Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T23:50:07.268Z Has data issue: false hasContentIssue false

Part II - Underlying biological substrates associated with cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Edited in association with
Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 145 - 228
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Amico, F., Carballedo, A., Lisiecka, D., Fagan, A. J., Boyle, G., & Frodl, T. (2012). Functional anomalies in healthy individuals with a first degree family history of major depressive disorder. Biology of Mood & Anxiety Disorders, 2(1): 1.Google Scholar
Austin, M. P., Mitchell, P., & Goodwin, G. M. (2001). Cognitive deficits in depression: Possible implications for functional neuropathology. British Journal of Psychiatry, 178(3): 200206.Google Scholar
Barch, D. M., Sheline, Y. I., Csernansky, J. G., & Snyder, A. Z. (2003). Working memory and prefrontal cortex dysfunction: Specificity to schizophrenia compared with major depression. Biological Psychiatry, 53(5): 376384.CrossRefGoogle ScholarPubMed
Beblo, T., Baumann, B., Bogerts, B., Wallesch, C.-W., & Herrmann, M. (1999). Neuropsychological correlates of major depression: A short-term follow-up. Cognitive Neuropsychiatry, 4(4): 333341.Google Scholar
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165(8): 969977.CrossRefGoogle ScholarPubMed
Berman, K. F., Doran, A. R., Pickar, D., & Weinberger, D. R. (1993). Is the mechanism of prefrontal hypofunction in depression the same as in schizophrenia? Regional cerebral blood flow during cognitive activation. British Journal of Psychiatry, 162(2): 183192.Google Scholar
Bhagwagar, Z., Cowen, P. J., Goodwin, G. M., & Harmer, C. J. (2004). Normalization of enhanced fear recognition by acute SSRI treatment in subjects with a previous history of depression. American Journal of Psychiatry, 161(1): 166168.Google Scholar
Bhardwaj, A., Wilkinson, P., Srivastava, C., & Sharma, M. (2010). Cognitive deficits in euthymic patients with recurrent depression. Journal of Nervous and Mental Disease, 198(7): 513515.Google Scholar
Biringer, E., Mykletun, A., Sundet, K., Kroken, R., Stordal, K. I., & Lund, A. (2007). A longitudinal analysis of neurocognitive function in unipolar depression. Journal of Clinical and Experimental Neuropsychology, 29(8): 879891.Google Scholar
Burt, D. B., Zembar, M. J., & Niederehe, G. (1995). Depression and memory impairment: A meta-analysis of the association, its pattern, and specificity. Psychological Bulletin, 117(2): 285305.CrossRefGoogle ScholarPubMed
Chan, S. W. Y., Goodwin, G. M., & Harmer, C. J. (2007). Highly neurotic never-depressed students have negative biases in information processing. Psychological Medicine, 37(9): 12811291.Google Scholar
Christensen, M. V., Kyvik, K. O., & Kessing, L. V. (2006). Cognitive function in unaffected twins discordant for affective disorder. Psychological Medicine, 36(8): 11191129.Google Scholar
Costafreda, S. G., Brammer, M., David, A. S., & Fu, C. H. Y. (2008). Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Research Reviews, 58(1): 5770.Google Scholar
Davidson, R. (2000). Affective style, psychopathology, and resilience: Brain mechanisms and plasticity. American Psychologist, 55(11): 11961214.Google Scholar
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8): 467477.Google Scholar
Douglas, K. M. & Porter, R. J. (2009). Longitudinal assessment of neuropsychological function in major depression. Australian and New Zealand Journal of Psychiatry, 43(12): 11051117.Google Scholar
Douglas, K. M., Porter, R. J., Knight, R. G., & Maruff, P. (2011). Neuropsychological changes and treatment response in severe depression. British Journal of Psychiatry, 198(2): 115122.Google Scholar
Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., … Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2): 257269.Google Scholar
Foland-Ross, L. C. & Gotlib, I. H. (2012). Cognitive and neural aspects of information processing in major depressive disorder: An integrative perspective. Frontiers in Psychology, 3: 489.Google Scholar
Frodl, T., Meisenzahl, E. M., Zetzsche, T., Born, C., Groll, C., Jager, M., … Moller, H J. (2002). Hippocampal changes in patients with a first episode of major depression. American Journal of Psychiatry, 159(7): 11121118.Google Scholar
Glahn, D. C., Curran, J. E., Winkler, A. M., Carless, M. A., Kent, J. W., Charlesworth, J. C., … Blangero, J. (2012). High dimensional endophenotype ranking in the search for major depression risk genes. Biological Psychiatry, 71(1): 614.CrossRefGoogle ScholarPubMed
Gollan, J. K., Pane, H. T., McCloskey, M. S., & Coccaro, E. F. (2008). Identifying differences in biased affective information processing in major depression. Psychiatry Research, 159(1–2): 1824.CrossRefGoogle ScholarPubMed
Gorwood, P., Corruble, E., Falissard, B., & Goodwin, G. M. (2008). Toxic effects of depression on brain function: Impairment of delayed recall and the cumulative length of depressive disorder in a large sample of depressed outpatients. American Journal of Psychiatry, 165(6): 731739.CrossRefGoogle Scholar
Gotlib, I. H. & Joormann, J. (2010). Cognition and depression: Current status and future directions. Annual Review of Clinical Psychology, 27(6): 285312.Google Scholar
Gottesman, I. I. & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160(4): 636645.Google Scholar
Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., … Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5): 429437.CrossRefGoogle ScholarPubMed
Gualtieri, C. T., Johnson, L. G., & Benedict, K. B. (2006). Neurocognition in depression: Patients on and off medication versus healthy comparison subjects. Journal of Neuropsychiatry and Clinical Neurosciences, 18(2): 217225.Google Scholar
Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, V. S., Callicott, J. H., Egan, M. F., & Weinberger, D. R. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23(17): 66906694.CrossRefGoogle ScholarPubMed
Hasler, G., Drevets, W. C., Manji, H. K., & Charney, D. S. (2004). Discovering endophenotypes for major depression. Neuropsychopharmacology, 29(10): 17651781.Google Scholar
Hasselbalch, B. J., Knorr, U., Hasselbalch, S. G., Gade, A., & Kessing, L. V. (2012). Cognitive deficits in the remitted state of unipolar depressive disorder. Neuropsychology, 26(5): 642651.CrossRefGoogle ScholarPubMed
Herrera-Guzmán, I., Gudayol-Ferré, E., Herrera-Abarca, J. E., Herrera-Guzmán, D., Montelongo-Pedraza, P., Padrós Blázquez, F., … Guàrdia-Olmos, J. (2010). Major depressive disorder in recovery and neuropsychological functioning: Effects of selective serotonin reuptake inhibitor and dual inhibitor depression treatments on residual cognitive deficits in patients with major depressive disorder in recovery. Journal of Affective Disorders, 123(1–3): 341350.CrossRefGoogle ScholarPubMed
Hollon, S. D., Shelton, S. C., Wisniewski, S., Warden, D., Biggs, M. M., Friedman, E. S., … Rush, A. J. (2006). Presenting characteristics of depressed outpatients as a function of recurrence: Preliminary findings from the STAR*D clinical trial. Journal of Psychiatric Research, 40(1): 5969.Google Scholar
Huxley, T. H. H. (1874). On the hypothesis that animals are automata, and its history, Fortnightly Review, NS 16: 555580.Google Scholar
Iris, F. (2008). Biological modeling in the discovery and validation of cognitive dysfunctions biomarkers. In Turck, C. (ed.), Biomarkers for Psychiatric Disorders (pp. 473522). Boston, MA: Springer.Google Scholar
Joormann, J. & Gotlib, I. H. (2006). Is this happiness I see? Biases in the identification of emotional facial expressions in depression and social phobia. Journal of Abnormal Psychology, 115(4): 705714.Google Scholar
Kennedy, S. H., Downar, J., Evans, K. R., Feilotter, H., Lam, R. W., MacQueen, G. M., … Soares, C. (2012). The Canadian Biomarker Integration Network in Depression (CAN-BIND): Advances in response prediction. Current Pharmaceutical Design, 18(36): 59765989.Google Scholar
Koenen, K. C., Moffitt, T. E., Roberts, A. L., Martin, L. T., Kubzansky, L., Harrington, H., … Caspi, A. (2009). Childhood IQ and adult mental disorders: A test of the cognitive reserve hypothesis. American Journal of Psychiatry, 166(1): 5057.Google Scholar
Labermaier, C., Masana, M., & Müller, M. B. (2013). Biomarkers predicting antidepressant treatment response: How can we advance the field? Disease Markers, 35(1): 2331.Google Scholar
Landrø, N. I., Stiles, T. C., & Sletvold, H. (2001). Neuropsychological function in nonpsychotic unipolar major depression. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14(4): 233240.Google Scholar
Lazarus, R. S. (1984). On the primacy of cognition. American Psychologist, 39(2): 124129.Google Scholar
Lee, R. S. C., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. Journal of Affective Disorders, 140(2): 113124.Google Scholar
LeMoult, J., Joormann, J., Sherdell, L., Wright, Y., & Gotlib, I. H. (2009). Identification of emotional facial expressions following recovery from depression. Journal of Abnormal Psychology, 118(4): 828833.CrossRefGoogle ScholarPubMed
Leppänen, J. M., Milders, M., Bell, J. S., Terriere, E., & Hietanen, J. K. (2004). Depression biases the recognition of emotionally neutral faces. Psychiatry Research, 128(2): 123133.CrossRefGoogle ScholarPubMed
Leuchter, A. F., Cook, I. A., Hamilton, S. P., Narr, K. L., Toga, A., Hunter, A. M., … Lebowitz, B. D. (2010). Biomarkers to predict antidepressant response. Current Psychiatry Reports, 12(6), 553562.Google Scholar
Lisiecka, D. M., Carballedo, A., Fagan, A. J., Connolly, G., Meaney, J., & Frodl, T. (2012). Altered inhibition of negative emotions in subjects at family risk of major depressive disorder. Journal of Psychiatric Research, 46(2): 181188.Google Scholar
Luby, J. L., Barch, D. M., Belden, A., Gaffrey, M. S., Tillman, R., Babb, C., … Botteron, K. N. (2012). Maternal support in early childhood predicts larger hippocampal volumes at school age. Proceedings of the National Academy of Sciences of the United States of America, 109(8): 28542859.CrossRefGoogle ScholarPubMed
Maalouf, F. T., Brent, D., Clark, L., Tavitian, L., McHugh, R. M., Sahakian, B. J., & Phillips, M. L. (2011). Neurocognitive impairment in adolescent major depressive disorder: state vs. trait illness markers. Journal of Affective Disorders, 133(3): 625632.CrossRefGoogle ScholarPubMed
MacQueen, G. M., Galway, T. M., Hay, J., Young, L. T., & Joffe, J. T. (2002). Recollection memory deficits in patients with major depressive disorder predicted by past depressions but not current mood state or treatment status. Psychological Medicine, 32(2): 251258.Google Scholar
Majer, M., Ising, M., Künzel, H., Binder, E. B., Holsboer, F., & Modell, S. (2004). Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychological Medicine, 34(8): 14531463.Google Scholar
Mannie, Z. N., Harmer, C. J., Cowen, P. J., & Norbury, R. (2010). A functional magnetic resonance imaging study of verbal working memory in young people at increased familial risk of depression. Biological Psychiatry, 67(5): 471477.Google Scholar
Marvel, C. L. & Paradiso, S. (2004). Cognitive and neurological impairment in mood disorders. Psychiatric Clinics of North America, 27(1): 1936, vii–viii.Google Scholar
McDermott, L. M. & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119(1–3): 18.Google Scholar
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depression and Anxiety, 30(6): 515527.Google Scholar
McIntyre, R. S., Lophaven, S., & Olsen, C. K. (2014). A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. International Journal of Neuropsychopharmacology, 17(10): 15571567.Google Scholar
Meneses, A. (1999). 5-HT system and cognition. Neuroscience and Biobehavioral Reviews, 23(8): 11111125.Google Scholar
Millan, M. J., Agid, Y., Brüne, M., Bullmore, E. T., Carter, C. S., Clayton, N. S., … Young, L. J. (2012). Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 11(2): 141168.Google Scholar
Neu, P., Kiesslinger, U., Schlattmann, P., & Reischies, F. M. (2001). Time-related cognitive deficiency in four different types of depression. Psychiatry Research, 103(2–3): 237247.CrossRefGoogle ScholarPubMed
Paelecke-Habermann, Y., Pohl, J., & Leplow, B. (2005). Attention and executive functions in remitted major depression patients. Journal of Affective Disorders, 89(1–3): 125135.Google Scholar
Papakostas, G. I. (2014). Cognitive symptoms in patients with major depressive disorder and their implications for clinical practice. Journal of Clinical Psychiatry, 75(1): 814.Google Scholar
Perlstein, W. M., Elbert, T., & Stenger, V. A. (2002). Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proceedings of the National Academy of Sciences of the United States of America, 99(3): 17361741.Google Scholar
Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9: 148158.Google Scholar
Peterson, B. S. & Weissman, M. M. (2011). A brain-based endophenotype for major depressive disorder. Annual Review of Medicine, 62: 461474.Google Scholar
Ramel, W., Goldin, P. R., Eyler, L. T., Brown, G. G., Gotlib, I. H., & McQuaid, J. R. (2007). Amygdala reactivity and mood-congruent memory in individuals at risk for depressive relapse. Biological Psychiatry, 61(2): 231239.Google Scholar
Raskin, J., Wiltse, C. G., Siegal, A., Sheikh, J., Xu, J., Dinkel, J. J., … Mohs, R. C. (2007). Efficacy of duloxetine on cognition, depression, and pain in elderly patients with major depressive disorder. American Journal of Psychiatry, 164(6): 900909.CrossRefGoogle ScholarPubMed
Reppermund, S., Ising, M., Lucae, S., & Zihl, J. (2009). Cognitive impairment in unipolar depression is persistent and non-specific: Further evidence for the final common pathway disorder hypothesis. Psychological Medicine, 39(4): 603614.Google Scholar
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44(10): 20292040.Google Scholar
Roiser, J. P. & Sahakian, B. J. (2013). Hot and cold cognition in depression. CNS Spectrums, 18(3): 139149.Google Scholar
Sarosi, A., Gonda, X., Balogh, G., Domotor, E., Szekely, A., Hejjas, K., … Faludi, G. (2008). Association of the STin2 polymorphism of the serotonin transporter gene with a neurocognitive endophenotype in major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32(7): 16671672.Google Scholar
Schlaepfer, T. E., Bewernick, B. H., Kayser, S., Mädler, B., & Coenen, V. A. (2013). Rapid effects of deep brain stimulation for treatment-resistant major depression. Biological Psychiatry, 73(12): 12041212.CrossRefGoogle ScholarPubMed
Schmidt, H. D., Shelton, R. C., & Duman, R. S. (2011). Functional biomarkers of depression: Diagnosis, treatment, and pathophysiology. Neuropsychopharmacology, 36(12): 23752394.Google Scholar
Siegle, G. J., Steinhauer, S. R., Thase, M. E., Stenger, V. A., & Carter, C. S. (2002). Can’t shake that feeling: Event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry, 51(9): 693707.Google Scholar
Sumner, J. A., Griffith, J. W., & Mineka, S. (2010). Overgeneral autobiographical memory as a predictor of the course of depression: A meta-analysis. Behaviour Research and Therapy, 48(7): 614625.Google Scholar
Surguladze, S. A., Young, A. W., Senior, C., Brébion, G., Travis, M. J., & Phillips, M. L. (2004). Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology, 18(2): 212218.Google Scholar
Tarbuck, A. F. & Paykel, E. S. (1995). Effects of major depression on the cognitive function of younger and older subjects. Psychological Medicine, 25(2): 285295.Google Scholar
Teicher, M. H., Anderson, C. M., & Polcari, A. (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences of the United States of America, 109(9): E563E572.Google Scholar
Trichard, C., Martinot, J. L., Alagille, M., Masure, M. C., Hardy, P., Ginestet, D., & Féline, A. (1995). Time course of prefrontal lobe dysfunction in severely depressed in-patients: A longitudinal neuropsychological study. Psychological Medicine, 25(1): 7985.Google Scholar
Van Oostrom, I., Franke, B., Vasquez, A. A., Rinck, M., Tendolkar, I., Verhagen, M., … Janzing, J. G. E. (2013). Never-depressed females with a family history of depression demonstrate affective bias. Psychiatry Research, 205(1–2): 5458.Google Scholar
Weiland-Fiedler, P., Erickson, K., Waldeck, T., Luckenbaugh, D. A., Pike, D., Bonne, O., … Neumeister, A. (2004). Evidence for continuing neuropsychological impairments in depression. Journal of Affective Disorders, 82(2): 253258.CrossRefGoogle ScholarPubMed

References

Andreasen, N. C. (1997). Linking mind and brain in the study of mental illnesses: A project for a scientific psychopathology. Science, 275(5306): 15861593.Google Scholar
Anisman, H., Kokkinidis, L., & Merali, Z. (2002). Further evidence for the depressive effects of cytokines: Anhedonia and neurochemical changes. Brain, Behavior, and Immunity, 16(5): 544556.Google Scholar
Austin, M. P., Mitchell, P., Wilhelm, K., Parker, G., Hickie, I., Brodaty, H., … Hadzi-Pavlovic, D. (1999). Cognitive function in depression: A distinct pattern of frontal impairment in melancholia? Psychological Medicine, 29(1): 7385.CrossRefGoogle ScholarPubMed
Austin, M. P., Ross, M., Murray, C., O’Carroll, R. E., Ebmeier, K. P., & Goodwin, G. M. (1992). Cognitive function in major depression. Journal of Affective Disorders, 25(1): 2129.Google Scholar
Bailey, D. J., Kim, J. J., Sun, W., Thompson, R. F., & Helmstetter, F. J. (1999). Acquisition of fear conditioning in rats requires the synthesis of mRNA in the amygdala. Behavioral Neuroscience, 113(2): 276282.Google Scholar
Baron, R., Nemirovsky, A., Harpaz, I., Cohen, H., Owens, T., & Monsonego, A. (2008). IFN-gamma enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB Journal, 22(8): 28432852.Google Scholar
Baune, B. (2009). Conceptual challenges of a tentative model of stress-induced depression. PLoS One, 4(1): e4266.Google Scholar
Baune, B. T., Czira, M. E., Smith, A. L., Mitchell, D., & Sinnamon, G. (2012a). Neuropsychological performance in a sample of 13–25 year olds with a history of non-psychotic major depressive disorder. Journal of Affective Disorders, 141(2–3): 441448.Google Scholar
Baune, B. T., Dannlowski, U., Domschke, K., Janssen, D. G., Jordan, M. A., Ohrmann, P., … Suslow, T. (2010a). The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biological Psychiatry, 67(6): 543549.Google Scholar
Baune, B. T., Konrad, C., Grotegerd, D., Suslow, T., Birosova, E., Ohrmann, P., … Dannlowski, U. (2012b). Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain. Journal of Neuroinflammation, 9: 125.Google Scholar
Baune, B. T., Konrad, C., Grotegerd, D., Suslow, T., Ohrmann, P., Bauer, J., … Dannlowski, U. (2012c). Tumor necrosis factor gene variation predicts hippocampus volume in healthy individuals. Biological Psychiatry, 72(8): 655662.Google Scholar
Baune, B. T., Li, X., & Beblo, T. (2013). Short- and long-term relationships between neurocognitive performance and general function in bipolar disorder. Journal of Clinical and Experimental Psychology, 35(7): 759774.Google Scholar
Baune, B. T., Miller, R., McAfoose, J., Johnson, M., Quirk, F., & Mitchell, D. (2010b). The role of cognitive impairment in general functioning in major depression. Psychiatry Research, 176(2–3): 183189.Google Scholar
Baune, B. T., Ponath, G., Golledge, J., Varga, G., Arolt, V., Rothermundt, M., & Berger, K. (2008a). Association between IL-8 cytokine and cognitive performance in an elderly general population: The MEMO-Study. Neurobiology of Aging, 29(6): 937944.Google Scholar
Baune, B. T., Ponath, G., Rothermundt, M., Riess, O., Funke, H., & Berger, K. (2008b). Association between genetic variants of IL-1beta, IL-6 and TNF-alpha cytokines and cognitive performance in the elderly general population of the MEMO-study. Psychoneuroendocrinology, 33(1): 6876.Google Scholar
Baune, B. T., Wiede, F., Braun, A., Golledge, J., Arolt, V., & Koerner, H. (2008c). Cognitive dysfunction in mice deficient for TNF- and its receptors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B(7): 10561064.Google Scholar
Beblo, T., Sinnamon, G., & Baune, B. T. (2011). Specifying the neuropsychology of affective disorders: Clinical, demographic and neurobiological factors. Neuropsychology Review, 21(4): 337359.Google Scholar
Beck, R. D. Jr., King, M. A., Ha, G. K., Cushman, J. D., Huang, Z., & Petitto, J. M. (2005a). IL-2 deficiency results in altered septal and hippocampal cytoarchitecture: Relation to development and neurotrophins. Journal of Neuroimmunology, 160(1–2): 146153.CrossRefGoogle ScholarPubMed
Beck, R. D. Jr., King, M. A., Huang, Z., & Petitto, J. M. (2002). Alterations in septohippocampal cholinergic neurons resulting from interleukin-2 gene knockout. Brain Research, 955(1–2): 1623.Google Scholar
Beck, R. D. Jr., Wasserfall, C., Ha, G. K., Cushman, J. D., Huang, Z., & Petitto, J. M. (2005b). Changes in hippocampal IL-15, related cytokines, and neurogenesis in IL-2 deficient mice. Brain Research, 1041(2): 223230.Google Scholar
Bitsch, A., Kuhlmann, T., Da Costa, C., Bunkowski, S., Polak, T., & Bruck, W. (2000). Tumour necrosis factor alpha mRNA expression in early multiple sclerosis lesions: Correlation with demyelinating activity and oligodendrocyte pathology. Glia, 29(4): 366375.Google Scholar
Blaney, P. H. (1986). Affect and memory: A review. Psychological Bulletin, 99(2): 229246.Google Scholar
Blatteis, C. M. (1990). Neuromodulative actions of cytokines. Yale Journal of Biology and Medicine, 63(2): 133146.Google Scholar
Brebner, K., Hayley, S., Zacharko, R., Merali, Z., & Anisman, H. (2000). Synergistic effects of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha: Central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacology, 22(6): 566580.Google Scholar
Canli, T., Cooney, R. E., Goldin, P., Shah, M., Sivers, H., Thomason, M. E., … Gotlib, I. H. (2005). Amygdala reactivity to emotional faces predicts improvement in major depression. Neuroreport, 16(12): 12671270.Google Scholar
Capuron, L. & Dantzer, R. (2003). Cytokines and depression: The need for a new paradigm. Brain, Behavior, and Immunity, 17(Suppl. 1): S119S124.Google Scholar
Chen, C. H., Suckling, J., Ooi, C., Fu, C. H., Williams, S. C., Walsh, N. D., … Bullmore, E. (2008). Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology, 33(8): 19091918.Google Scholar
Cheng, X., Yang, L., He, P., Li, R., & Shen, Y. (2010). Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients. Journal of Alzheimer’s Disease, 19(2): 621630.Google Scholar
Churchill, L., Taishi, P., Wang, M., Brandt, J., Cearley, C., Rehman, A., & Krueger, J. M. (2006). Brain distribution of cytokine mRNA induced by systemic administration of interleukin-1beta or tumor necrosis factor alpha. Brain Research, 1120(1): 6473.Google Scholar
Connor, T. J., Song, C., Leonard, B. E., Merali, Z., & Anisman, H. (1998). An assessment of the effects of central interleukin-1beta, -2, -6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience, 84(3): 923933.Google Scholar
Cronholm, B. & Ottosson, J. O. (1961). Memory functions in endogenous depression before and after electroconvulsive therapy. Archives of General Psychiatry, 5(2): 193199.CrossRefGoogle ScholarPubMed
Danion, J. M., Willard-Schroeder, D., Zimmermann, M. A., Grange, D., Schlienger, J. L., & Singer, L. (1991). Explicit memory and repetition priming in depression: Preliminary findings. Archives of General Psychiatry, 48(8): 707711.CrossRefGoogle ScholarPubMed
Dannlowski, U., Ohrmann, P., Konrad, C., Domschke, K., Bauer, J., Kugel, H., … Suslow, T. (2009). Reduced amygdala-prefrontal coupling in major depression: association with MAOA genotype and illness severity. International Journal of Neuropsychopharmacology, 12(1): 1122.Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9: 4656.Google Scholar
Davis, M. & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1): 1334.CrossRefGoogle ScholarPubMed
Derubeis, R. J., Siegle, G. J., & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9: 788796.Google Scholar
Dik, M. G., Jonker, C., Hack, C. E., Smit, J. H., Comijs, H. C., & Eikelenboom, P. (2005). Serum inflammatory proteins and cognitive decline in older persons. Neurology, 64(8): 13711377.Google Scholar
Dougherty, D. & Rauch, S. (eds.) (2001 ). Psychiatric Neuroimaging Research: Contemporary Strategies. Washington, DC: American Psychiatric Press.Google Scholar
Dunn, A. J. (2006). Effects of cytokines and infections on brain neurochemistry. Clinical Neuroscience Research, 6(1–2): 5268.Google Scholar
Dupont, R. M., Jernigan, T. L., Heindel, W., Butters, N., Shafer, K., Wilson, T., … Gillin, J. C. (1995). Magnetic resonance imaging and mood disorders: Localization of white matter and other subcortical abnormalities. Archives of General Psychiatry, 52(9): 747755.Google Scholar
Ericsson, A., Kovacs, K. J., & Sawchenko, P. E. (1994). A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. Journal of Neuroscience, 14(2): 897913.Google Scholar
Etkin, A., Gyurak, A., & O’Hara, R. (2013). A neurobiological approach to the cognitive deficits of psychiatric disorders. Dialogues in Clinical Neuroscience, 15(4): 419429.Google Scholar
Eyre, H. & Baune, B. T. (2012). Neuroplastic changes in depression: A role for the immune system. Psychoneuroendocrinology, 37(9): 13971416.Google Scholar
Eyre, H. A., Stuart, M. & Baune, B. T. (2014). A phase-specific neuroimmune model of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 54: 265274.Google Scholar
Fischer, R., Maier, O., Siegemund, M., Wajant, H., Scheurich, P., & Pfizenmaier, K. (2011). A TNF receptor 2 selective agonist rescues human neurons from oxidative stress-induced cell death. PLoS One, 6: e27621.Google Scholar
Fossati, P., Amar, G., Raoux, N., Ergis, A. M., & Allilaire, J. F. (1999). Executive functioning and verbal memory in young patients with unipolar depression and schizophrenia. Psychiatry Research, 89(3): 171187.Google Scholar
Fossati, P., Guillaume, le B., Ergis, A. M., & Allilaire, J. F. (2003). Qualitative analysis of verbal fluency in depression. Psychiatry Research, 117(1): 1724.Google Scholar
Gallagher, P. J., Castro, V., Fava, M., Weilburg, J. B., Murphy, S. N., Gainer, V. S., … Perlis, R. H. (2012). Antidepressant response in patients with major depression exposed to NSAIDs: A pharmacovigilance study. American Journal of Psychiatry, 169(10): 10651072.Google Scholar
Ghashghaei, H. T. & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115(4): 12611279.Google Scholar
Godard, J., Baruch, P., Grondin, S., & Lafleur, M. F. (2012). Psychosocial and neurocognitive functioning in unipolar and bipolar depression: A 12-month prospective study. Psychiatry Research, 196(1): 145153.Google Scholar
Gold, S. M. & Irwin, M. R. (2006). Depression and immunity: Inflammation and depressive symptoms in multiple sclerosis. Neurologic Clinics, 24(3): 507519.Google Scholar
Golinkoff, M. & Sweeney, J. A. (1989). Cognitive impairments in depression. Journal of Affective Disorders, 17(2): 105112.Google Scholar
Grathwohl, S. A., Kalin, R. E., Bolmont, T., Prokop, S., Winkelmann, G., Kaeser, S. A., … Jucker, M. (2009). Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nature Neuroscience, 12: 13611363.Google Scholar
Gruzelier, J., Seymour, K., Wilson, L., Jolley, A., & Hirsch, S. (1988). Impairments on neuropsychologic tests of temporohippocampal and frontohippocampal functions and word fluency in remitting schizophrenia and affective disorders. Archives of General Psychiatry, 45(7): 623629.Google Scholar
Haroon, E., Raison, C. L., & Miller, A. H. (2012). Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology, 37(1): 137162.Google Scholar
Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66(5): 407414.Google Scholar
He, P., Zhong, Z., Lindholm, K., Berning, L., Lee, W., Lemere, C., … Shen, Y. (2007a). Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. Journal of Cell Biology, 178(5): 829841.Google Scholar
He, T., Zong, S., Wu, X., Wei, Y., & Xiang, J. (2007b). CD4+ T cell acquisition of the bystander pMHC I colocalizing in the same immunological synapse comprising pMHC II and costimulatory CD40, CD54, CD80, OX40L, and 41BBL. Biochemical and Biophysical Research Communications, 362(4): 822828.CrossRefGoogle ScholarPubMed
Hein, A. M. & O’Banion, M. K. (2012). Neuroinflammation and cognitive dysfunction in chronic disease and aging. Journal of Neuroimmune Pharmacology, 7(1): 36.Google Scholar
Herzallah, M. M., Moustafa, A. A., Natsheh, J. Y., Abdellatif, S. M., Taha, M. B., Tayem, Y. I., … Gluck, M. A. (2013). Learning from negative feedback in patients with major depressive disorder is attenuated by SSRI antidepressants. Frontiers in Integrative Neuroscience, 7: 67.Google Scholar
Hickie, I. & Lloyd, A. (1995). Are cytokines associated with neuropsychiatric syndromes in humans? International Journal of Immunopharmacology, 17(8): 677683.Google Scholar
Hickman, S. E., Allison, E. K., & El Khoury, J. (2008). Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. Journal of Neuroscience, 28(33): 83548360.Google Scholar
Hurlock, E. C. T. (2001). Interferons: Potential roles in affect. Medical Hypotheses, 56(5): 558566.Google Scholar
Ilsley, J. E., Moffoot, A. P., & O’Carroll, R. E. (1995). An analysis of memory dysfunction in major depression. Journal of Affective Disorders, 35(1–2): 19.Google Scholar
Irwin, M. R. & Miller, A. H. (2007). Depressive disorders and immunity: 20 years of progress and discovery. Brain Behavior, and Immunity, 21(4): 374383.Google Scholar
Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145(1): 3948.Google Scholar
Jankowsky, J. L. & Patterson, P. H. (1999). Cytokine and growth factor involvement in long-term potentiation. Molecular and Cellular Neuroscience, 14(4–5): 273286.Google Scholar
John, G. R., Lee, S. C., & Brosnan, C. F. (2003). Cytokines: Powerful regulators of glial cell activation. Neuroscientist, 9(1): 1022.Google Scholar
Jung, J. E., Kim, G. S., & Chan, P. H. (2011). Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke, 42(12): 35743579.Google Scholar
Kaur, G. & Salm, A. K. (2008). Blunted amygdalar anti-inflammatory cytokine effector response to postnatal stress in prenatally stressed rats. Brain Research, 1196: 112.Google Scholar
Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2001). Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. American Journal of Psychiatry, 158(4): 582586.Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6): 593602.Google Scholar
Killgore, W. D. & Yurgelun-Todd, D. A. (2004). Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. NeuroImage, 21(4): 12151223.Google Scholar
Kiosses, D. N. & Alexopoulos, G. S. (2005). IADL functions, cognitive deficits, and severity of depression: A preliminary study. American Journal of Geriatric Psychiatry, 13(3): 244249.Google Scholar
Koyama, A., O’Brien, J., Weuve, J., Blacker, D., Metti, A. L., & Yaffe, K. (2013). The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 68(4): 433440.Google Scholar
Kronfol, Z. & Remick, D. G. (2000). Cytokines and the brain: Implications for clinical psychiatry. American Journal of Psychiatry, 157(5): 683694.Google Scholar
Lee, H. J., Choi, J. S., Brown, T. H., & Kim, J. J. (2001). Amygdalar NMDA receptors are critical for the expression of multiple conditioned fear responses. Journal of Neuroscience, 21(11): 41164124.Google Scholar
Leonard, B. & Maes, M. (2012). Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience and Biobehavioral Reviews, 36(2): 764785.Google Scholar
Lin, C. H., Yeh, S. H., Lin, C. H., Lu, K. T., Leu, T. H., Chang, W. C., & Gean, P. W. (2001). A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron, 31(5): 841851.Google Scholar
Liu, Y. H., Zeng, F., Wang, Y. R., Zhou, H. D., Giunta, B., Tan, J., & Wang, Y. J. (2013). Immunity and Alzheimer’s disease: Immunological perspectives on the development of novel therapies. Drug Discovery Today, 18(23–24): 12121220.CrossRefGoogle ScholarPubMed
London, A., Cohen, M., & Schwartz, M. (2013). Microglia and monocyte-derived macrophages: Functionally distinct populations that act in concert in CNS plasticity and repair. Frontiers in Cellular Neuroscience, 7: 34.Google Scholar
Maes, M., Mihaylova, I., Kubera, M., & Ringel, K. (2012a). Activation of cell-mediated immunity in depression: Association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 36(1): 169175.Google Scholar
Maes, M., Ringel, K., Kubera, M., Berk, M., & Rybakowski, J. (2012b). Increased autoimmune activity against 5-HT: A key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. Journal of Affective Disorders, 136(3): 386392.Google Scholar
Mahar, I., Bambico, F. R., Mechawar, N., & Nobrega, J. N. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience and Biobehavioral Reviews, 38: 173192.Google Scholar
Martinez-Aran, A., Scott, J., Colom, F., Torrent, C., Tabares-Seisdedos, R., Daban, C., … Vieta, E. (2009). Treatment nonadherence and neurocognitive impairment in bipolar disorder. Journal of Clinical Psychiatry, 70(7): 10171023.Google Scholar
Mayberg, H. S., Brannan, S. K., Mahurin, R. K., Jerabek, P. A., Brickman, J. S., Tekell, J. L., … Fox, P. T. (1997). Cingulate function in depression: A potential predictor of treatment response. Neuroreport, 8(4): 10571061.Google Scholar
McAfoose, J. & Baune, B. T. (2009). Evidence for a cytokine model of cognitive function. Neuroscience and Biobehavioral Reviews, 33(3): 355366.Google Scholar
McCabe, C. & Mishor, Z. (2011). Antidepressant medications reduce subcortical-cortical resting-state functional connectivity in healthy volunteers. NeuroImage, 57(4): 13171323.Google Scholar
McIlroy, S. P., Vahidassr, M. D., Savage, D. A., Lloyd, F., Patterson, C. C., Lawson, J. T., & Passmore, A. P. (2000). Association of serum AACT levels and AACT signal polymorphism with late-onset Alzheimer’s disease in Northern Ireland. International Journal of Geriatric Psychiatry, 15(3): 260266.Google Scholar
Mcmillian, M., Kong, L. Y., Sawin, S. M., Wilson, B., Das, K., Hudson, P., … Bing, G. (1995). Selective killing of cholinergic neurons by microglial activation in basal forebrain mixed neuronal/glial cultures. Biochemical and Biophysical Research Communications, 215(2): 572577.Google Scholar
Mildner, A., Schlevogt, B., Kierdorf, K., Bottcher, C., Erny, D., Kummer, M. P., … Prinz, M. (2011). Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. Journal of Neuroscience, 31(31): 1115911171.Google Scholar
Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9): 732741.Google Scholar
Morris, G. P., Clark, I. A., Zinn, R., & Vissel, B. (2013). Microglia: A new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiology of Learning and Memory, 105: 4053.Google Scholar
Moylan, S., Berk, M., Dean, O. M., Samuni, Y., Williams, L. J., O’Neil, A., … Maes, M. (2014). Oxidative & nitrosative stress in depression: Why so much stress? Neuroscience and Biobehavioral Reviews, 45: 4662.Google Scholar
Moylan, S., Maes, M., Wray, N. R., & Berk, M. (2013). The neuroprogressive nature of major depressive disorder: Pathways to disease evolution and resistance, and therapeutic implications. Molecular Psychiatry, 18: 595606.Google Scholar
Müller, N., Myint, A. M., & Schwarz, M. J. (2011). Inflammatory biomarkers and depression. Neurotoxicity Research, 19(2): 308318.Google Scholar
Müller, N., Schwarz, M. J., Dehning, S., Douhe, A., Cerovecki, A., Goldstein-Muller, B., … Riedel, M. (2006). The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: Results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Molecular Psychiatry, 11(7): 680684.Google Scholar
Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11(11): 489497.Google Scholar
Nadjar, A., Bluthe, R. M., May, M. J., Dantzer, R., & Parnet, P. (2005). Inactivation of the cerebral NFkappaB pathway inhibits interleukin-1beta-induced sickness behavior and c-Fos expression in various brain nuclei. Neuropsychopharmacology, 30(8): 14921499.Google Scholar
Nilsson, L. N., Arendash, G. W., Leighty, R. E., Costa, D. A., Low, M. A., Garcia, M. F., … Potter, H. (2004). Cognitive impairment in PDAPP mice depends on ApoE and ACT-catalyzed amyloid formation. Neurobiology of Aging, 25(9): 11531167.Google Scholar
Pare, D., Quirk, G. J., & Ledoux, J. E. (2004). New vistas on amygdala networks in conditioned fear. Journal of Neurophysiology, 92(1): 19.Google Scholar
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., … Weinberger, D. R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8(6): 828834.Google Scholar
Phelps, E. A. & Ledoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48(2): 175187.Google Scholar
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003a). Neurobiology of emotion perception I: Implications for major psychiatric disorders. Biological Psychiatry, 54(5): 504514.Google Scholar
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003b). Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biological Psychiatry, 54(5): 515528.Google Scholar
Pickering, M. & O’Connor, J. J. (2007). Pro-inflammatory cytokines and their effects in the dentate gyrus. Progress in Brain Research, 163: 339354.Google Scholar
Pizzagalli, D., Pascual-Marqui, R. D., Nitschke, J. B., Oakes, T. R., Larson, C. L., Abercrombie, H. C., … Davidson, R. J. (2001). Anterior cingulate activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis. American Journal of Psychiatry, 158(3): 405415.Google Scholar
Porter, R. J., Gallagher, P., Thompson, J. M., & Young, A. H. (2003). Neurocognitive impairment in drug-free patients with major depressive disorder. British Journal of Psychiatry, 182: 214220.Google Scholar
Radwanska, K., Nikolaev, E., Knapska, E., & Kaczmarek, L. (2002). Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. Neuroreport, 13(17): 22412246.Google Scholar
Raison, C. L., Capuron, L., & Miller, A. H. (2006). Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends in Immunology, 27(1): 2431.Google Scholar
Raison, C. L., Rutherford, R. E., Woolwine, B. J., Shuo, C., Schettler, P., Drake, D. F., … Miller, A. H. (2013). A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. Archives of General Psychiatry, 70(1): 3141.Google Scholar
Ramos, A. & Mormede, P. (1998). Stress and emotionality: A multidimensional and genetic approach. Neuroscience and Biobehavioral Reviews, 22(1): 3357.Google Scholar
Ransohoff, R. M. & Benveniste, E. N. (eds.) (2006). Cytokines and the CNS. New York: Taylor & Francis.Google Scholar
Ravnkilde, B., Videbech, P., Clemmensen, K., Egander, A., Rasmussen, N. A., & Rosenberg, R. (2002). Cognitive deficits in major depression. Scandinavian Journal of Psychology, 43(3): 239251.Google Scholar
Reichenberg, A., Yirmiya, R., Schuld, A., Kraus, T., Haack, M., Morag, A., & Pollmacher, T. (2001). Cytokine-associated emotional and cognitive disturbances in humans. Archives of General Psychiatry, 58(5): 445452.Google Scholar
Rose, E. J. & Ebmeier, K. P. (2006). Pattern of impaired working memory during major depression. Journal of Affective Disorders, 90(2–3): 149161.Google Scholar
Rothwell, N. J. & Loddick, S. (eds.) (2002). Immune and Inflammatory Responses in the Nervous System. New York: Oxford University Press.Google Scholar
Saha, R. N., Liu, X., & Pahan, K. (2006). Up-regulation of BDNF in astrocytes by TNF-alpha: A case for the neuroprotective role of cytokine. Journal of Neuroimmune Pharmacology, 1(3): 212222.Google Scholar
Sakumoto, R., Kasuya, E., Komatsu, T., & Akita, T. (2003). Central and peripheral concentrations of tumor necrosis factor-alpha in Chinese Meishan pigs stimulated with lipopolysaccharide. Journal of Animal Science, 81(5): 12741280.Google Scholar
Santello, M. & Volterra, A. (2012). TNF-alpha in synaptic function: Switching gears. Trends in Neuroscience, 35(10): 638647.Google Scholar
Schwartz, M., Sivron, T., Eitan, S., Hirschberg, D. L., Lotan, M., & Elman-Faber, A. (1994). Cytokines and cytokine-related substances regulating glial cell response to injury of the central nervous system. Progress in Brain Research, 103: 331341.Google Scholar
Schwartz, M., Solomon, A., Lavie, V., Ben-Bassat, S., Belkin, M., & Cohen, A. (1991). Tumor necrosis factor facilitates regeneration of injured central nervous system axons. Brain Research, 545(1–2): 334338.Google Scholar
Sei, Y., Vitkovic, L., & Yokoyama, M. M. (1995). Cytokines in the central nervous system: Regulatory roles in neuronal function, cell death and repair. Neuroimmunomodulation, 2(3): 121133.Google Scholar
Sheline, Y. I., Gado, M. H., & Kraemer, H. C. (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry, 160(8): 15161518.Google Scholar
Siegle, G. J., Carter, C. S., & Thase, M. E. (2006). Use of fMRI to predict recovery from unipolar depression with cognitive behavior therapy. American Journal of Psychiatry, 163(4): 735738.Google Scholar
Sierra, A., Abiega, O., Shahraz, A., & Neumann, H. (2013). Janus-faced microglia: Beneficial and detrimental consequences of microglial phagocytosis. Frontiers in Cellular Neuroscience, 7: 6.Google Scholar
Slavich, G. M. & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychological Bulletin, 140(3): 774815.Google Scholar
Stefanacci, L. & Amaral, D. G. (2000). Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study. Journal of Comparative Neurology, 421(1): 5279.Google Scholar
Streit, W. J., Braak, H., Xue, Q. S., & Bechmann, I. (2009). Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathologica, 118(4): 475485.Google Scholar
Streit, W. J. & Xue, Q. S. (2012). Alzheimer’s disease, neuroprotection, and CNS immunosenescence. Frontiers in Pharmacology, 3: 138.Google Scholar
Swardfager, W., Lanctot, K., Rothenburg, L., Wong, A., Cappell, J., & Herrmann, N. (2010). A meta-analysis of cytokines in Alzheimer’s disease. Biological Psychiatry, 68(10): 930941.Google Scholar
Tobinick, E. (2007). Perispinal etanercept for treatment of Alzheimer’s disease. Current Alzheimer Research, 4: 550552.Google Scholar
Tweedie, D., Sambamurti, K., & Greig, N. H. (2007). TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders: New drug candidates and targets. Current Alzheimer Research, 4: 378385.Google Scholar
Veiel, H. O. (1997). A preliminary profile of neuropsychological deficits associated with major depression. Journal of Clinical and Experimental Psychology, 19(4): 587603.Google Scholar
Videbech, P. & Ravnkilde, B. (2004). Hippocampal volume and depression: A meta-analysis of MRI studies. American Journal of Psychiatry, 161(11): 19571966.Google Scholar
Vitkovic, L., Bockaert, J., & Jacque, C. (2000a). “Inflammatory” cytokines: Neuromodulators in normal brain? Journal of Neurochemistry, 74(2): 457471.Google Scholar
Vitkovic, L., Konsman, J. P., Bockaert, J., Dantzer, R., Homburger, V., & Jacque, C. (2000b). Cytokine signals propagate through the brain. Molecular Psychiatry, 5(6): 604615.Google Scholar
Viviani, B., Gardoni, F., & Marinovich, M. (2007). Cytokines and neuronal ion channels in health and disease. International Review of Neurobiology, 82: 247263.Google Scholar
Warner-Schmidt, J. L., Vanover, K. E., Chen, E. Y., Marshall, J. J., & Greengard, P. (2011). Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 108(22): 92629267.Google Scholar
Wei, H., Zou, H., Sheikh, A. M., Malik, M., Dobkin, C., Brown, W. T., & Li, X. (2011). IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. Journal of Neuroinflammation, 8: 52.Google Scholar
Weiskrantz, L. (1956). Behavioral changes associated with ablation of the amygdaloid complex in monkeys. Journal of Comparative and Physiological Psychology, 49(4): 381391.Google Scholar
Westheide, J., Quednow, B. B., Kuhn, K. U., Hoppe, C., Cooper-Mahkorn, D., Hawellek, B., … Wagner, M. (2008). Executive performance of depressed suicide attempters: The role of suicidal ideation. European Archives of Psychiatry and Clinical Neuroscience, 258(7): 414421.Google Scholar
Wilson, C. J., Finch, C. E., & Cohen, H. J. (2002). Cytokines and cognition: The case for a head-to-toe inflammatory paradigm. Journal of the American Geriatrics Society, 50(12): 20412056.Google Scholar
Yirmiya, R. & Goshen, I. (2011). Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain, Behavior, and Immunity, 25(2): 181213.Google Scholar

References

Anacker, C., Zunszain, P. A., Cattaneo, A., Carvalho, L. A., Garabedian, M. J., Thuret, S., … Pariante, C. M. (2011). Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Molecular Psychiatry, 16: 738750.Google Scholar
Anaya, C., Martinez Aran, A., Ayuso-Mateos, J. L., Wykes, T., Vieta, E., & Scott, J. (2012). A systematic review of cognitive remediation for schizo-affective and affective disorders. Journal of Affective Disorders, 142: 1321.Google Scholar
Anisman, H., Ravindran, A. V., Griffiths, J., & Merali, Z. (1999). Endocrine and cytokine correlates of major depression and dysthymia with typical or atypical features. Molecular Psychiatry, 4: 182188.Google Scholar
Binder, E. B., Salyakina, D., Lichtner, P., Wochnik, G. M., Ising, M., Pütz, B., … Muller-Myhsok, B. (2004). Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genetics, 36: 13191325.Google Scholar
Bond, D. & Young, A. (2007). The hypothalamic–pituitary–adrenal axis in bipolar disorder. In Soares, J. C. & Young, A. H. (eds.), Bipolar Disorder: Basic Mechanisms and Therapeutic Implications, 2nd edn. (pp. 145160). New York: Taylor & Francis.Google Scholar
Brunner, R., Schaefer, D., Hess, K., Parzer, P., Resch, F., & Schwab, S. (2005). Effect of corticosteroids on short-term and long-term memory. Neurology, 64(2): 335337.Google Scholar
Buchanan, T. W. & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26(3): 307317.Google Scholar
Carroll, B. J., Cassidy, F., Naftolowitz, D., Tatham, N. E., Wilson, W. H., Iranmanesh, A., … Veldhuis, J. D. (2007). Pathophysiology of hypercortisolism in depression. Acta Psychiatrica Scandinavica Supplementum, 433: 90103.Google Scholar
Cattaneo, A., Gennarelli, M., Uher, R., Breen, G., Farmer, A., Aitchison, K. J., … Paiante, C. M. (2013). Candidate genes expression profile associated with antidepressants response in the GENDEP Study: Differentiating between baseline “predictors” and longitudinal “targets.” Neuropsychopharmacology, 38(3): 377385.Google Scholar
Cleare, A. J. & Wessely, S. C. (1996). Chronic fatigue syndrome: A stress disorder? Hospital Medicine, 55(9): 571574.Google Scholar
Cole, J., Toga, A. W., Hojatkashani, C., Thompson, P., Costafreda, S. G., Cleare, A. J., … Fu, C. H. Y. (2010). Subregional hippocampal deformations in major depressive disorder. Journal of Affective Disorders, 126(1–2): 272277.Google Scholar
Coluccia, D., Wolf, O. T., Kollias, S., Roozendaal, B., Forster, A., & De Quervain, D. J.-F. (2008). Glucocorticoid therapy-induced memory deficits: Acute versus chronic effects. Journal of Neuroscience, 28(13): 34743478.Google Scholar
Daban, C., Vieta, E., Mackin, P., & Young, A. H. (2005). Hypothalamic–pituitary–adrenal axis and bipolar disorder. Psychiatric Clinics of North America, 28(2): 469480.Google Scholar
Feldman, S., Conforti, N., & Weidenfeld, J. (1995). Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neuroscience and Biobehavioral Reviews, 19(2): 235240.Google Scholar
Finsterwald, C. & Alberini, C. M. (2014). Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: From adaptive responses to psychopathologies. Neurobiology of Learning and Memory, 112: 1729.Google Scholar
Gallagher, P., Malik, N., Newham, J., Young, A. H., Ferrier, I. N., & Mackin, P. (2008). Antiglucocorticoid treatments for mood disorders. Cochrane Database of Systematic Reviews, 1: CD005168.Google Scholar
Gallagher, P., Watson, S., Smith, M. S., Young, A. H., & Ferrier, I. N. (2007). Plasma cortisol-dehydroepiandrosterone (DHEA) ratios in schizophrenia and bipolar disorder. Schizophrenia Research, 90(1–3): 258265.Google Scholar
Hashimoto, K., Shimizu, E., & Iyo, M. (2004). Critical role of brain-derived neurotrophic factor in mood disorders. Brain Research Reviews, 45(2): 104114.Google Scholar
Hellemans, K. G. C., Verma, P., Yoon, E., Yu, W. K., Young, A. H., & Weinberg, J. (2010). Prenatal alcohol exposure and chronic mild stress differentially alter depressive- and anxiety-like behaviors in male and female offspring. Alcoholism: Clinical and Experimental Research, 34(4): 633645.Google Scholar
Hemmeter, U., Heimberg, D. R., Naber, G., Hobi, V., & Holsboer-Trachsler, E. (2000). Contingent negative variation and Dex-CRH test in patients with major depression. Journal of Psychiatric Research, 34(4–5): 365367.Google Scholar
Herane Vives, A., De Angel, V., Papadopoulos, A., Strawbridge, R., Wise, T., Young, A. H., … Cleare, A. (2015). The relationship between cortisol, stress and psychiatric illness: new insights using hair analysis. Journal of Psychiatric Research, 70: 3849. doi: 10.1016/j.jpsychires.2015.08.007.Google Scholar
Heuser, I. J., Gotthardt, U., Schweiger, U., Schmider, J., Lammers, C.-H., Dettling, M., & Holsboer, F. (1994). Age-associated changes of pituitary-adrenocortical hormone regulation in humans: Importance of gender. Neurobiology of Aging, 15(2): 227231.Google Scholar
Hinkelmann, K., Moritz, S., Botzenhardt, J., Riedesel, K., Wiedemann, K., Kellner, M., & Otte, C. (2009). Cognitive impairment in major depression: Association with salivary cortisol. Biological Psychiatry, 66(9): 879885.Google Scholar
Hughes, J. H., Gallagher, P., Stewart, M. E., Matthews, D., Kelly, T.P., & Young, A. H. (2003). The effects of acute tryptophan depletion on neuropsychological function. Journal of Psychopharmacology, 17(3): 300309.Google Scholar
Juruena, M. F., Cleare, A. J., Papadopoulos, A. S., Poon, L., Lightman, S., & Pariante, P. M. (2010). The prednisolone suppression test in depression: Dose-response and changes with antidepressant treatment. Psychoneuroendocrinology, 35(10): 14861491.Google Scholar
Juruena, M. F., Pariante, C. M., Papadopoulos, A. S., Poon, L., Lightman, S., & Cleare, A. J. (2009). Prednisolone suppression test in depression: Prospective study of the role of HPA axis dysfunction in treatment resistance. British Journal of Psychiatry, 194(4): 342349.Google Scholar
Klok, M. D., Giltay, E. J., Van Der Does, A. J., Geleijnse, J. M., Antypa, N., Penninx, B. W. J. H., … DeRijk, R. H. (2011). A common and functional mineralocorticoid receptor haplotype enhances optimism and protects against depression in females. Translational Psychiatry, 1(12): e62.Google Scholar
Knorr, U., Vinberg, M., Kessing, L. V., & Wetterslev, J. (2010). Salivary cortisol in depressed patients versus control persons: A systematic review and meta-analysis. Psychoneuroendocrinology, 35(9): 12751286.Google Scholar
Kuningas, M., De Rijk, R. H., Westendorp, R. G., Jolles, J., Slagboom, P. E., & Van Heemst, D. (2007). Mental performance in old age dependent on cortisol and genetic variance in the mineralocorticoid and glucocorticoid receptors. Neuropsychopharmacology, 32(6): 12951301.Google Scholar
Liu, Z., Zhu, F., Wang, G., Xiao, Z., Tang, J., Liu, W., … Li, W. (2007). Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neuroscience Letters, 414(2): 155158.Google Scholar
Lupien, S. J., Fiocco, A., Wan, N., Maheu, F., Lord, C., Schramek, T., & Tu, M. T. (2005). Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology, 30(3): 225242.Google Scholar
Maripuu, M., Wikgren, M., Karling, P., Adolfsson, R., & Norrback, K.-F. (2014). Relative hypo- and hypercortisolism are both associated with depression and lower quality of life in bipolar disorder: A cross-sectional study. PLoS One, 9: e98682.CrossRefGoogle ScholarPubMed
Markopoulou, K., Papadopoulos, A., Juruena, M. F., Poon, L., Pariante, C. M., & Cleare, A. J. (2009). The ratio of cortisol/DHEA in treatment resistant depression. Psychoneuroendocrinology, 34(1): 1926.Google Scholar
McQuade, R. & Young, A. H. (2000). Future therapeutic targets in mood disorders: The glucocorticoid receptor. British Journal of Psychiatry, 177(5): 390395.Google Scholar
Musselman, D. L. & Nemeroff, C. B. (1996). Depression and endocrine disorders: Focus on the thyroid and adrenal system. British Journal of Psychiatry Supplement 7, 168(30): 123128.Google Scholar
Pariante, C. M. (2006). The glucocorticoid receptor: Part of the solution or part of the problem? Journal of Psychopharmacology, 20(4): 7984.Google Scholar
Perroud, N., Dayer, A., Piguet, C., Nallet, A., Favre, S., Malafosse, A., & Aubry, J.-M. (2014). Childhood maltreatment and methylation of the glucocorticoid receptor gene NR3C1 in bipolar disorder. British Journal of Psychiatry, 204(1): 3035.Google Scholar
Prickaerts, J. & Steckler, T. (2005). Effects of glucocorticoids on emotion and cognitive processes in animals. In: Steckler, T. & Reul, J. (eds.), Techniques in the Behavioral and Neural Sciences (pp. 359385). Amsterdam: Elsevier.Google Scholar
Reus, V. I. & Wolkowitz, O. M. (2001). Antiglucocorticoid drugs in the treatment of depression. Expert Opinion on Investigational Drugs, 10(10): 17891796.Google Scholar
Roberts, A. D. L., Charler, M. L., Papadopoulos, A., Wessely, S., Chalder, T., & Cleare, A. J. (2010). Does hypocortisolism predict a poor response to cognitive behavioural therapy in chronic fatigue syndrome? Psychological Medicine, 40(3): 515522.Google Scholar
Robinson, L. J., Thompson, J. M., Gallagher, P., Goswami, U., Young, A. H., Ferrier, N., & Moore, P. B. (2006). A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. Journal of Affective Disorders, 93(1–3): 105115.Google Scholar
Roozendaal, B. (2000). Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology, 25(3): 213238.Google Scholar
Rubinow, D. R., Post, R. M., Savard, R., & Gold, P. W. (1984). Cortisol hypersecretion and cognitive impairment in depression. Archives of General Psychiatry, 41: 279283.Google Scholar
Schlosser, N., Wolf, O. T., Fernando, S. C., Terfehr, K., Otte, C., Spitzer, C., & Wingenfeld, K. (2013). Effects of acute cortisol administration on response inhibition in patients with major depression and healthy controls. Psychiatry Research, 209(3): 439446.Google Scholar
Slattery, M. J., Grieve, A. J., Ames, M. E., Armstrong, J. M., & Essex, M. J. (2013). Neurocognitive function and state cognitive stress appraisal predict cortisol reactivity to an acute psychosocial stressor in adolescents. Psychoneuroendocrinology, 38(8): 13181327.Google Scholar
Spijker, A. T. & Van Rossum, E. F. (2012). Glucocorticoid sensitivity in mood disorders. Neuroendocrinology, 95(3): 179186.Google Scholar
Stanton, B. R., David, A. S., Cleare, A. J., Sierra, M., Lambert, M. V., Phillips, M. L., … Young, A. H. (2001). Basal activity of the hypothalamic–pituitary–adrenal axis in patients with depersonalization disorder. Psychiatry Research, 104(1): 8589.Google Scholar
Starkman, M. N. & Schteingart, D. E. (1981). Neuropsychiatric manifestations of patients with Cushing’s syndrome: Relationship to cortisol and adrenocorticotropic hormone levels. Archives of Internal Medicine, 141(2): 215219.Google Scholar
Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A., & Cleare, A. J. (2015). Inflammation and clinical response to treatment in depression: A meta-analysis. European Neuropsychopharmacology, 25(10): 153243. doi: 10.1016/j.euroneuro.2015.06.007.Google Scholar
Szczepankiewicz, A., Leszczyńska-Rodziewicz, A., Pawlak, J., Rajewska-Rager, A., Dmitrzak-Weglarz, M., Wilkosc, M., … Hauser, J. (2011). Glucocorticoid receptor polymorphism is associated with major depression and predominance of depression in the course of bipolar disorder. Journal of Affective Disorders, 134(1–3): 138144.Google Scholar
Tak, L. M., Cleare, A. J., Ormel, J., Manoharan, A., Kok, I. C., Wessely, S., & Rosmalen, J. G. M. (2011). Meta-analysis and meta-regression of hypothalamic–pituitary–adrenal axis activity in functional somatic disorders. Biological Psychology, 87(2): 183194.Google Scholar
Thompson, J. M., Gallagher, P., Hughes, J. H., Watson, S., Gray, J. M., Ferrier, I. N., & Young, A. H. (2005). Neurocognitive impairment in euthymic patients with bipolar affective disorder. British Journal of Psychiatry, 186: 3240.Google Scholar
Van Ast, V. A., Cornelisse, S., Meeter, M., & Kindt, M. (2014). Cortisol mediates the effects of stress on the contextual dependency of memories. Psychoneuroendocrinology, 41: 97110.Google Scholar
Van Rossum, E. F., Binder, E. B., Majer, M., Koper, J. W., Ising, M., Modell, S., … Holsboer, F. (2006). Polymorphisms of the glucocorticoid receptor gene and major depression. Biological Psychiatry, 59(8): 681688.Google Scholar
Watson, S., Gallagher, P., Ferrier, I. N., & Young, A. H. (2006a). Post-dexamethasone arginine vasopressin levels in patients with severe mood disorders. Journal of Psychiatric Research, 40(4): 353359.Google Scholar
Watson, S., Gallagher, P., Porter, R. J., Smith, M. S., Herron, L. J., Bulmer, S., … Ferrier, I. N. (2012). A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biological Psychiatry, 72(11): 943949.Google Scholar
Watson, S., Gallagher, P., Ritchie, J. C., Ferrier, I. N., & Young, A. H. (2004). Hypothalamic–pituitary–adrenal axis function in patients with bipolar disorder. British Journal of Psychiatry, 184: 496502.Google Scholar
Watson, S., Thompson, J. M., Ritchie, J. C., Ferrier, I. N., & Young, A. H. (2006b). Neuropsychological impairment in bipolar disorder: The relationship with glucocorticoid receptor function. Bipolar Disorders, 8(1): 8590.Google Scholar
Webster, M. J., Knable, M. B., O’Grady, J., Orthmann, J., & Weickert, C. S. (2002). Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Molecular Psychiatry, 7(9): 985994, 924.Google Scholar
Wolkowitz, O. M., Reus, V. I., Keebler, A., Nelson, N., Friedland, M., Brizendine, L., & Roberts, E. (1999). Double-blind treatment of major depression with dehydroepiandrosterone. American Journal of Psychiatry, 156(4): 646649.Google Scholar
Wolkowitz, O. M., Reus, V. I., Weingartner, H., Thompson, K., Breier, A., Doran, A., … Pickar, D. (1990). Cognitive effects of corticosteroids. American Journal of Psychiatry, 147(10): 12971303.Google Scholar
Wooderson, S. C., Fekadu, A., Markopoulou, K., Rane, L. J., Poon, L., & Juruena, M. F. (2014). Long-term symptomatic and functional outcome following an intensive inpatient multidisciplinary intervention for treatment-resistant affective disorders. Journal of Affective Disorders, 166: 334342.Google Scholar
Yehuda, R., Boisoneau, D., Mason, J. W., & Giller, E. L. (1993). Glucocorticoid receptor number and cortisol excretion in mood, anxiety, and psychotic disorders. Biological Psychiatry, 34(1–2): 1825.Google Scholar
Young, A. H. (2011). More good news about the magic ion: Lithium may prevent dementia. British Journal of Psychiatry, 198(5): 336337.Google Scholar
Young, A. H., Gallagher, P., & Porter, R. J. (2002). Elevation of the cortisol-dehydroepiandrosterone ratio in drug-free depressed patients. American Journal of Psychiatry, 159(7): 12371239.Google Scholar
Young, A. H., Gallagher, P., Watson, S., Del-Estal, D., Owen, B. M., & Ferrier, I. N. (2004). Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology, 29(8): 15381545.Google Scholar
Young, A. H., Sahakian, B. J., Robbins, T. W., & Cowen, P. J. (1999). The effects of chronic administration of hydrocortisone on cognitive function in normal male volunteers. Psychopharmacology, 145(3): 260266.Google Scholar
Zobel, A., Jessen, F., Von Widdern, O., Schuhmacher, A., Höfels, S., Metten., M., … Schwab, S. G. (2008). Unipolar depression and hippocampal volume: Impact of DNA sequence variants of the glucocorticoid receptor gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B(6): 836843.Google Scholar
Zobel, A. W., Schulze-Rauschenbach, S., Von Widdern, O. C., Metten, M., Freymann, N., Grasmäder, K., … Maier, W. (2004). Improvement of working but not declarative memory is correlated with HPA normalization during antidepressant treatment. Journal of Psychiatric Research, 38(4): 377383.Google Scholar

References

Abe, O., Yamasue, H., Kasai, K., Yamada, H., Aoki, S., Inoue, H., … Ohtomo, K. (2010). Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Research: Neuroimaging, 181(1): 6470.Google Scholar
Aizenstein, H. J., Butters, M. A., Figurski, J. L., Stenger, V. A., Reynolds, C. F. III, & Carter, C. S. (2005). Prefrontal and striatal activation during sequence learning in geriatric depression. Biological Psychiatry, 58(4): 290296.Google Scholar
Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1): 357381.Google Scholar
Alexopoulos, G. S. (2003). Role of executive function in late-life depression. Journal of Clinical Psychiatry, 64(Suppl. 14): 1823.Google Scholar
Alexopoulos, G. S., Meyers, B. S., Young, R. C., Campbell, S., Silbersweig, D., & Charlson, M. (1997). “Vascular depression” hypothesis. Archives of General Psychiatry, 54(10): 915922.Google Scholar
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27(14): 37433752.Google Scholar
Aston, C., Jiang, L., & Sokolov, B. P. (2004). Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Molecular Psychiatry, 10(3): 309322.Google Scholar
Baird, B., Smallwood, J., Gorgolewski, K. J., & Margulies, D. S. (2013). Medial and lateral networks in anterior prefrontal cortex support metacognitive ability for memory and perception. Journal of Neuroscience, 33(42): 1665716665.Google Scholar
Beasley, C. L., Honavar, M., Everall, I. P., & Cotter, D. (2009). Two-dimensional assessment of cytoarchitecture in the superior temporal white matter in schizophrenia, major depressive disorder and bipolar disorder. Schizophrenia Research, 115(2): 156162.Google Scholar
Bora, E., Fornito, A., Pantelis, C., & Yücel, M. (2012a). Gray matter abnormalities in major depressive disorder: A meta-analysis of voxel based morphometry studies. Journal of Affective Disorders, 138(1): 918.Google Scholar
Bora, E., Harrison, B. J., Davey, C. G., Yücel, M., & Pantelis, C. (2012b). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychological Medicine, 42(4): 671681.Google Scholar
Bracht, T., Federspiel, A., Schnell, S., Horn, H., Höfle, O., Wiest, R., … Walther, S. (2012). Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder. PLoS One, 7(12): e52238.Google Scholar
Buyukdura, J. S., McClintock, S. M., & Croarkin, P. E. (2011). Psychomotor retardation in depression: Biological underpinnings, measurement, and treatment. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2): 395409.Google Scholar
Caligiuri, M. P. & Ellwanger, J. (2000). Motor and cognitive aspects of motor retardation in depression. Journal of Affective Disorders, 57(1–3): 8393.Google Scholar
Chantiluke, K., Halari, R., Simic, M., Pariante, C. M., Papadopoulos, A., Giampietro, V., & Rubia, K. (2012). Fronto-striato-cerebellar dysregulation in adolescents with depression during motivated attention. Biological Psychiatry, 71(1): 5967.Google Scholar
Chen, C.-S., Chiang, I., Li, C.-W., Lin, W.-C., Lu, C.-Y., Hsieh, T.-J., … Kuo, Y.-T. (2009). Proton magnetic resonance spectroscopy of late-life major depressive disorder. Psychiatry Research: Neuroimaging, 172(3): 210214.Google Scholar
Cooney, R. E., Joormann, J., Eugène, F., Dennis, E. L., & Gotlib, I. H. (2010). Neural correlates of rumination in depression. Cognitive, Affective, & Behavioral Neuroscience, 10(4): 470478.Google Scholar
Cotter, D., Mackay, D., Chana, G., Beasley, C., Landau, S., & Everall, I. P. (2002). Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cerebral Cortex, 12(4): 386394.Google Scholar
Crowell, A. L., Riva-Posse, P., Garlow, S. J., & Mayberg, H. S. (2014). Toward an understanding of the neural circuitry of major depressive disorder through the clinical response to deep brain stimulation of different anatomical targets. Current Behavioral Neuroscience Reports, 1(2): 5563.Google Scholar
Dannlowski, U., Ohrmann, P., Konrad, C., Domschke, K., Bauer, J., Kugel, H., … Baune, B. T. (2009). Reduced amygdala–prefrontal coupling in major depression: Association with MAOA genotype and illness severity. International Journal of Neuropsychopharmacology, 12(1): 1122.Google Scholar
DeRubeis, R. J., Siegle, G. J., & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9(10): 788796.Google Scholar
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8): 467477.Google Scholar
Draganski, B., Kherif, F., Klöppel, S., Cook, P. A., Alexander, D. C., Parker, G. J. M., … Frackowiak, R. S. J. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. Journal of Neuroscience, 28(28): 71437152.Google Scholar
Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13(8): 663681.Google Scholar
Elliott, R., Rubinsztein, J. S., Sahakian, B. J., & Dolan, R. J. (2002). The neural basis of mood-congruent processing biases in depression. Archives of General Psychiatry, 59(7): 597604.Google Scholar
Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51(6): 871882.Google Scholar
Eugène, F., Joormann, J., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2010). Neural correlates of inhibitory deficits in depression. Psychiatry Research: Neuroimaging, 181(1): 3035.Google Scholar
Fales, C. L., Barch, D. M., Rundle, M. M., Mintun, M. A., Snyder, A. Z., Cohen, J. D., … Sheline, Y. I. (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biological Psychiatry,63(4): 377384.Google Scholar
Fornage, M., Debette, S., Bis, J. C., Schmidt, H., Ikram, M. A., Dufouil, C., … Launer, L. J. (2011). Genome-wide association studies of cerebral white matter lesion burden. Annals of Neurology, 69(6): 928939.Google Scholar
Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4): 424430.Google Scholar
Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., … Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5): 429437.Google Scholar
Halari, R., Simic, M., Pariante, C. M., Papadopoulos, A., Cleare, A., Brammer, M., … Rubia, K. (2009). Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls. Journal of Child Psychology and Psychiatry, 50(3): 307316.Google Scholar
Hamilton, J. P. & Gotlib, I. H. (2008). Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biological Psychiatry, 63(12): 11551162.Google Scholar
Heller, A. S., Johnstone, T., Shackman, A. J., Light, S. N., Peterson, M. J., Kolden, G. G., … Davidson, R. J. (2009). Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proceedings of the National Academy of Sciences of the United States of America, 106(52): 2244522450.Google Scholar
Johansen-Berg, H., Gutman, D. A., Behrens, T. E. J., Matthews, P. M., Rushworth, M. F. S., Katz, E., … Mayberg, H. S. (2008). Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cerebral Cortex, 18(6): 13741383.Google Scholar
Johnston-Wilson, N. L., Sims, C. D., Hofmann, J. P., Anderson, L., Shore, A. D., Torrey, E. F., & Yolken, R. H. (2000). Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. Molecular Psychiatry, 5(2): 142149.Google Scholar
Johnstone, T., Van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. Journal of Neuroscience, 27(33): 88778884.Google Scholar
Krishnan, K., Taylor, W. D., McQuoid, D. R., MacFall, J. R., Payne, M. E., Provenzale, J. M., & Steffens, D. C.(2004). Clinical characteristics of magnetic resonance imaging-defined subcortical ischemic depression. Biological Psychiatry, 55(4): 390397.Google Scholar
Kumar, A., Gupta, R. C., Albert, T. M., Alger, J., Wyckoff, N., & Hwang, S. (2004). Biophysical changes in normal-appearing white matter and subcortical nuclei in late-life major depression detected using magnetization transfer. Psychiatry Research: Neuroimaging, 130(2): 131140.Google Scholar
Lee, R. S. C., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. Journal of Affective Disorders, 140(2): 113124.Google Scholar
Lui, S., Wu, Q., Qiu, L., Yang, X., Kuang, W., Chan, R. C. K., … Gong, Q. (2011). Resting-state functional connectivity in treatment-resistant depression. American Journal of Psychiatry, 168(6): 642648.Google Scholar
Ma, N., Li, L., Shu, N., Liu, J., Gong, G., He, Z., … Zhang, Z. (2007). White matter abnormalities in first-episode, treatment-naive young adults with major depressive disorder. American Journal of Psychiatry, 164(5): 823826.Google Scholar
MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95(1): 1520.Google Scholar
Mayberg, H. S. (2009). Targeted electrode-based modulation of neural circuits for depression. Journal of Clinical Investigation, 119(4): 717725.Google Scholar
Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., … Lancaster, J. L. (1999). Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry, 156(5): 675682.Google Scholar
Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., … Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5): 651660.Google Scholar
McCormick, L. M., Ponto, L. L. B., Pierson, R. K., Johnson, H. J., Magnotta, V., & Brumm, M. C. (2007). Metabolic correlates of antidepressant and antipsychotic response in patients with psychotic depression undergoing electroconvulsive therapy. Journal of ECT, 23(4): 265273.Google Scholar
Millan, M. J., Agid, Y., Brüne, M., Bullmore, E. T., Carter, C. S., Clayton, N. S., … DeRubeis, R. J. (2012). Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 11(2): 141168.Google Scholar
Minett, T. S. C., Dean, J. L., Firbank, M., English, P., & O’Brien, J. T. (2005). Subjective memory complaints, white-matter lesions, depressive symptoms, and cognition in elderly patients. American Journal of Geriatric Psychiatry, 13(8): 665671.Google Scholar
Modirrousta, M. & Fellows, L. K. (2008). Medial prefrontal cortex plays a critical and selective role in “feeling of knowing” meta-memory judgments. Neuropsychologia, 46(12): 29582965.Google Scholar
Murata, T., Kimura, H., Omori, M., Kado, H., Kosaka, H., Iidaka, T., … Wada, Y. (2001). MRI white matter hyperintensities, 1H-MR spectroscopy and cognitive function in geriatric depression: A comparison of early-and late-onset cases. International Journal of Geriatric Psychiatry, 16(12): 11291135.Google Scholar
Niogi, S., Mukherjee, P., Ghajar, J., & McCandliss, B. D. (2010). Individual differences in distinct components of attention are linked to anatomical variations in distinct white matter tracts. Frontiers in Neuroanatomy, 4: 2.Google Scholar
O’Driscoll, K. & Leach, J. P. (1998). “No longer Gage”: an iron bar through the head – early observations of personality change after injury to the prefrontal cortex. British Medical Journal, 317(7174): 16731674.Google Scholar
O’Sullivan, M., Barrick, T. R., Morris, R. G., Clark, C. A., & Markus, H. S. (2005). Damage within a network of white matter regions underlies executive dysfunction in CADASIL. Neurology, 65(10): 15841590.Google Scholar
Papakostas, G. I., Iosifescu, D. V., Renshaw, P. F., Lyoo, I. K., Lee, H. K., Alpert, J. E., … Fava, M. (2005). Brain MRI white matter hyperintensities and one-carbon cycle metabolism in non-geriatric outpatients with major depressive disorder (Part II). Psychiatry Research: Neuroimaging, 140(3): 301307.Google Scholar
Ponds, R. W. H. M. & Jolles, J. (1996). Memory complaints in elderly people: The role of memory abilities, metamemory, depression, and personality. Educational Gerontology: An International Quarterly, 22(4): 341357.Google Scholar
Posner, M. I. & Petersen, S. E. (1989). The attention system of the human brain: DTIC document. St. Louis, MO: Washington University.Google Scholar
Posner, M. I. & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58: 123.Google Scholar
Prins, N. D., Van Dijk, E. J., den Heijer, T., Vermeer, S. E., Jolles, J., Koudstaal, P. J., … Breteler, M. M. B. (2005). Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain, 128(9): 20342041.Google Scholar
Qin, J., Wei, M., Liu, H., Yan, R., Luo, G., Yao, Z., & Lu, Q. (2014). Abnormal brain anatomical topological organization of the cognitive-emotional and the frontoparietal circuitry in major depressive disorder. Magnetic Resonance in Medicine, 72(5): 13971407.Google Scholar
Rajkowska, G. & Miguel-Hidalgo, J. J. (2007). Gliogenesis and glial pathology in depression. CNS & Neurological Disorders: Drug Targets, 6(3): 219233.Google Scholar
Ratiu, P., Talos, I.-F., Haker, S., Lieberman, D., & Everett, P. (2004). The tale of Phineas Gage, digitally remastered. Journal of Neurotrauma, 21(5): 637643.Google Scholar
Rigucci, S., Serafini, G., Pompili, M., Kotzalidis, G. D., & Tatarelli, R. (2010). Anatomical and functional correlates in major depressive disorder: The contribution of neuroimaging studies. World Journal of Biological Psychiatry, 11(2): 165180.Google Scholar
Russo, S. J. & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9): 609625.Google Scholar
Sacher, J., Neumann, J., Fünfstück, T., Soliman, A., Villringer, A., & Schroeter, M. L. (2012). Mapping the depressed brain: A meta-analysis of structural and functional alterations in major depressive disorder. Journal of Affective Disorders, 140(2): 142148.Google Scholar
Sepulcre, J., Masdeu, J. C., Sastre-Garriga, J., Goñi, J., Vélez-de-Mendizábal, N., Duque, B., … Villoslada, P. (2008). Mapping the brain pathways of declarative verbal memory: Evidence from white matter lesions in the living human brain. Neuroimage, 42(3): 12371243.Google Scholar
Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24): 1102011025.Google Scholar
Shizukuishi, T., Abe, O., & Aoki, S. (2013). Diffusion tensor imaging analysis for psychiatric disorders. Magnetic Resonance in Medical Sciences, 12(3): 153159.Google Scholar
Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61(2): 198209.Google Scholar
Simpson, J. E., Hosney, O., Wharton, S. B., Heath, P., Holden, H., Fernando, M. S., … Ince, P. G. (2009). Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways. Stroke, 40(2): 369375.Google Scholar
Surguladze, S., Brammer, M. J., Keedwell, P., Giampietro, V., Young, A. W., Travis, M. J., … Phillips, M. L. (2005). A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biological Psychiatry, 57(3): 201209.Google Scholar
Tao, H., Guo, S., Ge, T., Kendrick, K. M., Xue, Z., Liu, Z., & Feng, J. (2011). Depression uncouples brain hate circuit. Molecular Psychiatry, 18(1): 101111.Google Scholar
Taylor, W. D., Aizenstein, H. J., & Alexopoulos, G. S. (2013). The vascular depression hypothesis: Mechanisms linking vascular disease with depression. Molecular Psychiatry, 18(9): 963974.Google Scholar
Tham, M. W., Woon, P. S., Sum, M. Y., Lee, T.-S., & Sim, K. (2011). White matter abnormalities in major depression: Evidence from post-mortem, neuroimaging and genetic studies. Journal of Affective Disorders, 132(1): 2636.Google Scholar
Thomas, A. J., O’Brien, J. T., Davis, S., Ballard, C., Barber, R., Kalaria, R. N., & Perry, R. H. (2002). Ischemic basis for deep white matter hyperintensities in major depression: A neuropathological study. Archives of General Psychiatry, 59(9): 785792.Google Scholar
Tullberg, M., Fletcher, E., DeCarli, C., Mungas, D., Reed, B. R., Harvey, D. J., … Jagust, W. J. (2004). White matter lesions impair frontal lobe function regardless of their location. Neurology, 63(2): 246253.Google Scholar
Turken, A. U., Whitfield-Gabrieli, S., Bammer, R., Baldo, J., Dronkers, N. F., & Gabrieli, J. D. E. (2008). Cognitive processing speed and the structure of white matter pathways: Convergent evidence from normal variation and lesion studies. NeuroImage, 42(2): 10321044.Google Scholar
Van den Heuvel, D. M. J., Ten Dam, V. H., de Craen, A. J. M., Admiraal-Behloul, F., Olofsen, H., Bollen, E. L. E. M., … Westendorp, R. G. J. (2006). Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. Journal of Neurology, Neurosurgery, and Psychiatry, 77(2): 149153.Google Scholar
Van Horn, J. D., Irimia, A., Torgerson, C. M., Chambers, M. C., Kikinis, R., & Toga, A. W. (2012). Mapping connectivity damage in the case of Phineas Gage. PloS One, 7(5): e37454.Google Scholar
Van Petten, C., Plante, E., Davidson, P. S. R., Kuo, T. Y., Bajuscak, L., & Glisky, E. L. (2004). Memory and executive function in older adults: Relationships with temporal and prefrontal gray matter volumes and white matter hyperintensities. Neuropsychologia, 42(10): 13131335.Google Scholar
Veer, I. M., Beckmann, C. F., Van Tol, M.-J., Ferrarini, L., Milles, J., Veltman, D. J., … Rombouts, S. A. R. B. (2010). Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Frontiers in Systems Neuroscience, 4: 41.Google Scholar
Walther, S., Hügli, S., Höfle, O., Federspiel, A., Horn, H., Bracht, T., … Müller, T. J. (2012). Frontal white matter integrity is related to psychomotor retardation in major depression. Neurobiology of Disease,47(1): 1319.Google Scholar
Watkins, E. & Brown, R. G. (2002). Rumination and executive function in depression: An experimental study. Journal of Neurology, Neurosurgery, and Psychiatry, 72(3): 400402.Google Scholar
World Health Organization (2001). Mental Health: A Call for Action by World Health Ministers. Geneva: WHO.Google Scholar
Zou, K., Huang, X., Li, T., Gong, Q., Li, Z., Ou-yang, L., … Sun, X. (2008). Alterations of white matter integrity in adults with major depressive disorder: A magnetic resonance imaging study. Journal of Psychiatry & Neuroscience, 33(6): 525530.Google Scholar

References

Abbatecola, A. M., Paolisso, G., Lamponi, M., Bandinelli, S., Lauretani, F., Launer, L., & Ferrucci, L. (2004). Insulin resistance and executive dysfunction in older persons. Journal of the American Geriatrics Society, 52(10): 17131718.Google Scholar
Adriaanse, M. C., Dekker, J. M., Nijpels, G., Heine, R. J., Snoek, F. J., & Pouwer, F. (2006). Associations between depressive symptoms and insulin resistance: The Hoorn Study. Diabetologia, 49(12): 28742877.Google Scholar
Akomolafe, A., Beiser, A., Meigs, J. B., Au, R., Green, R. C., Farrer, L. A., … Seshadri, S. (2006). Diabetes mellitus and risk of developing Alzheimer disease: Results from the Framingham Study. Archives of Neurology, 63(11): 15511555.Google Scholar
Anttila, S. & Leinonen, E. (2001). A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Reviews, 7(3): 239264.Google Scholar
Arroyo, C., Hu, F., Ryan, L., Kawachi, I., Colditz, G., Speizer, F., & Manson, J. (2004). Depressive symptoms and risk of type 2 diabetes in women. Diabetes Care, 27(1): 129133.Google Scholar
Awad, N., Gagnon, M., Desrochers, A., Tsiakas, M., & Messier, C. (2002). Impact of peripheral glucoregulation on memory. Behavioral Neuroscience, 116(4): 691702.Google Scholar
Awad, N., Gagnon, M., & Messier, C. (2004). The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. Journal of Clinical and Experimental Neuropsychology, 26(8): 10441080.Google Scholar
Banki, C. M., Karmacsi, L., Bissette, G., & Nemeroff, C. B. (1992). CSF corticotropin-releasing hormone and somatostatin in major depression: Response to antidepressant treatment and relapse. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 2(2): 107113.Google Scholar
Benedict, C., Hallschmid, M., Hatke, A., Schultes, B., Fehm, H., Born, J., & Kern, W. (2004). Intranasal insulin improves memory in humans. Psychoneuroendocrinology, 29(10): 13261334.Google Scholar
Benkert, O., Szegedi, A., & Kohnen, R. (2000). Mirtazapine compared with paroxetine in major depression. Journal of Clinical Psychiatry, 61(9): 656663.Google Scholar
Bot, M., Pouwer, F., De Jonge, P., Nolan, J. J., Mari, A., Hojlund, K., … Dekker, J. M. (2013). Depressive symptoms, insulin sensitivity and insulin secretion in the RISC cohort study. Diabetes & Metabolism, 39(1): 4249.Google Scholar
Boyer, W. & Feighner, J. (1992). An overview of paroxetine. Journal of Clinical Psychiatry, 53(Suppl.): 36.Google Scholar
Brown, L., Majumdar, S., Newman, S., & Johnson, J. (2005). History of depression increases risk of type 2 diabetes in younger adults. Diabetes Care, 28(5): 10631067.Google Scholar
Bruehl, H., Sweat, V., Hassenstab, J., Polyakov, V., & Convit, A. (2010). Cognitive impairment in nondiabetic middle-aged and older adults is associated with insulin resistance. Journal of Clinical and Experimental Neuropsychology, 32(5): 487493.Google Scholar
Carnethon, M., Kinder, L., Fair, J., Stafford, R., & Fortmann, S. (2003). Symptoms of depression as a risk factor for incident diabetes: findings from the National Health and Nutrition Examination Epidemiologic Follow-up Study, 1971–1992. American Journal of Epidemiology, 158(5): 416423.Google Scholar
Casper, R., Davis, J., Pandey, G., Garver, D., & Dekirmenjian, H. (1977). Neuroendocrine and amine studies in affective illness. Psychoneuroendocrinology, 2(2): 105113.Google Scholar
Centers for Disease Control and Prevention (2011). National diabetes fact sheet: National estimates and general information on diabetes and prediabetes in the United States. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention.Google Scholar
Cheng, B. & Mattson, M. (1992). IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. Journal of Neuroscience, 12(4): 15581566.Google Scholar
Chiba, M., Suzuki, S., Hinokio, Y., Hirai, M., Satoh, Y., Tashiro, A., … Toyota, T. (2000). Tyrosine hydroxylase gene microsatellite polymorphism associated with insulin resistance in depressive disorder. Metabolism, 49(9): 11451149.Google Scholar
Clarke, D., Boyd, F., Kappy, M., & Raizada, M. (1984). Insulin binds to specific receptors and stimulates 2-deoxy-D-glucose uptake in cultured glial cells from rat brain. Journal of Biological Chemistry, 259: 1167211675.Google Scholar
Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100(4): 20192022.Google Scholar
Craft, S. (2005). Insulin resistance syndrome and Alzheimer’s disease: Age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiology of Aging, 26(Suppl. 1): 6569.Google Scholar
Craft, S.S. (2006). Insulin resistance syndrome and Alzheimer disease: Pathophysiologic mechanisms and therapeutic implications. Alzheimer Disease and Associated Disorders, 20(4): 298301.Google Scholar
Craft, S.S. (2009). The role of metabolic disorders in Alzheimer disease and vascular dementia: Two roads converged. Archives of Neurology, 66(3): 300305.Google Scholar
Craft, S., Asthana, S., Cook, D., Baker, L., Cherrier, M., Purganan, K., … Krohn, A. J. (2003). Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28(6): 809822.Google Scholar
Craft, S., Asthana, S., Schellenberg, G., Baker, L., Cherrier, M., Boyt, A., … Plymate, S. (2000). Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer’s disease differ according to apolipoprotein-E genotype. Annals of the New York Academy of Sciences, 903: 222228.Google Scholar
Craft, S., Asthana, S., Schellenberg, G., Cherrier, M., Baker, L., Newcomer, J., … Grimwood, K. (1999). Insulin metabolism in Alzheimer’s disease differs according to apolipoprotein E genotype and gender. Neuroendocrinology, 70(2): 146152.Google Scholar
Craft, S. & Watson, G. (2004). Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurology, 3(3): 169178.Google Scholar
Curb, J. D., Rodriguez, B. L., Abbott, R. D., Petrovitch, H., Ross, G. W., Masaki, K. H., … White, L. R. (1999). Longitudinal association of vascular and Alzheimer’s dementias, diabetes, and glucose tolerance. Neurology, 52(5): 971975.Google Scholar
Davis, S., Colburn, C., Dobbins, R., Nadeau, S., Neal, D., & Williams, P. (1995). Evidence that the brain of the conscious dog is insulin sensitive. Journal of Clinical Investigation, 95(2): 593602.Google Scholar
de Leon, M., Desanti, S., Zinkowski, R., Mehta, P., Pratico, D., Segal, S., … Rusinek, H. (2004). MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of Internal Medicine, 256(3): 205223.Google Scholar
Delaunay, F., Khan, A., Cintra, A., Davani, B., Ling, Z. C., Andersson, A., … Okret, S. (1997). Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. Journal of Clinical Investigation, 100(8): 20942098.Google Scholar
den Heijer, T., Vermeer, S., van Dijk, E., Prins, N., Koudstaal, P., Hofman, A., & Breteler, M. M. (2003). Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia, 46(12): 16041610.Google Scholar
Dringen, R. & Hamphrecht, B. (1992). Glucose, insulin, and insulin-like growth factor I regulate the glycogen content of atroglia-rich primary cultures. Journal of Neurochemistry, 58(2): 511517.Google Scholar
Dunaif, A., Segal, K., Futterweit, W., & Dobrjansky, A. (1989). Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes, 38(9): 11651174.Google Scholar
Eaton, W., Armenian, H., Gallo, J., Pratt, L., & Ford, D. (1996). Depression and risk for onset of type II diabetes: A prospective population-based study. Diabetes Care 19(10): 10971102.Google Scholar
Enzinger, C., Fazekas, F., Matthews, P., Ropele, S., Schmidt, H., Smith, S., … Schmidt, R. (2005). Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology, 64(10): 17041711.Google Scholar
Everson-Rose, S., Meyer, P., Powell, L., Pandey, D., Torrens, J., Kravitz, H., … Matthews, K. A. (2004). Depressive symptoms, insulin resistance, and risk of diabetes in women at midlife. Diabetes Care, 27(12): 28562862.Google Scholar
Facchini, F., Hua, N., Abbasi, F., & Reaven, G. (2001). Insulin resistance as a predictor of age-related diseases. Journal of Clinical Endocrinology & Metabolism, 86(8): 35743578.Google Scholar
Farin, H., Abbasi, F., & Reaven, G. (2005). Body mass index and waist circumference correlate to the same degree with insulin-mediated glucose uptake. Metabolism, 54(10): 13231328.Google Scholar
Farin, H., Abbasi, F., & Reaven, G. (2006). Body mass index and waist circumference both contribute to differences in insulin-mediated glucose disposal in nondiabetic adults. American Journal of Clinical Nutrition, 83(1): 4751.Google Scholar
Fava, M. (2000). Weight gain and antidepressants. Journal of Clinical Psychiatry, 61(Suppl. 11): 3741.Google Scholar
Flood, J., Mooradian, A., & Morley, J. (1990). Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes, 39(11): 13911398.Google Scholar
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27): 96739678.Google Scholar
Freeman, H. (1946). Resistance to insulin in mentally disturbed soldiers. Archives of Neural Psychiatry, 56(1): 7478.Google Scholar
Gerich, J. (2003). Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of type 2 diabetes mellitus. Mayo Clinic Proceedings, 78(4): 447456.Google Scholar
Geroldi, C., Frisoni, G. B., Paolisso, G., Bandinelli, S., Lamponi, M., & Abbatecola, A. M. (2005). Insulin resistance in cognitive impairment: The InCHIANTI study. Archives of Neurology, 62(7): 10671072.Google Scholar
Gerozissis, K. (2003). Brain insulin: Regulation, mechanisms of action and functions. Cellular and Molecular Neurobiology, 23(1): 125.Google Scholar
Gispen, W. & Biessels, G. (2000). Cognition and synaptic plasticity in diabetes mellitus. Trends in Neurosciences, 23(11): 542549.Google Scholar
Golden, S., Williams, J., Ford, D., Yeh, H., Paton Sanford, C., Nieto, F., … Atherosclerosis Risk in Communities study (2004). Depressive symptoms and the risk of type 2 diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care, 27(2): 429435.Google Scholar
Goodnick, P. (2001). Use of antidepressants in treatment of comorbid diabetes mellitus and depression as well as in diabetic neuropathy. Annals of Clinical Psychiatry, 13(1): 3141.Google Scholar
Green, R., Cupples, L., Kurz, A., Auerbach, S., Go, R., Sadovnick, D., … Farrer, L. (2003). Depression as a risk factor for Alzheimer disease: The MIRAGE Study. Archives of Neurology, 60(5): 753759.Google Scholar
Greicius, M., Srivastava, G., Reiss, A., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13): 46374642.Google Scholar
Hampel, H., Burger, K., Teipel, S. J., Bokde, A. L., Zetterberg, H., & Blennow, K. (2008). Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimer’s & Dementia: Journal of the Alzheimer’s Association, 4(1): 3848.Google Scholar
Hempel, R., Onopa, R., & Convit, A. (2012). Type 2 diabetes affects hippocampus volume differentially in men and women. Diabetes/Metabolism Research and Reviews, 28(1): 7683.Google Scholar
Hill, J., Lesniak, M., Pert, C., & Roth, J. (1986). Autoradiographic localization of insulin receptors in rat brain: Prominence in olfactory and limbic areas. Neuroscience, 17(4): 11271138.Google Scholar
Horacek, J., Kuzmiakova, M., Hoschl, C., Andel, M., & Bahbonh, R. (1999). The relationship between central serotonergic activity and insulin sensitivity in healthy volunteers. Psychoneuroendocrinology, 24(8): 785797.Google Scholar
Izumi, Y., Yamada, K., Matsukawa, M., & Zorumski, C. (2003). Effects of insulin on long-term potentiation in hippocampal slices from diabetic rats. Diabetologia, 46(7): 10071012.Google Scholar
Kalmijn, S., Feskens, E., Launer, L., Stijnen, T., & Kromhout, D. (1995). Glucose intolerance, hyperinsulinaemia and cognitive function in a general population of elderly men. Diabetologia, 38(9): 10961102.Google Scholar
Kanaya, A. M., Barrett-Connor, E., Gildengorin, G., & Yaffe, K. (2004). Change in cognitive function by glucose tolerance status in older adults: A 4-year prospective study of the Rancho Bernardo study cohort. Archives of Internal Medicine, 164(12): 13271333.Google Scholar
Kawakami, N., Takatsuka, N., Shimizu, H., & Ishibashi, H. (1999). Depressive symptoms and occurrence of type 2 diabetes among Japanese men. Diabetes Care, 22(7): 10711076.Google Scholar
Kenna, H., Hoeft, F., Kelley, R., Wroolie, T., DeMuth, B., Reiss, A., & Rasgon, N. (2013). Fasting plasma insulin and the default mode network in women at risk for Alzheimer’s disease. Neurobiology of Aging, 34(3): 641649.Google Scholar
Kern, W., Peters, A., Fruehwald-Schultes, B., Deininger, E., Born, J., & Fehm, H. (2001). Improving influence of insulin on cognitive functions in humans. Neuroendocrinology, 74(4): 270280.Google Scholar
Kerr, D., Stanley, J., Barron, M., Thomas, R., Leatherdale, B., & Pickard, J. (1993). Symmetry of cerebral blood flow and cognitive responses to hypoglycemia in humans. Diabetologia, 36(1): 7378.Google Scholar
Kessing, L., Nilsson, F., Siersma, V., & Andersen, P. (2004). Increased risk of developing diabetes in depressive and bipolar disorders? Journal of Psychiatric Research, 38(4): 395402.Google Scholar
Kivipelto, M., Ngandu, T., Fratiglioni, L., Viitanen, M., Kareholt, I., Winblad, B., … Nissinen, A. (2005). Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Archives of Neurology 62(10): 15561560.Google Scholar
Kopf, D., Westphal, S., Luley, C., Ritter, S., Gilles, M., Weber-Hamann, B., … Deuschle, M. (2004). Lipid metabolism and insulin resistance in depressed patients: significance of weight, hypercortisolism, and antidepressant treatment. Journal of Clinical Psychopharmacology, 24(5): 527531.Google Scholar
Kopf, S. & Baratti, C. (1995). The impairment of retention induced by insulin in mice may be mediated by a reduction in central cholinergic activity. Neurobiology of Learning and Memory, 63(3): 220228.Google Scholar
Kopf, S. & Baratti, C. (1996). Memory modulation by post-training glucose or insulin remains evident at long retention intervals. Neurobiology of Learning and Memory, 65(2): 189191.Google Scholar
Kumar, R., Anstey, K. J., Cherbuin, N., Wen, W., & Sachdev, P. S. (2008). Association of type 2 diabetes with depression, brain atrophy, and reduced fine motor speed in a 60- to 64-year-old community sample. American Journal of Geriatric Psychiatry, 16(12): 989998.Google Scholar
Kumari, M., Head, J., & Marmot, M. (2004). Prospective study of social and other risk factors for incidence of type 2 diabetes in the Whitehall II study. Archives of Internal Medicine, 164(17): 18731880.Google Scholar
Kuusisto, J., Koivisto, K., Mykkanen, L., Helkala, E., Vanhanen, M., Hänninen, T., … Laakso, M. (1997). Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. British Medical Journal, 315(7115): 10451049.Google Scholar
Kyriaki, G. (2003). Brain insulin: Regulation, mechanisms of action and functions. Cellular and Molecular Neurobiology, 23(1): 125.Google Scholar
Lannert, H. & Hoyer, S. (1998). Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behavioral Neuroscience, 112(5): 11991208.Google Scholar
Luchsinger, J. A. (2010). Diabetes, related conditions, and dementia. Journal of the Neurological Sciences, 299(1–2): 3538.Google Scholar
Luchsinger, J. A., Tang, M., Shea, S., & Mayeux, R. (2004). Hyperinsulinemia and risk of Alzheimer disease. Neurology, 63(7): 11871992.Google Scholar
Ma, Y., Balasubramanian, R., Pagoto, S. L., Schneider, K. L., Hebert, J. R., Phillips, L. S., … Liu, S. (2013). Relations of depressive symptoms and antidepressant use to body mass index and selected biomarkers for diabetes and cardiovascular disease. American Journal of Public Health, 103(8): e34e43.Google Scholar
Matthews, D., Hosker, J., Rudenski, A., Naylor, B., Treacher, D., & Turner, R. (1985). Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7): 412419.Google Scholar
McCowan, P. & Quastel, J. (1931). Blood sugar studies in abnormal mental states. British Journal of Psychiatry, 77(318): 525548.Google Scholar
McIntyre, R. S., Rasgon, N. L., Kemp, D. E., Nguyen, H. T., Law, C. W., Taylor, V. H., … Goldstein, B. I. (2009). Metabolic syndrome and major depressive disorder: co-occurrence and pathophysiologic overlap. Current Diabetes Reports, 9(1): 5159.Google Scholar
McLaughlin, T., Allison, G., Abbasi, F., Lamendola, C., & Reaven, G. (2004). Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. Metabolism, 53(4): 495499.Google Scholar
Mellitus ECotDaCoD (2003). Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 26(Suppl. 1): S5S20.Google Scholar
Menna-Perper, M., Rochford, J., Mueller, P., Swartzburg, M., Jekelis, A., & Manowitz, P. (1984). Differential response of plasma glucose, amino acids and nonesterified fatty acids to insulin in depressed patients. Psychoneuroendocrinology, 9(2): 161171.Google Scholar
Messier, C. (2003). Diabetes, Alzheimer’s disease and apolipoprotein genotype. Experimental Gerontology, 38(9): 941946.Google Scholar
Mueller, P., Heninger, G., & McDonald, R. (1969a). Insulin tolerance test in depression. Archives of General Psychiatry, 21: 587594.Google Scholar
Mueller, P., Heninger, G., & McDonald, R. (1969b). Intravenous glucose tolerance test in depression. Archives of General Psychiatry, 21: 470477.Google Scholar
Muldoon, M., Mackey, R., Korytkowski, M., Flory, J., Pollock, B., & Manuck, S. (2006). The metabolic syndrome is associated with reduced central serotonergic responsivitity in healthy community volunteers. Journal of Clinical Endocrinology & Metabolism, 91(2): 718721.Google Scholar
Muldoon, M., Mackey, R., Williams, K., Korytkowski, M., Flory, J., & Manuck, S. (2004). Low central nervous system serotonergic responsivity is associated with the metabolic syndrome and physical inactivity. Journal of Clinical Endocrinology & Metabolism, 89(1): 266271.Google Scholar
Musen, G., Jacobson, A. M., Bolo, N. R., Simonson, D. C., Shenton, M. E., McCartney, R. L., … Hoogenboom, W. S. (2012). Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes, 61(9): 23752379.Google Scholar
Musselman, D. L., Betan, E., Larsen, H., & Phillips, L. S. (2003). Relationship of depression to diabetes types 1 and 2: Epidemiology, biology, and treatment. Biological Psychiatry, 54(3): 317329.Google Scholar
Nathan, R., Sachar, E., Asnis, G., Halbreich, U., & Halpern, F. (1981). Relative insulin insensitivity and cortisol secretion in depressed patients. Psychiatry Research, 4(3): 291300.Google Scholar
Neumann, K. F., Rojo, L., Navarrete, L. P., Farias, G., Reyes, P., & Maccioni, R. B. (2008). Insulin resistance and Alzheimer’s disease: Molecular links & clinical implications. Current Alzheimer Research, 5(5): 438447.Google Scholar
Nichols, G. & Brown, J. (2003). Unadjusted and adjusted prevalence of diagnosed depression in type 2 diabetes. Diabetes Care, 26(3): 744749.Google Scholar
Okamura, F., Tashiro, A., Utumi, A., Imai, T., Suchi, T., Tamura, D., … Hongo, M. (2000). Insulin resistance in patients with depression and its changes during the clinical course of depression: minimal model analysis. Metabolism, 49(10): 12551260.Google Scholar
Ott, A., Stolk, R. P., Hofman, A., van Harskamp, F., Grobbee, D. E., & Breteler, M. M. (1996). Association of diabetes mellitus and dementia: The Rotterdam Study. Diabetologia, 39(11): 13921397.Google Scholar
Palinkas, L., Lee, P., & Barrett-Connor, E. (2004). A prospective study of Type 2 diabetes and depressive symptoms in the elderly: The Rancho Bernardo Study. Diabetic Medicine, 21(11): 11851191.Google Scholar
Pan, A., Ye, X., Franco, O. H., Li, H., Yu, Z., Zou, S., … Lin, X. (2008). Insulin resistance and depressive symptoms in middle-aged and elderly Chinese: Findings from the Nutrition and Health of Aging Population in China Study. Journal of Affective Disorders, 109(1–2): 7582.Google Scholar
Pariante, C. M. & Lightman, S. L. (2008). The HPA axis in major depression: Classical theories and new developments. Trends in Neurosciences, 31(9): 464468.Google Scholar
Park, C. (2001). Cognitive effects of insulin in the central nervous system. Neuroscience and Biobehavioral Reviews, 25(4): 311323.Google Scholar
Park, C., Seeley, R., Craft, S., & Woods, S. (2000). Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiology & Behavior 68(4): 509514.Google Scholar
Pearson, S., Schmidt, M., Patton, G., Dwyer, T., Blizzard, L., Otahal, P., & Venn, A. (2010). Depression and insulin resistance: Cross-sectional associations in young adults. Diabetes Care, 33(5): 11281133.Google Scholar
Pestell, R., Crock, P., & Ward, G. (1989). Fenfluramine increases insulin action in patients with NIDDM. Diabetes Care, 12(4): 252258.Google Scholar
Porte, D. Jr. & Woods, S. C. (1981). Regulation of food intake and body weight in insulin. Diabetologia, 20(Suppl.): 274280.Google Scholar
Potter Van Loon, B., Radder, J., Krans, H., Zwinderman, A., & Meinders, A. (1991). Fluoxetine increases insulin action in obese nondiabetic and obese non-insulin-dependent diabetic individuals. International Journal of Obesity and Related Metabolic Disorders, 16(2): 7885.Google Scholar
Pryce, I. (1958). Melancholia, glucose tolerance, and bodyweight. Journal of Mental Science, 104(435): 421427.Google Scholar
Ramasubbu, R. (2002). Insulin resistance: A metabolic link between depressive disorder and atherosclerotic vascular diseases. Medical Hypotheses, 59(5): 537551.Google Scholar
Rasgon, N., Altshuler, L., Fairbanks, L., Elman, S., Bitran, J., Labarca, R., … Mintz, J. (2005). Reproductive function and risk for PCOS in women treated for bipolar disorder. Bipolar Disorders, 7(3): 246259.Google Scholar
Rasgon, N. & Jarvik, L. (2004). Insulin resistance, affective disorders, and Alzheimer’s disease: Review and hypothesis. Journals of Gerontology Series A: Biological Sciences & Medical Sciences, 59(2): 178183.Google Scholar
Rasgon, N. L., Carter, M. S., Elman, S., Bauer, M., Love, M., & Korenman, S. G. (2002). Common treatment of polycystic ovarian syndrome and major depressive disorder: Case report and review. Current Drug Targets: Immune Endocrine & Metabolic Disorders, 2(1): 97102.Google Scholar
Rasgon, N. L., Kenna, H. A., Wroolie, T. E., Kelley, R., Silverman, D., Brooks, J., … Reiss, A. (2011). Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiology of Aging, 32(11): 19421948.Google Scholar
Rasgon, N. L., Kenna, H. A., Wroolie, T. E., Williams, K. E., DeMuth, B. N., & Silverman, D. H. (2014). Insulin resistance and medial prefrontal gyrus metabolism in women receiving hormone therapy. Psychiatry Research, 223(1): 2836.Google Scholar
Rasgon, N. L., Rao, R. C., Hwang, S., Altshuler, L. L., Elman, S., Zuckerbrow-Miller, J., & Korenman, S. G. (2003). Depression in women with polycystic ovary syndrome: clinical and biochemical correlates. Journal of Affective Disorders, 74(3): 299304.Google Scholar
Reaven, G. (1988). Banting Lecture 1988: Role of insulin resistance in human disease. Diabetes, 37(12): 15951607.Google Scholar
Reaven, G.G. (1992). Syndrome X. Blood Pressure Supplement, 4: 1316.Google Scholar
Reaven, G.G. (1993). Role of insulin resistance in human disease. Annual Review of Medicine, 44: 121131.Google Scholar
Reaven, G.G. (2005). All obese individuals are not created equal: Insulin resistance is the major determinant of cardiovascular disease in overweight/obese individuals. Diabetes & Vascular Disease Research, 2(3): 105112.Google Scholar
Roos, C., Lidfeldt, J., Agardh, C. D., Nyberg, P., Nerbrand, C., Samsioe, G., & Westrin, A. (2007). Insulin resistance and self-rated symptoms of depression in Swedish women with risk factors for diabetes: the Women’s Health in the Lund Area study. Metabolism, 56(6): 825829.Google Scholar
Rosmond, R., Bouchard, C., & Bjorntorp, P. (2002). Increased abdominal obesity in subjects with a mutation in the 5-HT(2A) receptor gene promoter. Annals of the New York Academy of Sciences, 967: 571575.Google Scholar
Sachar, E., Finkelstein, J., & Hellman, L. (1971). Growth hormone responses in depressive illness. Archives of General Psychiatry, 25(3): 263269.Google Scholar
Santucci, A., Schroeder, H., & Riccio, D. (1990). Homeostatic disruption and memory: Effect of insulin administration in rats. Behavioral and Neural Biology, 53(3): 321333.Google Scholar
Scheen, A., Paolisso, G., Salvatore, T., & Lefèbvre, P. J. (1991). Improvement of insulin-induced glucose disposal in obese patients with NIDDM after 1-week treatment with D-fenfluramine. Diabetes Care, 14(4): 325332.Google Scholar
Schulingkamp, R., Pagano, T., Hung, D., & Raffa, R. (2000). Insulin receptors and insulin action in the brain: Review and clinical implications. Neuroscience and Biobehavioral Reviews, 24(8): 855872.Google Scholar
Schuur, M., Henneman, P., van Swieten, J. C., Zillikens, M. C., de Koning, I., Janssens, A. C., … Van Duijn, C. M. (2010). Insulin-resistance and metabolic syndrome are related to executive function in women in a large family-based study. European Journal of Epidemiology, 25(8): 561568.Google Scholar
Schwarzberg, H., Bernstein, H., Reiser, M., & Gunther, O. (1989). Intracerebroventricular administration of insulin attenuates retrieval of a passive avoidance response in rats. Neuropeptides, 13(2): 7981.Google Scholar
Sorg, C., Riedl, V., Muhlau, M., Calhoun, V. D., Eichele, T., Laer, L., … Wohlschläger, A. M. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47): 1876018765.Google Scholar
Spaner, D., Bland, R., & Newman, S. (1994). Epidemiology of psychiatric disorders in Edmonton: major depressive disorder. Acta Psychiatrica Scandinavica Supplement,376: 715.Google Scholar
Stolk, R., Breteler, M., Ott, A., Pols, H., Lamberts, S., Grobbee, D., & Hofman, A. (1997). Insulin and cognitive function in an elderly population: The Rotterdam Study. Diabetes Care, 20(5): 792795.Google Scholar
Timonen, M., Laakso, M., Jokelainen, J., Rajala, U., Meyer-Rochow, V., & Keinanen-Kiukaanniemi, S. (2005). Insulin resistance and depression: Cross sectional study. British Medical Journal, 330(7481): 1718.Google Scholar
Timonen, M., Salmenkaita, I., Jokelainen, J., Laakso, M., Harkonen, P., Koskela, P., … Keinänen-Kiukaanniemi, S. (2007). Insulin resistance and depressive symptoms in young adult males: Findings from Finnish military conscripts. Psychosomatic Medicine, 69(8): 723728.Google Scholar
Unger, E., Kjellen, L., & Eriksson, U. J. (1991). Effect of insulin on the altered production of proteoglycans in rib cartilage of experimentally diabetic rats. Archives of Biochemistry and Biophysics, 285(2): 205210.Google Scholar
Valastro, B., Cossette, J., Lavoie, N., Gagnon, S., Trudeau, F., & Massicotte, G. (2002). Up-regulation of glutamate receptors is associated with LTP defects in the early stages of diabetes mellitus. Diabetologia, 45(5): 642650.Google Scholar
Van den Akker, M., Schuurman, A., Metsemakers, J., & Buntinx, F. (2004). Is depression related to subsequent diabetes mellitus? Acta Psychiatrica Scandinavica, 110(3): 178183.Google Scholar
Vanhanen, M., Koivisto, K., Karjalainen, L., Helkala, E. L., Laakso, M., & Soininen, H. (1997). Risk for non-insulin-dependent diabetes in the normoglycaemic elderly is associated with impaired cognitive function. Neuroreport, 8(6): 15271530.Google Scholar
Vanhanen, M., Koivisto, K., Kuusisto, J., Mykkanen, L., Helkala, E., Hänninen, T., … Laakso, M. (1998). Cognitive function in an elderly population with persistent impaired glucose tolerance. Diabetes Care, 21(3): 398402.Google Scholar
Vrbikova, J., Bendlova, B., Hill, M., Vankova, M., Vondra, K., & Starka, L. (2002). Insulin sensitivity and beta-cell function in women with polycystic ovary syndrome. Diabetes Care, 25(7): 12171222.Google Scholar
Warram, J. H., Martin, B. C., Krolewski, A. S., Soeldner, J. S., & Kahn, C. R. (1990). Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Annals of Internal Medicine, 113(12): 909915.Google Scholar
Watson, G. & Craft, S. (2004). Modulation of memory by insulin and glucose: Neuropsychological observations in Alzheimer’s disease. European Journal of Pharmacology, 490(1–3): 97113.Google Scholar
Weissman, M., Bland, R., Canino, G., Faravelli, C., Greenwald, S., Hwu, H., … Yeh, E.-K. (1996). Cross-national epidemiology of major depression and bipolar disorder. JAMA, 276(4): 293299.Google Scholar
Werner, H., Raizada, M., Mudd, L., Foyt, H. L., Simpson, I., & Roberts, C. T. (1989). Regulation of rat brain/HepG2 glucose transporter gene expression by insulin and insulin-like growth factor-I in primary cultures of neuronal and glial cells. Endocrinology, 125(1): 314320.Google Scholar
Winocur, G., Greenwood, C., Piroli, G., Grillo, C., Reznikov, L., & Reagan, L. (2005). Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behavioral Neuroscience, 119(5): 13891395.Google Scholar
Winokur, A., Maislin, G., Phillips, J., & Amsterdam, J. (1988). Insulin resistance after oral glucose tolerance testing in patients with major depression. American Journal of Psychiatry, 145(3): 325330.Google Scholar
Wright, J., Jacisin, J., Radin, N., & Bell, R. (1978). Glucose metabolism in unipolar depression. British Journal of Psychiatry, 132(386393).Google Scholar
Wroolie, T. E., Kenna, H. A., Singh, M. K., & Rasgon, N. L. (2015). Association between insulin resistance and cognition in patients with depressive disorders: Exploratory analyses into age-specific effects. Journal of Psychiatric Research, 60: 6572.Google Scholar
Yaffe, K. (2007). Metabolic syndrome and cognitive decline. Current Alzheimer Research, 4(2): 123126.Google Scholar
Yaffe, K., Blackwell, T., Kanaya, A., Davidowitz, N., Barrett-Connor, E., & Krueger, K. (2004). Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology, 63(4): 658663.Google Scholar
Yip, J., Facchini, F., & Reaven, G. (1998). Resistance to insulin-mediated glucose disposal as a predictor of cardiovascular disease. Journal of Clinical Endocrinology & Metabolism 83: 27732776.Google Scholar
Young, S. E., Mainous, A. G. III, & Carnemolla, M. (2006). Hyperinsulinemia and cognitive decline in a middle-aged cohort. Diabetes Care, 29(12): 26882693.Google Scholar
Yuan, X., Yamada, K., Ishiyama-Shigemoto, S., Koyama, W., & Nonaka, K. (2000). Identification of polymorphic loci in the promoter region of the serotonin 5-HT2C receptor gene and their association with obesity and type II diabetes. Diabetologia, 43(3): 373376.Google Scholar
Zhao, W., Chen, H., Xu, H., Moore, E., Meiri, N., Quon, M., & Alkon, D. L. (1999). Brain insulin receptors and spatial memory: Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. Journal of Biological Chemistry, 274(49): 3489334902.Google Scholar
Zhou, J., Greicius, M. D., Gennatas, E. D., Growdon, M. E., Jang, J. Y., Rabinovici, G. D., … Seeley, W. W. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain, 133(Pt 5): 13521367.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×