Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-16T15:09:55.363Z Has data issue: false hasContentIssue false

4 - Climate Variability and Tropical Cyclones

Published online by Cambridge University Press:  17 February 2022

Pao-Shin Chu
Affiliation:
University of Hawaii, Manoa
Hiroyuki Murakami
Affiliation:
UCAR
Get access

Summary

In this chapter, we focus on climate variability and tropical cyclone (TC) activity for five ocean basins, namely, the western North Pacific, eastern North Pacific, central North Pacific, South Pacific, and North Atlantic. For each basin, the discussion includes the background climatology, the modulation of TC activity by intraseasonal oscillations, the influence of ENSO and the PMM (or AMM) on interannual TC variations, and decadal TC variations. In addition, large-scale low-level flow patterns instrumental for TC geneses and equatorial waves that are regarded as TC precursors are described in Section 4.2.2. Observed changes in TC attributes such as frequency, intensity, translation speed, and poleward migration of the latitude of lifetime maximum intensity are also described at the end of this chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiyyer, A., and Molinari, J., 2008: MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci., 65, 26912704.Google Scholar
Alexander, M. A., Seo, H., Xie, S.-P., and Scott, J. D., 2012: ENSO’s impact on the gap wind regions of the eastern Tropical Pacific Ocean. J. Climate, 25, 35493565.CrossRefGoogle Scholar
Arpe, K., and Leroy, S. A. G., 2009: Atlantic hurricanes – Testing impacts of local SSTs, ENSO, stratospheric QBO: Implications for global warming. Quat. Int., 195, 414.Google Scholar
Avila, L. A., 2016: 2015 Eastern North Pacific Hurricane Season. National Hurricane Center Annual Summary. National Weather Service, NOAA.Google Scholar
Barrett, B. S., and Leslie, L. M., 2009: Links between tropical cyclone activity and Madden–Julian Oscillation phase in the North Atlantic and Northeast Pacific basins. Mon. Wea. Rev., 137, 727744.CrossRefGoogle Scholar
Basher, R. E., and Zheng, X., 1995: Tropical cyclones in the southwest Pacific: Spatial patterns and relationships to Southern Oscillation and sea surface temperature. J. Climate, 8, 12491260.2.0.CO;2>CrossRefGoogle Scholar
Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteorol. Soc., 81, S1S50.Google Scholar
Bengtsson, L., and Coauthors, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561.Google Scholar
Bhatia, K. T., and Coauthors, 2019: Recent increases in tropical cyclone intensification rates. Nat. Commun., 10, 635.Google Scholar
Booth, B. B. B., and Coauthors, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232.CrossRefGoogle ScholarPubMed
Boucharel, J., and Coauthors, 2016: Different controls of tropical cyclone activity in the eastern Pacific for two types of El Niño. Geophys. Res. Lett., 43, 16791686. doi:10.1002/2016GL067728.Google Scholar
Bove, M. C., and Coauthors, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteorol. Soc., 76, 24772482.2.0.CO;2>CrossRefGoogle Scholar
Briegel, L. M., and Frank, W. M., 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 13971413.Google Scholar
Camargo, S. J., and Sobel, A. H., 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006.CrossRefGoogle Scholar
Camargo, S. J., and Sobel, A. H., 2010: Revisiting the influence of the Quasi-Biennial Oscillation on tropical cyclone activity. J. Climate, 23, 58105825.Google Scholar
Camargo, S. J., Emanuel, K. A., and Sobel, A. H., 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834.Google Scholar
Camargo, S. J., Robertson, A. W., Gaffney, S. J., Smith, P., and Ghil, M., 2007b: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653.Google Scholar
Camargo, S. J., Robertson, A. W., Gaffney, S. J., Smith, P., and Ghil, M., 2007c: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676.Google Scholar
Camargo, S. J., Wheeler, M. C., and Sobel, A. H., 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074.Google Scholar
Chan, J. C. L., 1995: Tropical cyclone activity in the western North Pacific in relation to the stratospheric quasi-biennial oscillation. Mon. Wea. Rev., 123, 25672571.2.0.CO;2>CrossRefGoogle Scholar
Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972.Google Scholar
Chan, J. C. L., and Gray, W. M., 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374.Google Scholar
Chan, J. C. L., and Liu, K. S., 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 45904602.CrossRefGoogle Scholar
Chan, K. T. F., 2019: Are global tropical cyclones moving slower in a warming climate? Environ. Res. Lett., 14(10), 104014.CrossRefGoogle Scholar
Chand, S. S., and Walsh, K. J. E., 2009: Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Climate, 22, 38773893.Google Scholar
Chand, S. S., and Walsh, K. J. E., 2010: The influence of the Madden–Julian Oscillation on tropical cyclone activity in the Fiji region. J. Climate, 23, 868886.CrossRefGoogle Scholar
Chand, S. S., and Walsh, K. J. E., 2011: Influence of ENSO on tropical cyclone intensity in the Fiji region. J. Climate, 24, 40964108.Google Scholar
Chand, S. S., et al., 2013: Impact of different ENSO regimes on Southwest Pacific tropical cyclones. J. Climate, 26, 600608.CrossRefGoogle Scholar
Chelton, D. B., Freilich, M. H., and Esbensen, S. K., 2000: Satellite observations of wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128, 19932018.Google Scholar
Chen, G., 2011: How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J. Climate, 24, 46954700.Google Scholar
Chen, G., and Chou, C., 2014: Joint contribution of multiple equatorial waves to tropical cyclogenesis over the western North Pacific. Mon. Wea. Rev., 142, 7993.Google Scholar
Chen, G., and Tam, C.-Y., 2010: Different impacts of two kinds of Pacific warming on tropical cyclone frequency over the western North Pacific. Geophy. Res. Lett., 37, L01803.CrossRefGoogle Scholar
Chen, J.-M., Wu, C.-H., Chung, P.-H., and Sui, C.-H., 2018: Influence of intraseasonal-interannual oscillations on tropical cyclone genesis in the western North Pacific. J. Climate, 31, 49494961.CrossRefGoogle Scholar
Chen, T.-C., Weng, S.-P., Yamazaki, N., and Kiehne, S., 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 10801090.2.0.CO;2>CrossRefGoogle Scholar
Chen, T.-C., Wang, S.-Y., and Yen, M.-C., 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 57095720.Google Scholar
Chia, H. H., and Ropelewski, C. F., 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944.2.0.CO;2>CrossRefGoogle Scholar
Chiang, J. C. H., and Vimont, D. J., 2004: Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere-ocean variability. J. Climate, 17, 41434158.CrossRefGoogle Scholar
Chien, F. C., and Kuo, H. C., 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104.Google Scholar
Chowdhury, M. R., and Chu, P.-S., 2015: Sea level forecasts and early-warning application: Expanding cooperation in the South Pacific. Bull. Amer. Meteorol. Soc., 96, 381386.CrossRefGoogle Scholar
Chowdhury, M. R., Chu, P.-S., and Guard, C., 2014: An improved sea level forecasting scheme for hazards management in the U.S. affiliated Pacific islands. Int. J. Climatol., 34, 23202329.CrossRefGoogle Scholar
Chu, P.-S., 2002: Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. J. Climate, 15, 26782689.Google Scholar
Chu, P.-S., 2004: ENSO and tropical cyclone activity. In Hurricanes and Typhoons: Past, Present and Future. Murnane, R. J. and Liu, K. B., Eds. Columbia University Press, 297332.Google Scholar
Chu, P.-S., and Wang, J., 1997: Tropical cyclone occurrences in the vicinity of Hawaii: Are the differences between El Niño and non-El Niño years significant? J. Climate, 10, 26832689.Google Scholar
Chu, P.-S., and Zhao, X., 2004: Bayesian change-point analysis of tropical cyclone activity: The central North Pacific case. J. Climate, 17, 48934901.Google Scholar
Chu, P.-S., and Zhao, X., 2011: Bayesian analysis for extreme climatic events: A review. Atmos. Res., 102, 243262.CrossRefGoogle Scholar
Chu, P.-S., Zhao, X., and Kim, J.-H., 2010: Regional typhoon activity as revealed by track patterns and climate change. In Hurricanes and Climate Change, Vol. 2. Elsner, J. et al., Eds. Springer, 137148.Google Scholar
Chu, P.-S., Kim, J.-H., and Chen, Y. R., 2012: Have steering flows in the western North Pacific and the South China Sea changed over the last 50 years? Geophys. Res. Lett., 39, L10704, doi:10.1029/2012GL051709.Google Scholar
Church, J. A., White, N. J., and Hunter, J. R., 2006: Sea-level rise at tropical Pacific and Indian Ocean islands. Glob. Planet. Change, 53, 155168.CrossRefGoogle Scholar
Church, J. A., Woodworth, P. L., Aarup, T., and Wilson, S., 2010: Sea Level Rise and Vulnerability. Wiley.Google Scholar
Clark, J. D., and Chu, P.-S., 2002: Interannual variation of tropical cyclone activity over the central North Pacific. J. Meteorol. Soc. Japan, 80, 403418.Google Scholar
Collimore, C. C., et al., 2003: On the relationship between the QBO and tropical dep convection. J. Climate, 16, 25522568.Google Scholar
Collins, J. M., 2010: Contrasting high North East Pacific tropical cyclone activity. Southeast Geogr., 50, 8398, doi:10.1353/sgo.0.0069.Google Scholar
Collins, J. M., and Mason, I. M., 2000: Local environmental conditions related to seasonal tropical cyclone activity in the Northeast Pacific basin. Geophys. Res. Lett., 27, 38813884. doi:10.1029/2000GL011614.CrossRefGoogle Scholar
Collins, J. M., and Coauthors, 2016: The record-breaking 2015 hurricane season in the eastern North Pacific: An analysis of environmental conditions. Geophys. Res. Lett., 43, 92179224.CrossRefGoogle Scholar
Daloz, A. S., and Camargo, S. J., 2018: Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis? Clim. Dyn., 50, 705715.CrossRefGoogle Scholar
Delworth, T. L., and Mann, M. E., 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn., 16, 661676.Google Scholar
Diamond, H. J., Lorrey, A. M., and Renwick, J. A., 2013: A Southwest Pacific tropical cyclone climatology and linkages to the El Niño-Southern Oscillation. J. Climate, 26, 325.CrossRefGoogle Scholar
Dowdy, A. J., and Coauthors, 2012: Tropical cyclone climatology of the South Pacific Ocean and its relationship to El Niño-Southern Oscillation. J. Climate, 25, 61086122.Google Scholar
Du, Y., Yang, L., and Xie, S.-P., 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322.Google Scholar
Dunn, G. E., 1940: Cyclogenesis in the tropical Atlantic. Bull. Amer. Meteorol. Soc., 21, 215229.Google Scholar
Dunstone, N. J., and Coauthors, 2013: Anthropogenic aerosol forcing of Atlantic tropical storms. Nat. Geosci., 6, 534539, doi:10.1038/ngeo1854.Google Scholar
Elsner, J. B., and Kara, A. B., 1999: Hurricanes of the North Atlantic. Oxford University Press.Google Scholar
Elsner, J. B., Jagger, T., and Niu, X.-F., 2000: Changes in the rates of North Atlantic major hurricane activity during the 20th century. Geophys. Res. Lett., 27, 17431746.Google Scholar
Elsner, J. B., Kossin, J. P., and Jagger, T. H., 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455(7209), 9295.CrossRefGoogle ScholarPubMed
Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155.Google Scholar
Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci., 110(30), 1221912224, doi:10.1073/pnas.1301293110.CrossRefGoogle Scholar
Emanuel, K. A., 2017: Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci., USA, 114, 1268112684.Google Scholar
Emanuel, K. A., and Nolan, D. S., 2004: Tropical cyclone activity and global climate. Preprint, 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL. Amer. Meteorol. Soc., 240–241.Google Scholar
Evans, J. L., and Allan, R., 1992: El Niño/Southern modification to the structure of the monsoon and tropical cyclone activity in the Australian region. Int. J. Climatol., 12, 611623.Google Scholar
Folland, C. K., Renwick, J. A., Salinger, M. J., and Mullan, A. B., 2002: Relative influences of the interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys. Res. Lett., 29(13), 1643, doi:10.1029/2001GL014201.Google Scholar
Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314.Google Scholar
Frank, W. M., 1982: Large-scale characteristics of tropical cyclones. Mon. Wea. Rev., 110, 577586.Google Scholar
Frank, W. M., and Roundy, P. E., 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417.Google Scholar
Fu, B., Li, T., Peng, M. S., and Weng, F., 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763780.Google Scholar
Fu, D., Chang, P., and Patricola, C. M., 2017: Intrabasin variability of East Pacific tropical cyclones during ENSO regulated by central American gap winds. Sci. Rep., 7, 1658, doi:10.1038/s41598-017-01962-3.Google Scholar
Gao, S., Zhu, L., Zhang, W., and Chen, Z., 2018: Strong modulation of the Pacific Meridional Mode on the occurrence of intense tropical cyclones over the western North Pacific. J. Climate, 31, 77397749.CrossRefGoogle Scholar
Ge, X., Li, T., Zhang, S., and Peng, M. S., 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos. Sci. Lett., 11, 4650.Google Scholar
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteorol. Soc., 106, 447462.Google Scholar
Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., and Gray, W. M., 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479.Google Scholar
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. In Meteorology over Tropical Oceans, Shaw, D. B., Ed. Royal Meteorological Society, 155218.Google Scholar
Gray, W. M., 1984: Atlantic seasonal hurricane frequency: Part I: El Nino and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668.Google Scholar
Gray, W. M., 1993: Seasonal forecasting. Chapter 5 in Global Guide to Tropical Cyclone Forecasting. World Meteorological Organization, WMO/TD-No. 560.Google Scholar
Gray, W. M., Sheaffer, J. D., and Knaff, J. A., 1992a: Hypothesized mechanism for stratospheric QBO influence on ENSO variability. Geophys. Res. Lett., 19(2), 107110.CrossRefGoogle Scholar
Gray, W. M., Sheaffer, J. D., and Knaff, J. A., 1992b: Influence of the stratospheric QBO on ENSO variability. J. Meteorol. Soc. Japan, 70, 975995.Google Scholar
Gualdi, S., Scoccimarro, E., and Navarra, A., 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.Google Scholar
Haarsma, R. J., Mitchell, J. F. B., and Senior, C. A., 1993: Tropical disturbances in a GCM. Clim. Dyn., 8, 247257.Google Scholar
Hall, J. D., Matthews, A. J., and Karoly, D. J., 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian Oscillation. Mon. Wea. Rev., 129, 29702982.Google Scholar
Harr, P. A., and Elsberry, R. L., 1995a: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 12251246.Google Scholar
Harr, P. A., and Elsberry, R. L., 1995b: Large-scale circulation variability over the tropical western North Pacific. Part II: Persistence and transition characteristics. Mon. Wea. Rev., 123, 12471268.Google Scholar
Hastings, P. A., 1990: Southern Oscillation influences on tropical cyclone activity in the Australian/Southwest Pacific region. Int. J. Climatol., 10, 291298.CrossRefGoogle Scholar
He, H., and Coauthors, 2015: Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Clim. Dyn., 45, 33173329.Google Scholar
Ho, C.-H., Kim, H. S., Jeong, J. H., and Son, S. W., 2009: Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific. Geophys. Res. Lett., 36, L06702.Google Scholar
Holbach, H. M., and Bourassa, M. A., 2014: The effects of gap-wind-induced vorticity, the monsoon trough, and the ITCZ on east Pacific tropical cyclogenesis. Mon. Wea. Rev., 142, 13121325.CrossRefGoogle Scholar
Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteorol. Atmos. Phys., 56, 5779.Google Scholar
Holland, G. J., and Bruyere, C., 2014: Recent intense hurricane response to global climate change. Clim. Dyn., 42, 617627.Google Scholar
Hong, C.-C., Lee, M.-Y., Hsu, H.-H., and Tseng, W.-L., 2018: Distinct influences of the ENSO-like and PMM-like SST anomalies on the mean TC genesis location in the western North Pacific: The 2015 summer as an extreme example. J. Climate, 31, 30493059.Google Scholar
Huang, P., Chou, C., and Huang, R., 2011: Seasonal modulation of tropical intraseasonal oscillations on tropical cyclone geneses in the western North Pacific. J. Climate, 24, 63396352.Google Scholar
Hsu, P.-C., Chu, P.-S., Murakami, H., and Zhao, X., 2014: An abrupt decrease in the late-season typhoon activity over the western North Pacific. J. Climate, 27, 42964312.Google Scholar
Huo, L., Guo, P., Hameed, S. N., and Jin, D., 2015: The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys. Res. Lett., 42, 23782384.CrossRefGoogle Scholar
Irwin, R. P. III, and Davis, R. E., 1999: The relationship between the Southern Oscillation index and tropical cyclone tracks in the eastern North Pacific. Geophys. Res. Lett., 26, 22512254, doi:10.1029/1999GL900533.Google Scholar
Jien, J. Y., Gough, W. A., and Butler, K., 2015: The influence of El Niño-Southern Oscillation on tropical cyclone activity in the eastern North Pacific basin. J. Climate, 28, 24592474.Google Scholar
Jin, C.-S., and Coauthors, 2013: Critical role of northern off-equatorial sea surface temperature forcing associated with central Pacific El Niño in more frequent tropical cyclone movements toward East Asia. J. Climate, 26, 15342545.CrossRefGoogle Scholar
Jin, F.-F., Boucharel, J., and Lin, I.-I., 2014: Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature, 516, 8285.Google Scholar
Karnauskas, K. B., 2006: The African meridional OLR contrast as a diagnostic for Atlantic tropical cyclone activity and implications for predictability. Geophys. Res. Lett., 33, L06809.Google Scholar
Karnauskas, K. B., and Li, L., 2016: Predicting Atlantic seasonal hurricane activity using outgoing longwave radiation over Africa. Geophys. Res. Lett., 43, 71527159.Google Scholar
Kim, H.-M., Webster, P. J., and Curry, J. A., 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780.Google Scholar
Kim, H.-M., Webster, P. J., and Curry, J. A., 2011a: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849.Google Scholar
Kim, H.-S., Kim, J.-H., Ho, C.-H., and Chu, P.-S., 2011b: Pattern classification of typhoon tracks using the fuzzy c-Means clustering method. J. Climate, 24, 488508.Google Scholar
Kim, J.-H., Ho, C.-H., Kim, H.-S., Sui, C.-H., and Park, S. K., 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden-Julian Oscillation. J. Climate, 21, 11711191.Google Scholar
Kim, S.-H., Moon, I.-J., and Chu, P.-S., 2020: An increase in global trends of tropical cyclone translation speed since 1982 and its physical causes. Environ. Res. Lett., 15, 094084.CrossRefGoogle Scholar
Klotzbach, P. J. 2010: On the Madden–Julian Oscillation-Atlantic hurricane relationship. J. Climate, 23, 282293.Google Scholar
Klotzbach, P. J., 2014: The Madden–Julian Oscillation’s impacts on worldwide tropical cyclone activity. J. Climate, 27, 23172330.Google Scholar
Klotzbach, P. J., and Blake, E. S., 2013: North-central Pacific tropical cyclones: Impact of El Niño-Southern Oscillation and the Madden–Julian oscillation. J. Climate, 26, 77207733.Google Scholar
Klotzbach, P. J., and Gray, W. M., 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 39293935.Google Scholar
Klotzbach, P. J., and Landsea, C., 2015: Extremely intense hurricanes: Revisiting Webster et al. (2005) after 10 years. J. Climate, 28, 76217629.Google Scholar
Klotzbach, P. J., Bowen, S. G., Pielke Jr, R.., and Bell, M., 2018: Continental U.S. hurricane landfall frequency and associated damage: Observations and future risks. Bull. Amer. Meteorol. Soc., 99, 13591376.CrossRefGoogle Scholar
Knaff, J. A., 1997: Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate, 10, 789804.Google Scholar
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E., 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708.Google Scholar
Knutson, T., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163.Google Scholar
Knutson, T., and Coauthors, 2019: Tropical cyclones and climate change assessment. Part I: Detection and attribution. Bull. Amer. Meteorol. Soc., 100, 19872007.Google Scholar
Kossin, J. P., 2018: A global slowdown of tropical cyclone translation speed. Nature, 558, 104108.Google Scholar
Kossin, J. P., and Vimont, D. J., 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteorol. Soc., 88, 17671782.Google Scholar
Kossin, J. P., Olander, T. L., and Knapp, K. R., 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976.Google Scholar
Kossin, J. P., Emanuel, K. A., and Vecchi, G. A., 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352.Google Scholar
Kossin, J. P., Knapp, K., Olander, T., and Velden, C., 2020: Global Increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci., 117, 1197511980.Google Scholar
Kuleshov, Y., Qi, L., Fawcett, R., and Jones, D., 2008: On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys. Res. Lett., 35, L14S08, doi:10.1029/2007GL032983.Google Scholar
Kug, J. S., Jin, F.-F., and An, S.-I., 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.CrossRefGoogle Scholar
Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157.Google Scholar
Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636651.Google Scholar
Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713.Google Scholar
Landsea, C. W., and Franklin, J. L., 2013: Atlantic hurricane data-base uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592.Google Scholar
Landsea, C. W., Harper, B. A., Horaru, K., and Knaff, J. A., 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452454.Google Scholar
Lanzante, J. R., 2019: Uncertainties in tropical-cyclone translation speed. Nature, 570, E6E15.Google Scholar
Larson, S., and Coauthors, 2012: Impacts of non-canonical El Niño patterns on Atlantic hurricane activity. Geophys. Res. Lett., 39, L14706.Google Scholar
Lau, K.-M., and Lau, N.-C., 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539.Google Scholar
Lee, S.-K., Wang, C., and Enfield, D. B., 2010: On the impact of central Pacific warming events on Atlantic tropical cyclone activity. Geophys. Res. Lett., 37, L17702.Google Scholar
Lee, T., and McPhaden, M. J., 2010: Increasing intensity of El Niño in the central equatorial Pacific. Geophys. Res. Lett., 37, L14603.Google Scholar
Li, R. C. Y., and Zhou, W., 2012: Changes in Western Pacific tropical cyclones associated with the El Niño-Southern Oscillation cycle. J. Climate, 25, 58645878.Google Scholar
Li, R. C. Y., and Zhou, W., 2013a: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 29042918.Google Scholar
Li, R. C. Y., and Zhou, W., 2013b: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 29192930.Google Scholar
Liang, A., Oey, L., Huang, S., and Chou, S., 2017: Long-term trends of typhoon-induced rainfall over Taiwan: In-situ evidence of poleward shift of typhoons in western North Pacific in recent decades. J. Geophys. Res. Atmos., 122, 27502765.Google Scholar
Liebmann, B., Hendon, H. H., and Glick, J. D., 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian Oscillation. J. Meteorol. Soc. Japan, 72, 401412.Google Scholar
Lin, C. Y., et al., 2011: Mesoscale processes for super heavy rainfall of Typhoon Morakot (2009) over Southern Taiwan. Atmos. Chem. Phys., 11, 345361.Google Scholar
Lin, I.-I., Pun, I.-F., and Lien, C.-C., 2014: “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett., 41(23), 8547–8553, doi:10.1002/2014GL061281.Google Scholar
Liu, K. S., and Chan, J. C. L., 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 44644476.Google Scholar
Liu, K. S., and Chan, J. C. L., 2020: Interdecadal variation of frequencies of tropical cyclones, intense typhoons and their ratio over the western North Pacific. Int. J. Climatol., 40, 3954–3970.Google Scholar
Lu, B., Chu, P.-S., Kim, S.-H., and Karamperidou, C., 2020: Hawaiian regional climate variability during two types of El Niño. J. Climate, 33, 99299943.Google Scholar
Maloney, E. D., and Hartmann, D. L., 2000a: Modulation of Eastern North Pacific hurricanes by the Madden–Julian Oscillation. J. Climate, 13, 14511460.Google Scholar
Maloney, E. D., and Hartmann, D. L., 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian Oscillation. Science, 287, 20022004.Google Scholar
Maloney, E. D., and Hartmann, D. L., 2001: The Madden–Julian Oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558.Google Scholar
Mann, M. E., Emanuel, K. A., 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233244.Google Scholar
Mann, M. E., Steinman, B. A., Brouilette, D. J., and Miller, S. K., 2021: Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science, 371, 10141019.Google Scholar
Mao, J. Y., and Wu, G., 2010: Intraseasonal modulation of tropical cyclogenesis in the western North Pacific: A case study. Theor. Appl. Climatol., 100, 397411.Google Scholar
McBride, J. L., 1995: Tropical cyclone formation. In Global Perspectives on Tropical Cyclones. Elsberry, R. L., Ed. World Meteorological Organization, WMO/TD-No. 693, 63105.Google Scholar
Mei, W., and Xie, S.-P., 2016: Intensification of land falling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci., 9, 753757.Google Scholar
Molinari, J., Vollaro, D., Skubis, S., and Dickinson, M., 2000: Origins and mechanisms of Eastern North Pacific tropical cyclogenesis: A case study. Mon. Wea. Rev., 128, 125139.Google Scholar
Moon, I.-J., Kim, S. H., and Chan, J. C. L., 2019: Climate change and tropical cyclone trend. Nature, 570, E3E5.Google Scholar
Murakami, H., and Coauthors, 2017: Dominant role of subtropical Pacific warming in extreme eastern Pacific hurricane seasons: 2015 and the future. J. Climate, 30, 243264.Google Scholar
Murakami, H., and Coauthors, 2018: Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science, 362, 794799.Google Scholar
Murakami, H., and Coauthors, 2020: Detected climatic change in global distribution of tropical cyclones. Proc. Natl. Acad. Sci., 117, 1070610714.Google Scholar
Nicholls, N., 1979: A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon. Wea. Rev., 107, 12211224.Google Scholar
Nicholls, N., 1985: Predictability of interannual variations of Australian seasonal tropical cyclone activity. Mon. Wea. Rev., 113, 11441149.Google Scholar
Nugent, A., and Coauthors, 2020: Fire and rain: The legacy of Hurricane Lane in Hawaii. Bull. Amer. Meteorol. Soc., 101, 954967.Google Scholar
O’Brien, J. J., Richards, T. S., and Davis, A. C., 1996: The effect of E1Niño on U.S. landfalling hurricanes. Bull. Amer. Meteorol. Soc., 77, 773774.Google Scholar
Okun, H., 2021: Cluster analysis of eastern and central North Pacific tropical cyclones and the influences of ENSO and MJO. M.S. thesis, Department of Atmospheric Sciences, University of Hawaii, 45 pp.Google Scholar
Park, D.-S., Ho, C.-H., and Kim, J.-H., 2014: Growing threat of intense tropical cyclones to East Asia over the period 1977-2010. Environ. Res. Lett., 9, 014008, doi:10.1088/1748.9326/9/1/014008.Google Scholar
Patricola, C. M., Chang, P., and Saravanan, R., 2016: Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nat. Geosci., 9, 155160.Google Scholar
Patricola, C. M., and Coauthors, 2018a: The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Climate, 31, 53955416.Google Scholar
Patricola, C. M., Saravanan, R., and Chang, P., 2018b: The response of Atlantic tropical cyclones to suppression of African easterly waves. Geophys. Res. Lett., 45, 471479.CrossRefGoogle Scholar
Pausata, F. S. R., and Camargo, S. J., 2019: Tropical cyclone activity affected by volcanically induced ITCZ shifts. Proc. Natl. Acad. Sci., 116, 77327737.Google Scholar
Pielke, R. A. Jr., and Landsea, C. W., 1999: La Nina, E1 Niño, and Atlantic hurricane damages in the United States. Bull. Amer. Meteorol. Soc., 80, 20272033.Google Scholar
Ralph, T. U., and Gough, W. A., 2009: The influence of sea surface temperature on Eastern North Pacific tropical cyclone activity. Theor. Appl. Climatol., 95, 257264, doi:10.1007/s00704-008-0004-x.Google Scholar
Ramsay, H. S., Camargo, S. J., and Kim, D., 2012: Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Clim. Dyn., 39, 897917.Google Scholar
Rappaport, E. N., and Coauthors, 1998: Eastern North Pacific hurricane season of 1995. Mon. Wea. Rev., 126, 11521162.Google Scholar
Revell, C. G., and Goulter, S. W., 1986: South Pacific tropical cyclones and the Southern Oscillation. Mon. Wea. Rev., 114, 11381145.Google Scholar
Ritchie, E. A., and Holland, G. J., 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043.Google Scholar
Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, doi:10.1029/2004GL019448.Google Scholar
Romero-Centeno, R., Zavala-Hidalgo, J., Gallegos, A., and O’Brien, J. J., 2003: Isthmus of Tehuantepec wind climatology and ENSO signal. J. Climate, 16, 26282639.2.0.CO;2>CrossRefGoogle Scholar
Russell, J. O., Aiyyer, A., White, J. D., and Hannah, W., 2017: Revisiting the connection between African easterly waves and Atlantic tropical cyclogenesis. Geophys. Res. Lett., 44, 587595.Google Scholar
Sadler, J., 1983: Tropical Pacific atmospheric anomalies during 1982–83. In Proceedings of the 1982/83 El Niño/Southern Oscillation Workshop. Miami, NOAA Atlantic Oceanographic and Meteorological Laboratory, 110.Google Scholar
Saunders, M. A., Chandler, R. E., Merchant, C. J., and Robert, F. P., 2000: Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall. Geophys. Res. Lett., 27, 1147.Google Scholar
Schreck, C. J., and Molinari, J., 2009: A case study of an outbreak of twin tropical cyclones. Mon. Wea. Rev., 137, 863875.Google Scholar
Schreck, C. J., Molinari, J., and Mohr, K. I., 2011: Attributing tropical cyclogenesis to equatorial waves in the western North Pacific. J. Atmos. Sci., 68, 195209.Google Scholar
Schreck, C. J., Molinari, J., and Aiyyer, A., 2012: A global view of equatorial waves and tropical cyclogenesis. Mon. Wea. Rev., 140, 774788.Google Scholar
Schreck, C. J., Knapp, K. R., and Kossin, J. P., 2014: The impact of best track discrepancies and on global tropical cyclone climatologies using IBTrACS. Mon. Wea. Rev., 142, 38813899.Google Scholar
Shan, K., and Yu, X., 2020: Interdecadal variability of tropical cyclone genesis frequency in western North Pacific and South Pacific Ocean basins. Environ. Res. Lett., 15, 064030.Google Scholar
Shan, K., and Yu, X., 2021: Variability of tropical cyclone landfalls in China. J. Climate, 34, 92359247.Google Scholar
Sobel, A. H., and Bretherton, C. S., 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 31063127.Google Scholar
Song, J., Klotzbach, P. J., and Duan, Y., 2020: Differences in western North Pacific tropical cyclone activity among three El Niño phases. J. Climate, 33, 79838002.Google Scholar
Sugi, M., Noda, A., and Sato, N., 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteorol. Soc. Japan, 80, 249272.CrossRefGoogle Scholar
Takahashi, C., Watanabe, M., and Mori, M., 2017: Significant aerosol influence on the recent decadal decrease in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 44, 94969504.Google Scholar
Timmermann, A., and Coauthors, 2018: El Niño-Southern Oscillation complexity. Nature, 559, 535545.Google Scholar
Tu, J.-Y., Chou, C., and Chu, P.-S., 2009: The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific-East Asian climate change. J. Climate, 22, 36173628.Google Scholar
Vecchi, G. A., and Soden, B. J., 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661071.Google Scholar
Vecchi, G. A., and Soden, B. J., 2007b: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.Google Scholar
Vecchi, G. A., et al., 2013: Multiyear predictions of North Atlantic hurricane frequency: Promise and limitations. J. Climate, 26, 55375557.Google Scholar
Ventrice, M. J., Thorncroft, C. D., and Schreck, C. J., 2012: Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon. Wea. Rev., 140, 21982214.Google Scholar
Vimont, D. J., and Kossin, J. P., 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709.Google Scholar
Vincent, D. G., 1994: The South Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 19491970.Google Scholar
Walsh, K. J. E., McInnes, K., and McBride, J. L., 2012: Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific – A regional assessment. Glob. Planet. Change, 80–81, 149164.Google Scholar
Walsh, K. J. E., and Coauthors, 2015: Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteorol. Soc., 96, 9971017.Google Scholar
Wang, B., and Chan, J. C. L., 2002: How strong ENSO events affect tropical storm activity over the western North Pacific? J. Climate, 15, 16431658.Google Scholar
Wang, C., Kucharski, F., Barimalala, R., and Braccco, A., 2009: Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteorol. Z., 18, 445454.Google Scholar
Wang, X., Liu, H., and Foltz, G. R., 2017: Persistent influence of tropical North Atlantic wintertime sea surface temperature on the subsequent Atlantic hurricane season. Geophys. Res. Lett., 44, 79277935.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R., 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846.Google Scholar
Weinkle, J., and Coauthors, 2018: Normalized hurricane damage in the continental United States 1900-2017. Nat. Sustain., 1, 808813.Google Scholar
Wheeler, M. C., and Hendon, H. H., 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.Google Scholar
Whitney, L. D., and Hobgood, J., 1997: The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate, 10, 29212930.Google Scholar
Wu, C. C., 2013: Typhoon Morakot (2009): Key findings from the journal TAO for improving prediction of extreme rains at landfall. Bull. Amer. Meteorol. Soc., 94, 155160.Google Scholar
Wu, L., Wen, Z., Huang, R., and Wu, R., 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140150.Google Scholar
Wu, L., Zhang, H., Chen, J.-M., and Feng, T., 2018: Impact of two types of El Niño on tropical cyclones over the western North Pacific: Sensitivity to location and intensity of Pacific warming. J. Climate, 31, 17251742.Google Scholar
Wu, L.-G., and Wang, B., 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 16861698.Google Scholar
Wu, M. C., Chang, W. L., and Leung, W. M., 2004: Impacts of El Niño–Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J. Climate, 17, 14191428.Google Scholar
Wu, P., and Chu, P.-S., 2007: Characteristics of tropical cyclone activity over the eastern North Pacific: The extremely active 1992 and the inactive 1977. Tellus, 59A, 444454.Google Scholar
Xie, B., and Zhang, F., 2012: Impacts of typhoon track and island topography on the heavy rainfalls in Taiwan associated with Morakot (2009). Mon. Wea. Rev., 140, 33793394.Google Scholar
Xie, S.-P., and Coauthors, 2009: Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate, 22, 730747.Google Scholar
Yamaguchi, M., and Coauthors, 2020: Global warming changes tropical cyclone translation speed. Nat. Commun., 11, 47.Google Scholar
Yan, X., Zhang, R., and Knutson, T. R., 2017: The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nat. Commun., 8, 1695.Google Scholar
Yeh, S.-W., and Coauthors, 2009: El Niño in a changing climate, Nature, 461, 511514, doi:10.1038/nature08316.Google Scholar
Yoshida, R., and Ishikawa, H., 2013: Environmental factors contributing to tropical cyclone genesis in the Western North Pacific. Mon. Wea. Rev., 141, 451467.Google Scholar
You, L., Gao, J., Lin, H., and Chen, S., 2019: Impact of the intra-seasonal oscillation on tropical cyclone genesis over the western North Pacific. Int. J. Climatol., 39, 19691984.Google Scholar
Yu, C. K., and Cheng, L.-W., 2013: Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot (2009). J. Atmos. Sci., 70, 28942915.Google Scholar
Yu, J., Li, T., Tan, Z., and Zhu, Z., 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Clim. Dyn., 46, 865877.Google Scholar
Yu, J.-Y., and Kim, S. T., 2013: Identifying the types of major El Niño events since 1870. Int. J. Climatol., 33, 21052112.Google Scholar
Zhan, R., Wang, Y., and Lei, X., 2011: Contribution of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521.Google Scholar
Zhan, R., Wang, Y., and Wen, M., 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the norwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 24082415.Google Scholar
Zhan, R., Wang, Y., and Zhao, J., 2017: Intensified mega-ENSO has increased the proportion of intense tropical cyclones over the western Northwest Pacific since the late 1970s. Geophys. Res. Lett., 44, 1195911966.Google Scholar
Zhang, G., Murakami, H., Knutson, T. R., Mizuta, R., and Yoshida, K., 2020: Tropical cyclone motion in a changing climate. Sci. Adv., 6(17), eaaz7610.Google Scholar
Zhang, R., and Delworth, T. L., 2006: Impact of Atlantic multidecadal oscillation on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712.Google Scholar
Zhang, W., Graf, H.-F., Leung, Y., and Herzog, M., 2012: Different El Niño types and tropical cyclone landfall in East Asia. J. Climate, 25, 65106523.Google Scholar
Zhang, W., and Coauthors, 2016: The Pacific meridional mode and the occurrence of tropical cyclones in the western North Pacific. J. Climate, 29, 381398.Google Scholar
Zhang, W., and Coauthors, 2018: Dominant role of Atlantic multidecadal oscillation in the recent decadal changes in western North pacific tropical cyclone activity. Geophys. Res. Lett., 45, 354362.Google Scholar
Zhao, H., Klotzbach, P. J., and Chen, S., 2020: Dominant influence of ENSO-like and global sea surface temperature patterns on changes in prevailing boreal summer tropical cyclone tracks over the western North Pacific. J. Climate, 33, 95519565.Google Scholar
Zhao, J., Zhan, R., Wang, Y., and Xu, H, 2018: Contribution of the interdecadal Pacific oscillation to the recent abrupt decrease in tropical cyclone frequency over the western North Pacific since 1998. J. Climate, 31, 82118224.CrossRefGoogle Scholar
Zhao, M., and Coauthors, 2013: Response of global tropical cyclone frequency to a doubling of CO2 and a uniform SST warming: A multi-model intercomparison. US CLIVAR Hurricane Workshop, Princeton, NJ, Geophysical Fluid Dynamics Laboratory [Online]. Available at www.usclivar.org/sites/default/files/meetings/Zhao_Ming_Hurricane2013.pdfGoogle Scholar
Zhao, X., and Chu, P.-S., 2006: Bayesian multiple changepoint analysis of hurricane activity in the eastern North Pacific: A Markov Chain Monte Carlo approach. J. Climate, 19, 564578.Google Scholar
Zwiers, F. W., 1990: The effect of serial correlation on statistical inferences made with resampling procedures. J. Climate, 3, 14521461.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×