Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-16T15:09:54.870Z Has data issue: false hasContentIssue false

7 - Future Tropical Cyclone Projections and Uncertainty Estimates

Published online by Cambridge University Press:  17 February 2022

Pao-Shin Chu
Affiliation:
University of Hawaii, Manoa
Hiroyuki Murakami
Affiliation:
UCAR
Get access

Summary

Tropical cyclones exert great impact on society. Therefore, for a long time an important scientific question has been whether changing the climate system affects tropical cyclone activity. Recent studies reported that global mean temperature has been rising since the mid-twentieth century, and the temperature rise is attributable to increases in emissions of greenhouse gasses (Bindoff et al., 2013; IPCC, 2013). An intuitive hypothesis under the warming trend at a global scale is that the mean global number of tropical cyclones would increase and mean storm intensity would be stronger because tropical cyclone activity could be favorable in a warmer environment. However, the science community has not yet reached a robust consensus on whether this hypothesis is true or not, especially for the effect of global warming on global tropical cyclone numbers (IPCC, 2013).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthes, R. A., Corell, R. W., Holland, G., Hurrell, J. W., MacCracken, M. C., and Trenberth, K. E., 2006: Hurricanes and global warming–potential linkages and consequences. Bull. Amer. Meteorol. Soc., 87, 623628.Google Scholar
Bell, G. D., and Chelliah, M., 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19, 590612.CrossRefGoogle Scholar
Bender, M. A., and Ginis, I., 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946.2.0.CO;2>CrossRefGoogle Scholar
Bender, M. A., Knutson, T. R., Tuleya, R. E., Sirutis, J. J., Vecchi, G. A., Garner, S. T., and Held, I. M., 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic Hurricanes. Science, 327, 454458.Google Scholar
Bengtsson, L., Botzet, M., and Esch, M., 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A, 175196.Google Scholar
Bengtsson, L., Botzet, M., and Esch, M., 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 5773.CrossRefGoogle Scholar
Bengtsson, L., Hodges, K. I., Esch, M., Keenlyside, N., Kornblueh, L., Luo, J.-J., and Yamagata, T., 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561.CrossRefGoogle Scholar
Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F., Qin, D., Plattner, G.-K., et al., Eds., Cambridge University Press, 867952.Google Scholar
Bister, M., and Emanuel, K. A., 1998: Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys., 52, 233240.CrossRefGoogle Scholar
Broccoli, A. J., and Manabe, S., 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17, 19171920.Google Scholar
Bryan, G., 2008: On the computation of pseudoadiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136, 52395245.CrossRefGoogle Scholar
Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models, J. Climate, 26, 98809902, doi:10.1175/JCLI-D-12–00549.1.Google Scholar
Chauvin, F., Royer, J.-F., and Deque, M., 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climate at high resolution. Clim. Dyn., 24, 377399.Google Scholar
Chu, J.-H., Sampson, C. R., Levin, A. S., and Fukada, E., 2002: The Joint Typhoon Warning Center tropical cyclone best tracks 1945–2000. Joint Typhoon Warning Center Rep., Pearl Harbor, HI. Available at: www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html.Google Scholar
Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137, 553597.Google Scholar
Delworth, T. L., and Mann, M. E., 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn., 16, 661676.Google Scholar
Dvorak, V. F., 1973: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA Technical Memorandum NESS, 45.Google Scholar
Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Technical Report NESDIS, 11.Google Scholar
Emanuel, K., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802.Google Scholar
Emanuel, K., Sundararajan, R., and Williams, J., 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteorol. Soc., 89, 347367.Google Scholar
Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585604.Google Scholar
Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688.CrossRefGoogle ScholarPubMed
Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Sys., 2, 112.Google Scholar
Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. PNAS, 110, 1221912224.Google Scholar
Emanuel, K., 2021: Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models. J. Climate, 34, 5770.CrossRefGoogle Scholar
Evans, J. L., 1992: Comment on “Can existing climate models be used to study anthropogenic changes in tropical cyclone climate”. Geophys. Res. Lett., 19, 15231524.Google Scholar
Frank, W. M., and Young, G. S., 2007: The interannual variability of tropical cyclones. Mon. Wea. Rev., 135, 35873598.Google Scholar
Fu, B., Li, T., Peng, M., and Weng, F., 2007: Analysis of tropical cyclone genesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763780.Google Scholar
Gray, W., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.2.0.CO;2>CrossRefGoogle Scholar
Gualdi, S., Scoccimarro, E., and Navarra, A., 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 20, 52045228.Google Scholar
Haarsma, R. J., Mitchell, J. F. B., and Senior, C. A., 1993: Tropical disturbances in a GCM. Clim. Dyn., 8, 247257.CrossRefGoogle Scholar
Hasegawa, A., and Emori, S., 2005: Tropical cyclones and associated precipitation over the western North Pacific: T106 atmospheric GCM simulation for present day and doubled CO2 climate. SOLA, 1, 145148.Google Scholar
Held, I. M., and Soden, B. J., 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.Google Scholar
Henderson-Sellers, A., and Coauthors, 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteorol. Soc., 79, 1938.2.0.CO;2>CrossRefGoogle Scholar
Holland, G. J., and Webster, P. J., 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Philos. Trans. R. Soc. A, 365, 26952716.Google Scholar
Holton, J. R., 1990: On the global exchange of mass between the stratosphere and the troposphere. J. Atmos. Sci., 47, 392395.Google Scholar
Hoyos, C. D., Agudelo, P. A., Webster, P. J., and Acurry, J., 2006: Deconvolution of the factors contributing to the increase in global hurricane intensity. Science, 312, 9497.Google Scholar
IPCC, 1990: Climate Change: The IPCC Scientific Assessment. Houghton, J. T., Jenkins, G. J. and Ephraums, J. J., Eds. Cambridge University Press.Google Scholar
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, doi:10.1017/CBO9781107415324.Google Scholar
Klotzbach, P. J., and Landsea, C. W., 2015: Extremely intense hurricanes: Revisiting Webster et al. (2005) after 10 years. J. Climate, 28, 76217629, doi:10.1175/JCLI-D-15-0188.1.Google Scholar
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neuman, C. J., 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteorol. Soc., 91, 363376.CrossRefGoogle Scholar
Knutson, T. R., and Manabe, S., 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Climate, 8, 21812199.Google Scholar
Knutson, T. R., and Tuleya, R. E., 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 34773495.2.0.CO;2>CrossRefGoogle Scholar
Knutson, T. R., Tuleya, R. E., and Kurihara, Y., 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 10181020.CrossRefGoogle Scholar
Knutson, T. R., Tuleya, R. E., Shen, W., and Ginis, I., 2001: Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Climate, 14, 24582468.Google Scholar
Knutson, T. R., Sirutis, J. J., Garner, S. T., Vecchi, G. A., and Held, I., 2008: Simulated reduction of Atlantic hurricane frequency under twenty-first-century warming condition. Nat. Geosci., 1, 359364.Google Scholar
Knutson, T. R., and Coauthors, 2010a: Tropical cyclones and climate change. Nat. Geosci., 3, 157163.Google Scholar
Knutson, T. R., Landsea, C., and Emanuel, K., 2010b: Tropical cyclones and climate change: A review. In Global Perspectives on Tropical Cyclones, Chan, J. C. L. and Kepert, J. D., Eds. World Scientific, 243284.CrossRefGoogle Scholar
Knutson, T. R., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteorol. Soc., 101, E303E322.Google Scholar
Kossin, J. P., Olander, T. L., and Knapp, K. R., 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, doi:10.1175/JCLI-D-13-00262.1.Google Scholar
Kuleshov, Y., and Coauthors, 2010: Trends in tropical cyclones in the South Indian Ocean and the South Pacific Ocean. J. Geophys. Res., 115, D01101, doi:10.1029/2009JD012372.CrossRefGoogle Scholar
Landsea, C. W., 1997: Comments on “Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?” Tellus, 49A, 622623.Google Scholar
Landsea, C. W., Harper, B. A., Hoarau, K., and Knaff, J. A., 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452453, doi:10.1126/science.1128448.Google Scholar
Lau, K.-H., and Lau, N.-C., 1990: Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 118, 18881913, doi:10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.Google Scholar
Lavender, S. L., and Walsh, K. J. E., 2011: Dynamically downscaled simulations of Australian region tropical cyclones in current and future climates. Geophys. Res. Lett., 38, L10705., doi:10.1029/2011GL047499.Google Scholar
Lee, C.-Y., Tippett, M. K., Sobel, A. H., and Camargo, S. J., 2018: An environmentally forced tropical cyclone hazard model. J. Adv. Model. Earth Syst., 10, 233241.Google Scholar
Lenssen, N., Schmidt, G., Hansen, J., Menne, M., Persin, A., Ruedy, R., and Zyss, D., 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124(12), 63076326, doi:10.1029/2018JD029522.Google Scholar
Leslie, L. M., Karoly, D. J., Leplastrier, M., and Buckley, B. W., 2007: Variability of tropical cyclones over the southwest Pacific Ocean using a high-resolution climate model. Meteorol. Atmos. Phys., 97, 171180.Google Scholar
Li, T., Fu, B., Ge, X., Wang, B., and Peng, M., 2003: Satellite data analysis and numerical simulation of tropical cyclone formation. Geophys. Res. Lett., 30, 21222126.Google Scholar
Li, T., Kwon, M., Zhao, M., Kug, J.-J., Luo, J.-J., and Yu, W., 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, doi:10.1029/2010GL045124.CrossRefGoogle Scholar
Lighthill, J., Holland, G., Gray, W., Landsea, C., Craig, G., Evans, J., Kurihara, Y., and Guard, C., 1994: Global climate change and tropical cyclones. Bull. Amer. Meteorol. Soc., 75, 21472157.Google Scholar
Lin, I.-I., Pun, I.-F., and Wu, C.-C., 2009: Upper-ocean thermal structure and the western North Pacific category-5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757.Google Scholar
Lloyd, I. D., and Vecchi, G. A., 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153.Google Scholar
Lupo, A. R., Latham, T. K., Magill, T., Clark, J. V., Melick, C. J., and Market, P. S., 2008: The interannual variability of hurricane activity in the Atlantic and East Pacific regions. Nat. Wea. Dig., 32(2), 119135.Google Scholar
Mann, M. E., and Emanuel, K. A., 2006: Atlantic hurricane trends linked to climate change. Eos Trans. AGU, 87(24), 233241.Google Scholar
Mann, M. E., Emanuel, K. A., Holland, G. J., and Webster, P. J., 2007a: Atlantic tropical cyclones revisited. Eos Trans. AGU, 88(36), 349350.Google Scholar
Mann, M. E., Sabbatelli, T. A., and Neu, U., 2007b: Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophys. Res. Lett., 34, L22707.Google Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C., 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc., 78, 10691079.2.0.CO;2>CrossRefGoogle Scholar
Marks, D. G., 1992: The beta and advection model for hurricane track forecasting. NOAA Technical Memorandum NWS NMC 70, National Meteorological Center, Camp Spring, MD.Google Scholar
McBride, J., and Zehr, R., 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151.Google Scholar
McDonald, R. E., Bleaken, D. G., Cresswell, D. R., Pope, V. D., and Senior, C. A., 2005: Tropical storms: Representation and diagnosis in climate models and the impacts of climate change. Clim. Dyn., 25, 1936.Google Scholar
Mitchell, J. F. B., and Ingram, W. J., 1992: Carbon dioxide and climate: Mechanisms of changes in cloud. J. Climate, 5, 521.2.0.CO;2>CrossRefGoogle Scholar
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D., 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res. Atmos., 117, D08101, doi:10.1029/2011JD017187.CrossRefGoogle Scholar
Murakami, H., and Sugi, M., 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376.Google Scholar
Murakami, H., Mizuta, R., and Shindo, E., 2012a: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim. Dyn., 39 (9–10), 25692584, doi:10.1007/s00382-011-1223-x.Google Scholar
Murakami, H., et al., 2012b: Future changes in tropical cyclone activity projected by the new high-resolution MRI AGCM. J. Climate, 25, 32373260.Google Scholar
Murakami, H., Hsu, P.-C., Arakawa, O., and Li, T., 2014: Influence of model biases on projected future changes in tropical cyclone frequency of occurrence. J. Climate, 27, 21592181.Google Scholar
Murakami, H., et al., 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079.Google Scholar
Olander, T. L., and Velden, C. S., 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298.CrossRefGoogle Scholar
Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S., and Noda, A., 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20km-mesh global atmospheric model: Frequency and wind intensity analysis. J. Meteorol. Soc. Japan, 84, 259276.Google Scholar
Pielke, R. A., Landsea, C., Mayfield, M., Laver, J., and Pasch, R., 2005: Hurricanes and global warming. Bull. Amer. Meteorol. Soc., 11, 15711575.Google Scholar
RSMC, 2020: Regional Specialized Meteorological Centers – Tokyo Typhoon Center tropical cyclone data. Available at: www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html.Google Scholar
Satoh, T., Juri, A., Masuyama, K., Imakita, E., and Kimoto, M., 2011: Verification of downscaling framework for interannual variation of tropical cyclone in Western North Pacific. SOLA, 7, 169177.Google Scholar
Semmler, T., Varghese, S., McGrath, R., Nolan, P., Wang, S., Lynch, P., and O’Dowd, C., 2008: Regional climate model simulations of North Atlantic cyclones: Frequency and intensity changes. Clim. Res., 36, 116.CrossRefGoogle Scholar
Shade, L., and Emanuel, K., 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J. Atmos. Sci., 56, 642651.2.0.CO;2>CrossRefGoogle Scholar
Simpson, R., and Riehl, R., 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Preprints, Technical Conference on Hurricanes, Miami Beach, FL, Amer. Meteorol. Soc., D4-1–D4-10.Google Scholar
Soden, B. J., and Held, I. M., 2006: An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Climate, 19, 33543360.Google Scholar
Stowasser, M., Wang, Y., and Hamilton, K., 2007: Tropical cyclone changes in the western North Pacific in a global warming scenario. J. Climate, 20, 23782396.Google Scholar
Sugi, M., Noda, A., and Sato, N., 2002: Influence of the global warming on tropical cyclone climatology. J. Meteorol. Soc. Japan, 80, 249272.Google Scholar
Sugi, M., Murakami, H., and Yoshimura, J., 2012: On the mechanism of tropical cyclone frequency changes due to global warming. J. Meteorol. Soc. Japan, 90A, 397408.Google Scholar
Sugi, M., Yamada, Y., Yoshida, K., Mizuta, R., Nakano, M., Kodama, C., and Satoh, M., 2020: Future changes in the global frequency of tropical cyclone seeds. SOLA, 60, 7074.CrossRefGoogle Scholar
Tam, C.‐Y., and Li, T., 2006: The origin and dispersion characteristics of the observed summertime synoptic‐scale waves over the western Pacific. Mon. Wea. Rev., 134, 16301646.Google Scholar
Tang, B., and Camargo, S. J., 2014: Environmental control of tropical cyclones in CMIP5: A ventilation perspective. J. Adv. Model. Earth Syst., 6, 115128, doi:10.1002/2013MS000294.CrossRefGoogle Scholar
Tang, B., and Emanuel, K., 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830.Google Scholar
Tang, B., and Emanuel, K., 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteorol. Soc., 93, 19011912.Google Scholar
Tory, K. J., Chand, S. S., McBride, J. L., Ye, H., and Dare, R. A., 2013: Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J. Climate, 26, 99469959, doi:10.1175/JCLI-D-13-00010.1.CrossRefGoogle Scholar
Trenberth, K. E., and Shea, D. J., 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704.Google Scholar
Vecchi, G. A., and Knutson, T. R., 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21, 99609976.CrossRefGoogle Scholar
Vecchi, G. A., and Soden, B. J., 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.Google Scholar
Vecchi, G. A., et al., 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016.Google Scholar
Vecchi, G. A., and Coauthors, 2019: Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Clim. Dyn., 53 (9–10), 59996033.Google Scholar
Velden, C., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteorol. Soc., 87, 11951210.Google Scholar
Walsh, K. J. E., and Ryan, B. F., 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate, 13, 30293036.Google Scholar
Walsh, K. J. E., Nguyen, K.-C., and McGregor, J. L., 2004: Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Clim. Dyn., 22, 4756.Google Scholar
Wang, B., Yang, Y., Ding, Q.-H., Murakami, H., and Huang, F., 2010: Climate control of the global tropical storm days (1965–2008). Geophys. Res. Lett., 37, L07704.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H.-R., 2005: Changes in tropical cyclone number, duration and intensity in a warming environment. Science, 309, 18441846.Google Scholar
Wetherald, R. T., and Manabe, S., 1980: Cloud cover and climate sensitivity. J. Atmos. Sci., 37, 14851510.Google Scholar
WMO, 2006: Statement on tropical cyclones and climate change. In The 6th International Workshop on Tropical Cyclones of the World Meteorological Organization (WMO IWTC-VI). Available at: www.wmo.int/pages/prog/arep/tmrp/documents/iwtc_statement.pdf.Google Scholar
WMO, 2010: 7th International Workshop on Tropical Cyclones (ITWC-VII). Available at: www.library.wmo.int/index.php?lvl=notice_display&id=10562#.X77cW2j0lQU.Google Scholar
Wu, M.-C., Yeung, K.-H., and Chang, W.-L., 2006: Trends in western North Pacific tropical cyclone intensity. Eos, Trans. Amer. Geophys. Union, 87, 537538, doi:10.1029/2006EO480001.Google Scholar
Yamada, Y., Oouchi, K., Satoh, M., Tomita, H., and Yanase, W., 2010: Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach. Geophys. Res. Lett., 37, L07709, doi:10.1029/2010GL042518.Google Scholar
Yoshimura, J., Sugi, M., and Noda, A., 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteorol. Soc. Japan, 84, 405428.Google Scholar
Zehr, R., 1992: Tropical cyclogenesis in the western north Pacific. NOAA Tech. Rep. NOAA Technical Report NESDIS, 61, 181pp.Google Scholar
Zhao, M., Held, I., Lin, S.-J., and Vecchi, G. A., 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J. Climate, 22, 66536678.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×