrossRefGoogle ScholarPubMed
Rigby, M., Prinn, R. G., Fraser, P. J.et al. (2008). Renewed growth of atmospheric methane. Geophysical Research Letters, 35, L22805.CrossRefGoogle Scholar
Sabine, C. L. and Tanhua, T. (2010). Estimation of anthropogenic CO2 inventories in the ocean. Annual Review of Marine Science, 2, 175–98.CrossRefGoogle ScholarPubMed
Sabine, C. L., Feely, R. A., Gruber, N.et al. (2004). The oceanic sink for anthropogenic CO2. Science, 305, 367–71.CrossRefGoogle ScholarPubMed
Sarmiento, J. L., Orr, J. C. and Siegenthaler, U. (1992). A perturbation simulation of CO2 uptake in an ocean general circulation model. Journal of Geophysical Research, 97, 3621–45.CrossRefGoogle Scholar
Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. and Manabe, S. (1998). Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245–49.CrossRefGoogle Scholar
Schneider, B., Bopp, L., Gehlen, M.et al. (2008). Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 5, 597–614.CrossRefGoogle Scholar
Schuster, U. and Watson, A. J. (2007). A variable and decreasing sink for atmospheric CO2 in the North Atlantic. Journal of Geophysical Research, 112, C11006.CrossRefGoogle Scholar
Schuur, E. A. G., Bockheim, J., Canadell, J. G.et al. (2008). Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701–14.CrossRefGoogle Scholar
Schuur, E. A. G., Vogel, J. G., Crummer, K. G.et al. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556–59.CrossRefGoogle ScholarPubMed
Sigman, D. M. and Boyle, E. A. (2000). Glacial/interglacial variations in carbon dioxide: Searching for a cause. Nature, 407, 859–69.CrossRefGoogle Scholar
Sitch, S., Huntingford, C., Gedney, N.et al. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015–39.CrossRefGoogle Scholar
Solomon, S., Plattner, G.-K., Knutti, R. and Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences (USA), 106, 1704–09.CrossRefGoogle ScholarPubMed
Stramma, L., Johnson, G. C., Sprintall, J. and Mohrholz, V. (2008). Expanding oxygen-minimum zones in the tropical oceans. Science, 320, 655–58.CrossRefGoogle ScholarPubMed
Steffen, W., Crutzen, P. J. and McNeill, J. R. (2007). The Anthropocene: Are humans now overwhelming the great forces of nature?Ambio, 36, 614–21.CrossRefGoogle ScholarPubMed
Stuiver, M., Quay, P. D. and Ostlund, H. G. (1983). Abyssal water carbon-14 distribution and the age of the world oceans. Science, 219, 849–51.CrossRefGoogle ScholarPubMed
Takahashi, T., Sutherland, S. C., Feely, R. A. and Wanninkhof, R. (2006). Decadal change of the surface water pCO2 in the North Pacific: a synthesis of 35 years of observations. Journal of Geophysical Research, 111, C07S05.CrossRefGoogle Scholar
Tarnocai, C., Canadell, J. G., Schuur, E. A. G.et al. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023.CrossRefGoogle Scholar
Wallace, D. W. R. (2001). Ocean measurements and models of carbon sources and sinks. Global Biogeochemical Cycles, 15, 3–11.CrossRefGoogle Scholar
Wang, Y.-P., Houlton, B. Z. and Field, C. B. (2007). A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochemical Cycles, 21, GB1018.CrossRefGoogle Scholar
Wohlers, J., Engel, A., Zöllner, E.et al. (2009). Changes in biogenic carbon flow in response to sea surface warming. Proceedings of the National Academy of Sciences (USA), 106, 7067–72.CrossRefGoogle ScholarPubMed
Zhuang, Q., Melillo, J. M., Sarofim, M. C.et al. (2006). CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophysical Research Letters, 33, L17403.CrossRefGoogle Scholar
Zimov, S. A., Schuur, E. A. G. and Chapin III, F. S. (2006). Permafrost and the global carbon budget. Science, 312, 1612–13.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×