Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T08:23:44.335Z Has data issue: false hasContentIssue false

Section 1 - The Developmental Context and Developmental Disorders

Published online by Cambridge University Press:  10 March 2021

David Castle
Affiliation:
University of Melbourne
David Coghill
Affiliation:
University of Melbourne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alonso-Nanclares, L., Gonzalez-Soriano, J., Rodriguez, J. R., and Defelipe, J. 2008. Gender differences in human cortical synaptic density. Proc Natl Acad Sci USA, 105, 14615-9.Google Scholar
Arnold, A. P. 2012. The end of gonad-centric sex determination in mammals. Trends Genet, 28, 5561.CrossRefGoogle ScholarPubMed
Arnold, A. P., Reue, K., Eghbali, M., Vilain, E., Chen, X., Ghahramani, N., Itoh, Y., Li, J., Link, J. C., Ngun, T., and Williams-Burris, S. M. 2016. The importance of having two X chromosomes. Philos Trans R Soc Lond B Biol Sci, 371, doi: 10.1098/rstb.2015.0113.Google Scholar
Arnold, A. P., Xu, J., Grisham, W., Chen, X., Kim, Y. H., and Itoh, Y. 2004. Minireview: Sex chromosomes and brain sexual differentiation. Endocrinology, 145, 1057–62.CrossRefGoogle ScholarPubMed
Barraclough, C. A. and Gorski, R. A. 1961. Evidence that the hypothalamus is responsible for androgen-induced sterility in the female rat. Endocrinology, 68, 6879.Google Scholar
Berletch, J. B., Yang, F., and Disteche, C. M. 2010. Escape from X inactivation in mice and humans. Genome Biol, 11, 213.Google Scholar
Burgoyne, P. S., Thornhill, A. R., Boudrean, S. K., Darling, S. M., Bishop, C. E., and Evans, E. P. 1995. The genetic basis of XX–XY differences present before gonadal sex differentiation in the mouse. Philos Trans R Soc Lond B Biol Sci, 350, 253–60, 260–1.Google Scholar
Clayden, J. D., Jentschke, S., Munoz, M., Cooper, J. M., Chadwick, M. J., Banks, T., Clark, C. A., and Vargha-Khadem, F. 2012. Normative development of white matter tracts: similarities and differences in relation to age, gender, and intelligence. Cereb Cortex, 22, 1738–47.Google Scholar
Coghill, D. 2010. Heterogeneity in ADHD. MD thesis, University of Dundee.Google Scholar
Conklin, H. M., Luciana, M., Hooper, C. J., and Yarger, R. S. 2007. Working memory performance in typically developing children and adolescents: behavioral evidence of protracted frontal lobe development. Dev Neuropsychol, 31, 103–28.Google Scholar
De Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., Masalehdan, A., Noll, J., and Boring, A. M. 2001. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex, 11, 552–7.Google Scholar
De Vries, G. J. 2004. Minireview: Sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology, 145, 1063–8.Google Scholar
De Vries, G. J., Rissman, E. F., Simerly, R. B., Yang, L. Y., Scordalakes, E. M., Auger, C. J., Swain, A., Lovell-Badge, R., Burgoyne, P. S., and Arnold, A. P. 2002. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci, 22, 9005–14.Google Scholar
Feczko, E., Miranda-Dominguez, O., Marr, M., Graham, A. M., Nigg, J. T., and Fair, D. A. 2019. The heterogeneity problem: approaches to identify psychiatric subtypes. Trends Cogn Sci, 23, 584601.Google Scholar
Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., and Rapoport, J. L. 1997. Sexual dimorphism of the developing human brain. Prog Neuropsychopharmacol Biol Psychiatry, 21, 1185–201.Google Scholar
Gur, R. C., Richard, J., Hughett, P., Calkins, M. E., Macy, L., Bilker, W. B., Brensinger, C., and Gur, R. E. 2010. A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation. J Neurosci Methods, 187, 254–62.CrossRefGoogle ScholarPubMed
Hedges, L. V. and Nowell, A. 1995. Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269, 41–5.Google Scholar
Herting, M. M., Maxwell, E. C., Irvine, C., and Nagel, B. J. 2012. The impact of sex, puberty, and hormones on white matter microstructure in adolescents. Cereb Cortex, 22, 1979–92.Google Scholar
Hsu, J. L., Leemans, A., Bai, C. H., Lee, C. H., Tsai, Y. F., Chiu, H. C., and Chen, W. H. 2008. Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study. Neuroimage, 39, 566–77.Google Scholar
Im, K., Lee, J. M., Lyttelton, O., Kim, S. H., Evans, A. C., and Kim, S. I. 2008. Brain size and cortical structure in the adult human brain. Cereb Cortex, 18, 2181–91.CrossRefGoogle ScholarPubMed
Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., Hakonarson, H., Gur, R. E., Gur, R. C., and Verma, R. 2014. Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci USA, 111, 823–8.Google Scholar
Joel, D. and Mccarthy, M. M. 2017. Incorporating sex as a biological variable in neuropsychiatric research: where are we now and where should we be? Neuropsychopharmacology, 42, 379–85.Google Scholar
Kanaan, R. A., Allin, M., Picchioni, M., Barker, G. J., Daly, E., Shergill, S. S., Woolley, J., and Mcguire, P. K. 2012. Gender differences in white matter microstructure. PLoS One, 7, e38272.Google Scholar
Koopman, P. 1999. Sry and Sox9: mammalian testis-determining genes. Cell Mol Life Sci, 55, 839–56.Google Scholar
Lenroot, R. K. and Giedd, J. N. 2010. Sex differences in the adolescent brain. Brain Cogn, 72, 4655.CrossRefGoogle ScholarPubMed
Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., Blumenthal, J. D., Lerch, J., Zijdenbos, A. P., Evans, A. C., Thompson, P. M., and Giedd, J. N. 2007. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage, 36, 1065–73.Google Scholar
Mccarthy, M. M. 2016. Sex differences in the developing brain as a source of inherent risk. Dialogues Clin Neurosci, 18, 361–72.Google Scholar
Moreno-Briseno, P., Diaz, R., Campos-Romo, A., and Fernandez-Ruiz, J. 2010. Sex-related differences in motor learning and performance. Behav Brain Funct, 6, 74.CrossRefGoogle ScholarPubMed
Morris, R. C., Evendon, J. L., Sahakian, B. J., and Robbins, T. W. 1987. Computer-aided assessment of dementia: comparative studies of neuropsychological deficits in Alzheimer-type dementia and Parkinson’s disease. In: Stahl, S. M., Iversen, S. D., and Goodman, E. D. (eds) Cognitive Neurochemistry. Oxford: Oxford University Press.Google Scholar
Neufang, S., Specht, K., Hausmann, M., Gunturkun, O., Herpertz-Dahlmann, B., Fink, G. R., and Konrad, K. 2009. Sex differences and the impact of steroid hormones on the developing human brain. Cereb Cortex, 19, 464–73.CrossRefGoogle ScholarPubMed
Nopoulos, P., Flaum, M., O’Leary, D., and Andreasen, N. C. 2000. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res, 98, 113.Google Scholar
Nugent, B. M., Wright, C. L., Shetty, A. C., Hodes, G. E., Lenz, K. M., Mahurkar, A., Russo, S. J., Devine, S. E., and Mccarthy, M. M. 2015. Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci, 18, 690–7.Google Scholar
Oberlander, J. G. and Woolley, C. S. 2016. 17beta-estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J Neurosci, 36, 2677–90.Google Scholar
O’Donnell, S., Noseworthy, M. D., Levine, B., and Dennis, M. 2005. Cortical thickness of the frontopolar area in typically developing children and adolescents. Neuroimage, 24, 948–54.Google Scholar
Pakkenberg, B. and Gundersen, H. J. 1997. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol, 384, 312–20.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Peper, J. S., Brouwer, R. M., Schnack, H. G., Van Baal, G. C., Van Leeuwen, M., Van Den Berg, S. M., Delemarre-Van De Waal, H. A., Boomsma, D. I., Kahn, R. S., and Hulshoff Pol, H. E. 2009. Sex steroids and brain structure in pubertal boys and girls. Psychoneuroendocrinology, 34, 332–42.CrossRefGoogle ScholarPubMed
Phoenix, C. H., Goy, R. W., Gerall, A. A., and Young, W. C. 1959. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 65, 369–82.Google Scholar
Pickering, S. J. 2001. The development of visuo-spatial working memory. Memory, 9, 423–32.Google Scholar
Ray, P. F., Conaghan, J., Winston, R. M., and Handyside, A. H. 1995. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. J Reprod Fertil, 104, 165–71.Google Scholar
Reardon, P. K., Clasen, L., Giedd, J. N., Blumenthal, J., Lerch, J. P., Chakravarty, M. M., and Raznahan, A. 2016. An allometric analysis of sex and sex chromosome dosage effects on subcortical anatomy in humans. J Neurosci, 36, 2438–48.Google Scholar
Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S., Busa, E., Morris, J. C., Dale, A. M., and Fischl, B. 2004. Thinning of the cerebral cortex in aging. Cereb Cortex, 14, 721–30.Google Scholar
Salthouse, T. A. 2004. Localizing age-related individual differences in a hierarchical structure. Intelligence, 32.CrossRefGoogle Scholar
Schmithorst, V. J., Holland, S. K., and Dardzinski, B. J. 2008. Developmental differences in white matter architecture between boys and girls. Hum Brain Mapp, 29, 696710.Google Scholar
Schwarz, A. J., Gozzi, A., and Bifone, A. 2008. Community structure and modularity in networks of correlated brain activity. Magn Reson Imaging, 26, 914–20.Google Scholar
Shors, T. J. 2016. A trip down memory lane about sex differences in the brain. Philos Trans R Soc Lond B Biol Sci, 371, doi: 10.1098/rstb.2015.0124.CrossRefGoogle ScholarPubMed
Voyer, D., Voyer, S., and Bryden, M. P. 1995. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull, 117, 250–70.CrossRefGoogle ScholarPubMed
Zechner, U., Wilda, M., Kehrer-Sawatzki, H., Vogel, W., Fundele, R., and Hameister, H. 2001. A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet, 17, 697701.Google Scholar

References

American Psychiatric Association. 2000. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. Arlington, VA: American Psychiatric Association.Google Scholar
Andersson, G. W., Gillberg, C., and Miniscalco, C. 2013. Pre-school children with suspected autism spectrum disorders: do girls and boys have the same profiles? Research in Developmental Disabilities, 34(1), 413–22. doi:10.1016/j.ridd.2012.08.025CrossRefGoogle ScholarPubMed
Arnold, S., Foley, K. R., Hwang, Y. I. J., Richdale, A. L., Uljarevic, M., Lawson, L. P., Cai, R. Y., Falkmer, T., Falkmer, M., Lennox, N. G., Urbanowicz, A., and Trollor, J. 2019. Cohort profile: the Australian Longitudinal Study of Adults with Autism (ALSAA). BMJ Open, 9(12), e030798. doi:10.1136/bmjopen-2019-030798Google Scholar
Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., and Rutter, M. 1995. Autism as a strongly genetic disorder: evidence from a British twin study. Psychological Medicine, 25(1), 6377. doi:10.1017/s0033291700028099CrossRefGoogle ScholarPubMed
Barbu, S., Cabanes, G., and Le Maner-Idrissi, G. 2011. Boys and girls on the playground: sex differences in social development are not stable across early childhood. PloS One, 6(1), e16407. doi:10.1371/journal.pone.0016407Google Scholar
Barneveld, P. S., Pieterse, J., de Sonneville, L., van Rijn, S., Lahuis, B., van Engeland, H., and Swaab, H. 2011. Overlap of autistic and schizotypal traits in adolescents with autism spectrum disorders. Schizophrenia Research, 126(1–3), 231–6. doi:10.1016/j.schres.2010.09.004Google Scholar
Baron-Cohen, S., Lombardo, M. V., Auyeung, B., Ashwin, E., Chakrabarti, B., and Knickmeyer, R. 2011. Why are autism spectrum conditions more prevalent in males? PLoS Biology, 9(6), e1001081. doi:10.1371/journal.pbio.1001081Google Scholar
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., and Clubley, E. 2001. The autism-spectrum quotient (AQ): evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 517. doi:10.1023/a:1005653411471Google Scholar
Beaumont, R. 2015. The Secret Agent Society social‐emotional skills training program for children with autism spectrum disorders. The Australian Clinical Psychologist, 1, 2729.Google Scholar
Bejarano-Martin, A., Canal-Bedia, R., Magan-Maganto, M., Fernandez-Alvarez, C., Cilleros-Martin, M. V., Sanchez-Gomez, M. C., Garcia-Primo, P., Rose-Sweeney, M., Boilson, A., Linertova, R., Roeyers, H., Van der Paelt, S., Schendel, D., Warberg, C., Cramer, S., Narzisi, A., Muratori, F., Scattoni, M. L., Moilanen, I., Yliherva, A., Saemundsen, E., Loa Jonsdottir, S., Efrim-Budisteanu, M., Arghir, A., Papuc, S. M., Vicente, A., Rasga, C., Roge, B., Guillon, Q., Baduel, S., Kafka, J. X., Poustka, L., Kothgassner, O. D., Kawa, R., Pisula, E., Sellers, T., and Posada de la Paz, M. 2019. Early detection, diagnosis and intervention services for young children with Autism Spectrum Disorder in the European Union (ASDEU): family and professional perspectives. Journal of Autism and Developmental Disorders. doi:10.1007/s10803-019-04253-0CrossRefGoogle Scholar
Ben-Itzchak, E. and Zachor, D. A. 2007. The effects of intellectual functioning and autism severity on outcome of early behavioral intervention for children with autism. Research in Developmental Disabilities, 28(3), 287303. doi:10.1016/j.ridd.2006.03.002CrossRefGoogle ScholarPubMed
Bertollo, J. R. and Yerys, B. E. 2019. More than IQ: executive function explains adaptive behavior above and beyond nonverbal IQ in youth with autism and lower IQ. Am J Intellect Dev Disabil, 124(3), 191205. doi:10.1352/1944-7558-124.3.191Google Scholar
Bischof, N. L., Rapee, R. M., Hudry, K., and Bayer, J. K. 2018. Acceptability and caregiver-reported outcomes for young children with autism spectrum disorder whose parents attended a preventative population-based intervention for anxiety: a pilot study. Autism Research, 11(8), 1166–74. doi:10.1002/aur.1963Google Scholar
Bolton, P., Macdonald, H., Pickles, A., Rios, P., Goode, S., Crowson, M., Bailey, A., and Rutter, M. 1994. A case-control family history study of autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 35(5), 877900. doi:10.1111/j.1469–7610.1994.tb02300.xCrossRefGoogle ScholarPubMed
Cai, R. Y., Richdale, A. L., Uljarevic, M., Dissanayake, C., and Samson, A. C. 2018. Emotion regulation in autism spectrum disorder: Where we are and where we need to go. Autism Research, 11(7), 962–78. doi:10.1002/aur.1968CrossRefGoogle ScholarPubMed
Carter, A. S., Black, D. O., Tewani, S., Connolly, C. E., Kadlec, M. B., and Tager-Flusberg, H. 2007. Sex differences in toddlers with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 8697. doi:10.1007/s10803-006-0331-7Google Scholar
Christensen, Deborah L., Maenner, Matthew J., Bilder, Deborah, Constantino, John N., Daniels, Julie, Durkin, Maureen S., Fitzgerald, Robert T., Kurzius-Spencer, Margaret, Pettygrove, Sydney D., Robinson, Cordelia, Shenouda, Josephine, White, Tiffany, Zahorodny, Walter, Pazol, Karen, and Dietz, Patricia. 2019. Prevalence and characteristics of autism spectrum disorder among children aged 4 Years – Early Autism and Developmental Disabilities Monitoring Network, seven sites, United States, 2010, 2012, and 2014. Morbidity and mortality weekly report. Surveillance summaries (Washington, DC: 2002), 68(2), 119. doi:10.15585/mmwr.ss6802a1Google Scholar
Constantino, J. N. and Charman, T. 2012. Gender bias, female resilience, and the sex ratio in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 51(8), 756–8. doi:10.1016/j.jaac.2012.05.017Google Scholar
Craig, F., Margari, F., Legrottaglie, A. R., Palumbi, R., de Giambattista, C., and Margari, L. 2016. A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatric Disease and Treatment, 12, 11911202. doi:10.2147/ndt.S104620Google Scholar
Crooke, P. J. and Winner, M. G. 2016. Social Thinking(R) Methodology: evidence-based or empirically supported? A response to Leaf et al. Behav Anal Pract, 9(4), 403–8. doi:10.1007/s40617-016-0151-yGoogle Scholar
de Giambattista, Concetta, Ventura, Patrizia, Trerotoli, Paolo, Margari, Mariella, Palumbi, Roberto, and Margari, Lucia. 2019. Subtyping the autism spectrum disorder: comparison of children with high functioning autism and asperger syndrome. Journal of Autism and Developmental Disorders, 49(1), 138–50. doi:10.1007/s10803-018-3689-4Google Scholar
Doyen, C., Mighiu, D., Kaye, K., Colineaux, C., Beaumanoir, C., Mouraeff, Y., Rieu, C., Paubel, P., and Contejean, Y. 2011. Melatonin in children with autistic spectrum disorders: recent and practical data. European Child and Adolescent Psychiatry, 20(5), 231–9. doi:10.1007/s00787-011-0162-8Google Scholar
Duvekot, J., van der Ende, J., Verhulst, F. C., Slappendel, G., van Daalen, E., Maras, A., and Greaves-Lord, K. 2017. Factors influencing the probability of a diagnosis of autism spectrum disorder in girls versus boys. Autism, 21(6), 646–58. doi:10.1177/1362361316672178Google Scholar
Estes, Annette, Munson, Jeffrey, Rogers, Sally J., Greenson, Jessica, Winter, Jamie, and Dawson, Geraldine. 2015. Long-term outcomes of early intervention in 6-year-old children with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 54(7), 580–7. doi:10.1016/j.jaac.2015.04.005Google ScholarPubMed
Falkmer, T., Anderson, K., Falkmer, M., and Horlin, C. 2013. Diagnostic procedures in autism spectrum disorders: a systematic literature review. European Child and Adolescent Psychiatry, 22(6), 329–40. doi:10.1007/s00787-013-0375-0Google Scholar
Faridi, Farnaz and Khosrowabadi, Reza. 2017. Behavioral, cognitive and neural markers of asperger syndrome. Basic and Clinical Neuroscience, 8(5), 349–59. doi:10.18869/nirp.bcn.8.5.349Google Scholar
Fewster, D. L., Govender, P., and Uys, C. J. 2019. Quality of life interventions for primary caregivers of children with autism spectrum disorder: a scoping review. J Child Adolesc Ment Health, 31(2), 139–59. doi:10.2989/17280583.2019.1659146Google Scholar
Filipek, P. A., Accardo, P. J., Ashwal, S., Baranek, G. T., Cook, E. H. Jr, Dawson, G., Gordon, B., Gravel, J. S., Johnson, C. P., Kallen, R. J., Levy, S. E., Minshew, N. J., Ozonoff, S., Prizant, B. M., Rapin, I., Rogers, S. J., Stone, W. L., Teplin, S. W., Tuchman, R. F., and Volkmar, F. R. 2000. Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology, 55(4), 468–79. doi:10.1212/wnl.55.4.468Google Scholar
Filipek, P. A., Accardo, P. J., Baranek, G. T., Cook, E. H. Jr., Dawson, G., Gordon, B., Gravel, J. S., Johnson, C. P., Kallen, R. J., Levy, S. E., Minshew, N. J., Ozonoff, S., Prizant, B. M., Rapin, I., Rogers, S. J., Stone, W. L., Teplin, S., Tuchman, R. F., and Volkmar, F. R. 1999. The screening and diagnosis of autistic spectrum disorders. Journal of Autism and Developmental Disorders, 29(6), 439–84. doi:10.1023/a:1021943802493Google Scholar
Fombonne, E. 2003. Epidemiological surveys of autism and other pervasive developmental disorders: an update. Journal of Autism and Developmental Disorders, 33(4), 365–82. doi:10.1023/a:1025054610557Google Scholar
Fombonne, E. 2005. Epidemiology of autistic disorder and other pervasive developmental disorders. Journal of Clinical Psychiatry, 66 Suppl 10, 38.Google Scholar
Fombonne, E. 2009. Epidemiology of pervasive developmental disorders. Pediatric Research, 65(6), 591–8. doi:10.1203/PDR.0b013e31819e7203CrossRefGoogle ScholarPubMed
Fombonne, E., Quirke, S., and Hagen, A. 2011. Epidemiology of pervasive developmental disorders. In: Geschwind, A., Amaral, A., and Dawson, G. (eds) Autism Spectrum Disorders. Oxford: Oxford University Press.Google Scholar
Frazier, T. W., Georgiades, S., Bishop, S. L., and Hardan, A. Y. 2014. Behavioral and cognitive characteristics of females and males with autism in the Simons Simplex Collection. Journal of the American Academy of Child and Adolescent Psychiatry, 53(3), 329–40.e321–3. doi:10.1016/j.jaac.2013.12.004Google Scholar
Friedman, L. and Sterling, A. 2019. A review of language, executive function, and intervention in autism spectrum disorder. Seminars in Speech and Language, 40(4), 291304. doi:10.1055/s-0039-1692964Google Scholar
Gadow, K. D., Devincent, C. J., and Drabick, D. A. 2008. Oppositional defiant disorder as a clinical phenotype in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 38(7), 1302–10. doi:10.1007/s10803-007-0516-8Google Scholar
Gardiner, E. and Iarocci, G. 2018. Everyday executive function predicts adaptive and internalizing behavior among children with and without autism spectrum disorder. Autism Research, 11(2), 284–95. doi:10.1002/aur.1877Google Scholar
Gotham, K., Risi, S., Dawson, G., Tager-Flusberg, H., Joseph, R., Carter, A., Hepburn, S., McMahon, W., Rodier, P., Hyman, S. L., Sigman, M., Rogers, S., Landa, R., Spence, M. A., Osann, K., Flodman, P., Volkmar, F., Hollander, E., Buxbaum, J., Pickles, A., and Lord, C. 2008. A replication of the Autism Diagnostic Observation Schedule (ADOS) revised algorithms. Journal of the American Academy of Child and Adolescent Psychiatry, 47(6), 642–51. doi:10.1097/CHI.0b013e31816bffb7Google Scholar
Gotham, K., Risi, S., Pickles, A., and Lord, C. 2007. The Autism Diagnostic Observation Schedule: revised algorithms for improved diagnostic validity. Journal of Autism and Developmental Disorders, 37(4), 613–27. doi:10.1007/s10803-006-0280-1CrossRefGoogle ScholarPubMed
Gray, K. M., Keating, C. M., Taffe, J. R., Brereton, A. V., Einfeld, S. L., Reardon, T. C., and Tonge, B. J. 2014. Adult outcomes in autism: community inclusion and living skills. Journal of Autism and Developmental Disorders, 44(12), 3006–15. doi:10.1007/s10803-014-2159-xCrossRefGoogle ScholarPubMed
Guinchat, V., Thorsen, P., Laurent, C., Cans, C., Bodeau, N., and Cohen, D. 2012. Pre-, peri- and neonatal risk factors for autism. Acta Obstetricia et Gynecologica Scandinavica, 91(3), 287300. doi:10.1111/j.1600-0412.2011.01325.xGoogle Scholar
Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., Miller, J., Fedele, A., Collins, J., Smith, K., Lotspeich, L., Croen, L. A., Ozonoff, S., Lajonchere, C., Grether, J. K., and Risch, N. 2011. Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 10951102. doi:10.1001/archgenpsychiatry.2011.76Google Scholar
Harrop, C., Green, J., and Hudry, K. 2017. Play complexity and toy engagement in preschoolers with autism spectrum disorder: Do girls and boys differ? Autism, 21(1), 3750. doi:10.1177/1362361315622410Google Scholar
Harrop, C., Gulsrud, A., and Kasari, C. 2015. Does gender moderate core deficits in ASD? An investigation into restricted and repetitive behaviors in girls and boys with ASD. Journal of Autism and Developmental Disorders, 45(11), 3644–55. doi:10.1007/s10803-015-2511-9Google ScholarPubMed
Harrop, C., Jones, D., Zheng, S., Nowell, S., Boyd, B. A., and Sasson, N. 2018. Circumscribed interests and attention in autism: the role of biological sex. Journal of Autism and Developmental Disorders, 48(10), 3449–59. doi:10.1007/s10803-018-3612-zGoogle Scholar
Hiller, R. M., Young, R. L., and Weber, N. 2014. Sex differences in autism spectrum disorder based on DSM-5 criteria: evidence from clinician and teacher reporting. Journal of Abnormal Child Psychology, 42(8), 1381–93. doi:10.1007/s10802-014-9881-xCrossRefGoogle ScholarPubMed
Hobson, J. A., Tarver, L., Beurkens, N., and Hobson, R. P. 2016. The relation between severity of autism and caregiver–child interaction: a study in the context of relationship development intervention. Journal of Abnormal Child Psychology, 44(4), 745–55. doi:10.1007/s10802-015-0067-yGoogle Scholar
Howlin, P. 2014. Outcomes in adults with autism spectrum disorders. In: Paul, R. Volkmar, F. R., Rogers, S. J., and Pelphrey, K. A. ( eds) Handbook of autism and pervasive developmental disorders: Vol.1 Diagnosis, development, and brain mechanisms. 4th ed. Hoboken, NJ: Wiley, pp. 97116.Google Scholar
Howlin, P., Goode, S., Hutton, J., and Rutter, M. 2004. Adult outcome for children with autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 45(2), 212–29. doi:10.1111/j.1469-7610.2004.00215.xGoogle Scholar
Hu, W. F., Chahrour, M. H., and Walsh, C. A. 2014. The diverse genetic landscape of neurodevelopmental disorders. Annu Rev Genomics Hum Genet, 15, 195213. doi:10.1146/annurev-genom-090413-025600CrossRefGoogle ScholarPubMed
Hull, L., Mandy, W., and Petrides, K. V. 2017. Behavioural and cognitive sex/gender differences in autism spectrum condition and typically developing males and females. Autism, 21(6), 706–27. doi:10.1177/1362361316669087Google Scholar
Hus, V. and Lord, C. 2013. Effects of child characteristics on the Autism Diagnostic Interview-Revised: implications for use of scores as a measure of ASD severity. Journal of Autism and Developmental Disorders, 43(2), 371–81. doi:10.1007/s10803-012-1576-yGoogle Scholar
Idring, S., Rai, D., Dal, H., Dalman, C., Sturm, H., Zander, E., Lee, B. K., Serlachius, E., and Magnusson, C. 2012. Autism spectrum disorders in the Stockholm Youth Cohort: design, prevalence and validity. PloS One, 7(7), e41280. doi:10.1371/journal.pone.0041280Google Scholar
Ingersoll, B., Meyer, K., and Becker, M. W. 2011. Increased rates of depressed mood in mothers of children with ASD associated with the presence of the broader autism phenotype. Autism Research, 4(2), 143–8. doi:10.1002/aur.170Google Scholar
Juul-Dam, N., Townsend, J., and Courchesne, E. 2001. Prenatal, perinatal, and neonatal factors in autism, pervasive developmental disorder-not otherwise specified, and the general population. Pediatrics, 107(4), E63. doi:10.1542/peds.107.4.e63Google Scholar
Kantzer, A. K., Fernell, E., Gillberg, C., and Miniscalco, C. 2013. Autism in community pre-schoolers: developmental profiles. Research in Developmental Disabilities, 34(9), 29002908. doi:10.1016/j.ridd.2013.06.016Google Scholar
King, C. and Murphy, G. H. 2014. A systematic review of people with autism spectrum disorder and the criminal justice system. Journal of Autism and Developmental Disorders, 44(11), 2717–33. doi:10.1007/s10803-014-2046-5Google Scholar
Kusaka, H., Miyawaki, D., Nakai, Y., Okamoto, H., Futoo, E., Goto, A., Okada, Y., and Inoue, K. 2014. Psychiatric comorbidity in children with high-functioning pervasive developmental disorder. Osaka City Medical Journal, 60(1), 110.Google Scholar
Lai, M. C., Lombardo, M. V., Auyeung, B., Chakrabarti, B., and Baron-Cohen, S. 2015. Sex/gender differences and autism: setting the scene for future research. Journal of the American Academy of Child and Adolescent Psychiatry, 54(1), 1124. doi:10.1016/j.jaac.2014.10.003Google Scholar
Lai, M. C., Lombardo, M. V., Chakrabarti, B., and Baron-Cohen, S. 2013. Subgrouping the autism ‘spectrum’: reflections on DSM-5. PLoS Biology, 11(4), e1001544. doi:10.1371/journal.pbio.1001544Google Scholar
Lai, M. C., Lombardo, M. V., Pasco, G., Ruigrok, A. N., Wheelwright, S. J., Sadek, S. A., Chakrabarti, B., and Baron-Cohen, S. 2011. A behavioral comparison of male and female adults with high functioning autism spectrum conditions. PloS One, 6(6), e20835. doi:10.1371/journal.pone.0020835Google Scholar
Lai, M. C. and Szatmari, P. 2020. Sex and gender impacts on the behavioural presentation and recognition of autism. Curr Opin Psychiatry, 33(2), 117–23. doi:10.1097/yco.0000000000000575Google Scholar
Lasgaard, M., Nielsen, A., Eriksen, M. E., and Goossens, L. 2010. Loneliness and social support in adolescent boys with autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(2), 218–26. doi:10.1007/s10803-009-0851-zGoogle Scholar
Loke, Y. J., Hannan, A. J., and Craig, J. M. 2015. The role of epigenetic change in autism spectrum disorders. Frontiers in Neurology, 6, 107. doi:10.3389/fneur.2015.00107Google Scholar
Loomes, R., Hull, L., and Mandy, W. P. L. 2017. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 56(6), 466–74. doi:10.1016/j.jaac.2017.03.013Google Scholar
Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., and Bishop, S. L. 2012. Autism Diagnostic Observation Schedule. 2nd ed. Torrance, CA: Western Psychological Services.Google Scholar
Lord, C., Rutter, M., and Le Couteur, A. 1994. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–85. doi:10.1007/bf02172145Google Scholar
Lord, C., Schopler, E., and Revicki, D. 1982. Sex differences in autism. Journal of Autism and Developmental Disorders, 12(4), 317–30. doi:10.1007/bf01538320Google Scholar
Maddox, B. B., Crabbe, S., Beidas, R. S., Brookman-Frazee, L., Cannuscio, C. C., Miller, J. S., Nicolaidis, C., and Mandell, D. S. 2020. ‘I wouldn’t know where to start’: perspectives from clinicians, agency leaders, and autistic adults on improving community mental health services for autistic adults. Autism, 24(4), 919–30. doi:10.1177/1362361319882227Google Scholar
Maddox, B. B. and Gaus, V. L. 2019. Community mental health services for autistic adults: good news and bad news. Autism Adulthood, 1(1), 1519. doi:10.1089/aut.2018.0006Google Scholar
Magiati, I., Ong, C., Lim, X. Y., Tan, J. W., Ong, A. Y., Patrycia, F., Fung, D. S., Sung, M., Poon, K. K., and Howlin, P. 2016. Anxiety symptoms in young people with autism spectrum disorder attending special schools: associations with gender, adaptive functioning and autism symptomatology. Autism, 20(3), 306–20. doi:10.1177/1362361315577519Google Scholar
Magiati, I., Tay, X. W., and Howlin, P. 2014. Cognitive, language, social and behavioural outcomes in adults with autism spectrum disorders: a systematic review of longitudinal follow-up studies in adulthood. Clinical Psychology Review, 34(1), 7386. doi:10.1016/j.cpr.2013.11.002Google Scholar
Mandy, W., Chilvers, R., Chowdhury, U., Salter, G., Seigal, A., and Skuse, D. 2012. Sex differences in autism spectrum disorder: evidence from a large sample of children and adolescents. Journal of Autism and Developmental Disorders, 42(7), 1304–13. doi:10.1007/s10803-011-1356-0Google Scholar
Mansour, R., Dovi, A. T., Lane, D. M., Loveland, K. A., and Pearson, D. A. 2017. ADHD severity as it relates to comorbid psychiatric symptomatology in children with Autism Spectrum Disorders (ASD). Research in Developmental Disabilities, 60, 5264. doi:10.1016/j.ridd.2016.11.009Google Scholar
Margari, L., Palumbi, R., Peschechera, A., Craig, F., de Giambattista, C., Ventura, P., and Margari, F. 2019. Sex-gender comparisons in comorbidities of children and adolescents with high-functioning autism spectrum disorder. Front Psychiatry, 10, 159. doi:10.3389/fpsyt.2019.00159Google Scholar
Mattila, M. L., Hurtig, T., Haapsamo, H., Jussila, K., Kuusikko-Gauffin, S., Kielinen, M., Linna, S. L., Ebeling, H., Bloigu, R., Joskitt, L., Pauls, D. L., and Moilanen, I. 2010. Comorbid psychiatric disorders associated with asperger syndrome/high-functioning autism: a community- and clinic-based study. Journal of Autism and Developmental Disorders, 40(9), 1080–93. doi:10.1007/s10803-010-0958-2CrossRefGoogle ScholarPubMed
Mawhood, L., Howlin, P., and Rutter, M. 2000. Autism and developmental receptive language disorder – a comparative follow-up in early adult life. I: Cognitive and language outcomes. Journal of Child Psychology and Psychiatry and Allied Disciplines, 41(5), 547–59. doi:10.1111/1469-7610.00642Google Scholar
May, T., Adesina, I., McGillivray, J., and Rinehart, N. J. 2019. Sex differences in neurodevelopmental disorders. Current Opinion in Neurology, 32(4), 622–6. doi:10.1097/wco.0000000000000714Google Scholar
May, T., Cornish, K., and Rinehart, N. J. 2016. Gender profiles of behavioral attention in children with autism spectrum disorder. J Atten Disord, 20(7), 627–35. doi:10.1177/1087054712455502Google Scholar
McDougle, C. J., Holmes, J. P., Carlson, D. C., Pelton, G. H., Cohen, D. J., and Price, L. H. 1998. A double-blind, placebo-controlled study of risperidone in adults with autistic disorder and other pervasive developmental disorders. Archives of General Psychiatry, 55(7), 633–41. doi:10.1001/archpsyc.55.7.633Google Scholar
Meyer, Jessica A., Mundy, Peter C., Hecke, Van, Vaughan, Amy, and Durocher, Jennifer Stella. 2006. Social attribution processes and comorbid psychiatric symptoms in children with asperger syndrome. Autism: The International Journal of Research and Practice, 10(4), 383402. doi:10.1177/1362361306064435Google Scholar
Mottron, Laurent. 2017. Should we change targets and methods of early intervention in autism, in favor of a strengths-based education? European Child and Adolescent Psychiatry, 26(7), 815–25. doi:10.1007/s00787-017-0955-5Google Scholar
Mukaddes, N. M., Herguner, S., and Tanidir, C. 2010. Psychiatric disorders in individuals with high-functioning autism and asperger’s disorder: similarities and differences. World Journal of Biological Psychiatry, 11(8), 964–71. doi:10.3109/15622975.2010.507785Google ScholarPubMed
National Autism Center. 2015. Findings and Conclusions: National Standards Project. Phase 2. Retrieved from www.nationalautismcenter.org/national-standards-project/phase-2/, Randolph, MA: National Autism Center.Google Scholar
Newschaffer, C. J., Croen, L. A., Daniels, J., Giarelli, E., Grether, J. K., Levy, S. E., Mandell, D. S., Miller, L. A., Pinto-Martin, J., Reaven, J., Reynolds, A. M., Rice, C. E., Schendel, D., and Windham, G. C. 2007. The epidemiology of autism spectrum disorders. Annual Review of Public Health, 28, 235–58. doi:10.1146/annurev.publhealth.28.021406.144007Google Scholar
Nimmo-Smith, V., Heuvelman, H., Dalman, C., Lundberg, M., Idring, S., Carpenter, P., Magnusson, C., and Rai, D. 2020. Anxiety disorders in adults with autism spectrum disorder: a population-based study. Journal of Autism and Developmental Disorders, 50(1), 308–18. doi:10.1007/s10803-019-04234-3Google Scholar
Nix, Robert L., Bierman, Karen L., Domitrovich, Celene E., and Gill, Sukhdeep. 2013. Promoting children’s social-emotional skills in preschool can enhance academic and behavioral functioning in kindergarten: findings from Head Start REDI. Early Education and Development, 24(7). doi:10.1080/10409289.2013.825565Google Scholar
Ogundele, Michael O. 2018. Behavioural and emotional disorders in childhood: A brief overview for paediatricians. World Journal of Clinical Pediatrics, 7(1), 926. doi:10.5409/wjcp.v7.i1.9Google Scholar
Oien, R. A., Vambheim, S. M., Hart, L., Nordahl-Hansen, A., Erickson, C., Wink, L., Eisemann, M. R., Shic, F., Volkmar, F. R., and Grodberg, D. 2018. Sex-differences in children referred for assessment: an exploratory analysis of the Autism Mental Status Exam (AMSE). Journal of Autism and Developmental Disorders, 48(7), 2286–92. doi:10.1007/s10803-018-3488-yGoogle Scholar
Ozonoff, S., Goodlin-Jones, B. L., and Solomon, M. 2005. Evidence-based assessment of autism spectrum disorders in children and adolescents. Journal of Clinical Child and Adolescent Psychology, 34(3), 523–40. doi:10.1207/s15374424jccp3403_8Google Scholar
Ozonoff, S., Iosif, A. M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T., Rogers, S. J., Rozga, A., Sangha, S., Sigman, M., Steinfeld, M. B., and Young, G. S. 2010. A prospective study of the emergence of early behavioral signs of autism. Journal of the American Academy of Child and Adolescent Psychiatry, 49(3), 256–66.e251–2.Google Scholar
Pellicano, Elizabeth, Dinsmore, Adam, and Charman, Tony. 2014. What should autism research focus upon? Community views and priorities from the United Kingdom. Autism: The International Journal of Research and Practice, 18(7), 756–70. doi:10.1177/1362361314529627Google Scholar
Pilowsky, T., Yirmiya, N., Shulman, C., and Dover, R. 1998. The Autism Diagnostic Interview-Revised and the Childhood Autism Rating Scale: differences between diagnostic systems and comparison between genders. Journal of Autism and Developmental Disorders, 28(2), 143–51. doi:10.1023/a:1026092632466Google Scholar
Pisula, Ewa, Pudło, Monika, Słowińska, Monika, Kawa, Rafał, Strząska, Magdalena, Banasiak, Anna, and Wolańczyk, Tomasz. 2017. Behavioral and emotional problems in high-functioning girls and boys with autism spectrum disorders: Parents’ reports and adolescents’ self-reports. Autism: The International Journal of Research and Practice, 21(6), 738–48. doi:10.1177/1362361316675119Google Scholar
Rai, Dheeraj, Culpin, Iryna, Heuvelman, Hein, Magnusson, Cecilia M. K., Carpenter, Peter, Jones, Hannah J., Emond, Alan M., Zammit, Stanley, Golding, Jean, and Pearson, Rebecca M. 2018. Association of autistic traits with depression from childhood to age 18 years. JAMA Psychiatry, 75(8), 835–43. doi:10.1001/jamapsychiatry.2018.1323Google Scholar
Reichow, B., Steiner, A. M., and Volkmar, F. 2013. Cochrane review: social skills groups for people aged 6 to 21 with autism spectrum disorders (ASD). Evidence-Based Child Health, 8(2), 266315. doi:10.1002/ebch.1903CrossRefGoogle ScholarPubMed
Reichow, B. and Wolery, M. 2009. Comprehensive synthesis of early intensive behavioral interventions for young children with autism based on the UCLA young autism project model. Journal of Autism and Developmental Disorders, 39(1), 2341. doi:10.1007/s10803-008-0596-0Google Scholar
Rinehart, N. J., Cornish, K. M., and Tonge, B. J. 2011. Gender differences in neurodevelopmental disorders: autism and fragile x syndrome. Current Topics in Behavioral Neurosciences, 8, 209–29. doi:10.1007/7854_2010_96Google Scholar
Robinson, E. B., Lichtenstein, P., Anckarsater, H., Happe, F., and Ronald, A. 2013. Examining and interpreting the female protective effect against autistic behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 5258–62. doi:10.1073/pnas.1211070110Google ScholarPubMed
Romero, Marina, Aguilar, Juan Manuel, Del-Rey-Mejías, Ángel, Mayoral, Fermín, Rapado, Marta, Peciña, Marta, Barbancho, Miguel Ángel, Ruiz-Veguilla, Miguel, and Lara, José Pablo. 2016. Psychiatric comorbidities in autism spectrum disorder: a comparative study between DSM-IV-TR and DSM-5 diagnosis. International Journal of Clinical and Health Psychology, 16(3), 266–75. doi:10.1016/j.ijchp.2016.03.001Google Scholar
Roux, A. M., Shattuck, P. T., Rast, J. E., and Anderson, K. A. 2017. National Autism Indicators Report: Developmental Disability Services and Outcomes in Adulthood. Retrieved from https://drexel.edu/autismoutcomes/publications-and-reports/publications/National-Autism-Indicators-Report-Developmental-Disability-Services-and-Outcomes-in-Adulthood/CrossRefGoogle Scholar
Russell, G., Steer, C., and Golding, J. 2011. Social and demographic factors that influence the diagnosis of autistic spectrum disorders. Social Psychiatry and Psychiatric Epidemiology, 46(12), 1283–93. doi:10.1007/s00127-010-0294-zGoogle Scholar
Samson, A. C., Hardan, A. Y., Podell, R. W., Phillips, J. M., and Gross, J. J. 2015. Emotion regulation in children and adolescents with autism spectrum disorder. Autism Research, 8(1), 918. doi:10.1002/aur.1387Google Scholar
Sasson, N. J., Lam, K. S., Parlier, M., Daniels, J. L., and Piven, J. 2013. Autism and the broad autism phenotype: familial patterns and intergenerational transmission. Journal of Neurodevelopmental Disorders, 5(1), 11. doi:10.1186/1866-1955-5-11Google Scholar
Schaafsma, S. M. and Pfaff, D. W. 2014. Etiologies underlying sex differences in Autism Spectrum Disorders. Frontiers in Neuroendocrinology, 35(3), 255–71. doi:10.1016/j.yfrne.2014.03.006Google Scholar
Shulha, H. P., Cheung, I., Whittle, C., Wang, J., Virgil, D., Lin, C. L., Guo, Y., Lessard, A., Akbarian, S., and Weng, Z. 2012. Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons. Archives of General Psychiatry, 69(3), 314–24. doi:10.1001/archgenpsychiatry.2011.151Google Scholar
Siegel, M. and Beaulieu, A. A. 2012. Psychotropic medications in children with autism spectrum disorders: a systematic review and synthesis for evidence-based practice. Journal of Autism and Developmental Disorders, 42(8), 1592–605. doi:10.1007/s10803-011-1399-2Google Scholar
Simonoff, E., Kent, R., Stringer, D., Lord, C., Briskman, J., Lukito, S., Pickles, A., Charman, T., and Baird, G. 2019. Trajectories in symptoms of autism and cognitive ability in autism from childhood to adult life: findings from a longitudinal epidemiological cohort. Journal of the American Academy of Child and Adolescent Psychiatry. doi:10.1016/j.jaac.2019.11.020Google Scholar
Sofronoff, K., Gray, K. M., Einfeld, S. l., & Tonge, B. J. 2018. Supporting families of children with a disability. In: Sanders, M. R. and Mazzucchelli, T. G. (eds.) The Power of Positive Parenting. Oxford: Oxford University Press, chapter 41, pp. 442456.Google Scholar
Studer, Nadja, Gundelfinger, Ronnie, Schenker, Tanja, and Steinhausen, Hans-Christoph. 2017. Implementation of early intensive behavioural intervention for children with autism in Switzerland. BMC Psychiatry, 17(1), 3434. doi:10.1186/s12888-017-1195-4Google Scholar
Sung, Min, Chin, Chee Hon, Lim, Choon Guan, Liew, Hwee Sen Alvin, Lim, Chau Sian, Kashala, Espérance, and Weng, Shih-Jen. 2014. What’s in the pipeline? Drugs in development for autism spectrum disorder. Neuropsychiatric Disease and Treatment, 10, 371–81. doi:10.2147/NDT.S39516Google Scholar
Sutherland, R., Hodge, A., Bruck, S., Costley, D., and Klieve, H. 2017. Parent-reported differences between school-aged girls and boys on the autism spectrum. Autism, 21(6), 785–94. doi:10.1177/1362361316668653Google Scholar
Syriopoulou-Delli, C. K., Polychronopoulou, S. A., Kolaitis, G. A., and Antoniou, A. G. 2019. Views of teachers on anxiety symptoms in students with autism spectrum disorder. Journal of Autism and Developmental Disorders, 49(2), 704–20. doi:10.1007/s10803-018-3752-1Google Scholar
Szatmari, P., Liu, X. Q., Goldberg, J., Zwaigenbaum, L., Paterson, A. D., Woodbury-Smith, M., Georgiades, S., Duku, E., and Thompson, A. 2012. Sex differences in repetitive stereotyped behaviors in autism: implications for genetic liability. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 159b(1), 512. doi:10.1002/ajmg.b.31238Google Scholar
Tachibana, Y., Miyazaki, C., Ota, E., Mori, R., Hwang, Y., Kobayashi, E., Terasaka, A., Tang, J., and Kamio, Y. 2017. A systematic review and meta-analysis of comprehensive interventions for pre-school children with autism spectrum disorder (ASD). PloS One, 12(12), e0186502. doi:10.1371/journal.pone.0186502Google Scholar
Taylor, D.; Paton, C., and Kapur, K. 2015. Autism spectrum disorders. In: The Maudsley Prescribing Guidelines in Psychiatry. 12th ed. Oxford: Wiley Blackwell.Google Scholar
Ten Hoopen, L. W., de Nijs, P. F. A., Duvekot, J., Greaves-Lord, K., Hillegers, M. H. J., Brouwer, W. B. F., and Hakkaart-van Roijen, L. 2020. Children with an autism spectrum disorder and their caregivers: capturing health-related and care-related quality of life. Journal of Autism and Developmental Disorders, 50(1), 263–77. doi:10.1007/s10803-019-04249-wGoogle Scholar
Tonge, B., Brereton, A., Kiomall, M., Mackinnon, A., and Rinehart, N. J. 2014. A randomised group comparison controlled trial of ‘preschoolers with autism’: a parent education and skills training intervention for young children with autistic disorder. Autism, 18(2), 166–77. doi:10.1177/1362361312458186Google Scholar
Tonge, B. and Einfeld, S. L. 2003. Psychopathology and intellectual disability: the Australian child to adult longitudinal study. In: Glidden, L. M. (ed.) International Review of Research in Mental Retardation. 1st ed. San Diego, CA: Academic Press, vol. 26, pp. 6191.Google Scholar
Tonge, B. J., Bull, K., Brereton, A., and Wilson, R. 2014. A review of evidence-based early intervention for behavioural problems in children with autism spectrum disorder: the core components of effective programs, child-focused interventions and comprehensive treatment models. Curr Opin Psychiatry, 27(2), 158–65. doi:10.1097/yco.0000000000000043Google Scholar
Torske, T., Naerland, T., Bettella, F., Bjella, T., Malt, E., Hoyland, A. L., Stenberg, N., Oie, M. G., and Andreassen, O. A. 2020. Autism spectrum disorder polygenic scores are associated with every day executive function in children admitted for clinical assessment. Autism Research, 13(2), 207–20. doi:10.1002/aur.2207Google Scholar
Van Wijngaarden-Cremers, P. J., van Eeten, E., Groen, W. B., Van Deurzen, P. A., Oosterling, I. J., and Van der Gaag, R. J. 2014. Gender and age differences in the core triad of impairments in autism spectrum disorders: a systematic review and meta-analysis. Journal of Autism and Developmental Disorders, 44(3), 627–35. doi:10.1007/s10803-013-1913-9Google Scholar
Volker, M. A., Lopata, C., Smerbeck, A. M., Knoll, V. A., Thomeer, M. L., Toomey, J. A., and Rodgers, J. D. 2010. BASC-2 PRS profiles for students with high-functioning autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(2), 188–99. doi:10.1007/s10803-009-0849-6Google Scholar
Volkmar, F. R., Szatmari, P., and Sparrow, S. S. 1993. Sex differences in pervasive developmental disorders. Journal of Autism and Developmental Disorders, 23(4), 579–91. doi:10.1007/bf01046103Google Scholar
Weiss, J. A., Thomson, K., and Chan, L. 2014. A systematic literature review of emotion regulation measurement in individuals with autism spectrum disorder. Autism Research, 7(6), 629–48. doi:10.1002/aur.1426Google Scholar
Werling, D. M., and Geschwind, D. H. 2013. Sex differences in autism spectrum disorders. Current Opinion in Neurology, 26(2), 146–53. doi:10.1097/WCO.0b013e32835ee548Google Scholar
White, S. W., Oswald, D., Ollendick, T., and Scahill, L. 2009. Anxiety in children and adolescents with autism spectrum disorders. Clinical Psychology Review, 29(3), 216–29. doi:10.1016/j.cpr.2009.01.003Google Scholar
Witwer, Andrea N., and Lecavalier, Luc. 2010. Validity of comorbid psychiatric disorders in youngsters with autism spectrum disorders. Journal of Developmental and Physical Disabilities, 22(4), 367–80. doi:10.1007/s10882-010-9194-0Google Scholar
Zhang, Y., Li, N., Li, C., Zhang, Z., Teng, H., Wang, Y., Zhao, T., Shi, L., Zhang, K., Xia, K., Li, J., and Sun, Z. 2020. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl Psychiatry, 10(1), 4. doi:10.1038/s41398-020-0699-8Google Scholar
Zheng, Z., Zheng, P., and Zou, X. 2018. Association between schizophrenia and autism spectrum disorder: a systematic review and meta-analysis. Autism Research, 11(8), 1110–19. doi:10.1002/aur.1977Google Scholar

References

Arnett, A. B., Pennington, B. F., Willcutt, E. G., Defries, J. C., and Olson, R. K. 2015. Sex differences in ADHD symptom severity. J Child Psychol Psychiatry, 56, 632–9.Google Scholar
Asherson, P. 2015. ADHD in Adults. In: Banaschewski, T., Zuddas, A., Asherson, P., Buitelaar, J., Coghill, D., Danckaerts, M., Dopfner, M., Rohde, L. A., Sonuga-Barke, E., and Taylor, E. (eds) ADHD and Hyperkinetic Disorder. Oxford: Oxford University Press.Google Scholar
Asherson, P. and J. A., R. Q. 2018. Treatment in adults ADHD. In: Banaschewski, T., Coghill, D., and Zuddas, A. (eds) Oxford Textbook of ADHD. Oxford: Oxford University Press.Google Scholar
Coghill, D. 2015. Assessment. In: Banaschewski, T., Zuddas, A., Asherson, P., Buitelaar, J., Coghill, D., Danckaerts, M., Dopfner, M., Rohde, L. A., Sonuga-Barke, E., and Taylor, E. (eds) ADHD and Hyperkinetic Disorder. 2 ed. Oxford: Oxford University Press.Google Scholar
Coghill, D., Asherson, P., Faraone, S. V., and Rohde, L. A. 2018. The age of onset of attention-deficit hyperactivity disorder. In: De Girolamo, G., Mcgorry, P. D., and Sartorius, N. (eds) Age of Onset of Mental Disorders: Etiopathogenetic and Treatment Implications. New York: Springer.Google Scholar
Coghill, D. and Danckaerts, M. 2018. Organizing and delivering treatment for ADHD. In: Banaschewski, T., Coghill, D., and Zuddas, A. (eds) Oxford Textbook for ADHD. Oxford: Oxford University Press.Google Scholar
Coghill, D. and Hodgkins, P. 2016. Health-related quality of life of children with attention-deficit/hyperactivity disorder versus children with diabetes and healthy controls. Eur Child Adolesc Psychiatry, 25, 261–71.Google Scholar
Coghill, D., Rohde, L. A., and Banaschewski, T. 2008. Attention-deficit/hyperactivity disorder. In: Banaschewski, T. and Rohde, L. A. (eds.) Biological Child Psychiatry Recent Trends and Developments. Basel: Karger, pp. 120.Google Scholar
Coghill, D. and Seth, S. 2015. Effective management of attention-deficit/hyperactivity disorder (ADHD) through structured re-assessment: the Dundee ADHD Clinical Care Pathway. Child Adolesc Psychiatry Ment Health, 9, 52.Google Scholar
Cornforth, C., Sonuga-Barke, E., and Coghill, D. 2010. Stimulant drug effects on attention deficit/hyperactivity disorder: a review of the effects of age and sex of patients. Curr Pharm Des, 16, 2424-33.CrossRefGoogle ScholarPubMed
Cortese, S., Adamo, N., Del Giovane, C., Mohr-Jensen, C., Hayes, A. J., Carucci, S., Atkinson, L. Z., Tessari, L., Banaschewski, T., Coghill, D., Hollis, C., Simonoff, E., Zuddas, A., Barbui, C., Purgato, M., Steinhausen, H. C., Shokraneh, F., Xia, J., and Cipriani, A. 2018. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry, 5, 727–38.Google ScholarPubMed
Daley, D., Van Der Oord, S., Ferrin, M., Cortese, S., Danckaerts, M., Doepfner, M., Van Den Hoofdakker, B. J., Coghill, D., Thompson, M., Asherson, P., Banaschewski, T., Brandeis, D., Buitelaar, J., Dittmann, R. W., Hollis, C., Holtmann, M., Konofal, E., Lecendreux, M., Rothenberger, A., Santosh, P., Simonoff, E., Soutullo, C., Steinhausen, H. C., Stringaris, A., Taylor, E., Wong, I. C. K., Zuddas, A., and Sonuga-Barke, E. J. 2018. Practitioner review: current best practice in the use of parent training and other behavioural interventions in the treatment of children and adolescents with attention deficit hyperactivity disorder. J Child Psychol Psychiatry, 59(9), 932–47.Google Scholar
Dalsgaard, S., Mortensen, P. B., Frydenberg, M., and Thomsen, P. H. 2013. Long-term criminal outcome of children with attention deficit hyperactivity disorder. Crim Behav Ment Health, 23, 8698.Google Scholar
Dalsgaard, S., Ostergaard, S. D., Leckman, J. F., Mortensen, P. B., and Pedersen, M. G. 2015. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort study. Lancet, 385, 2190–6.Google Scholar
Danckaerts, M. and Coghill, D. 2018. Children and adolescents: assessment in everyday clinical practice. In: Banaschewski, T., Coghill, D., and Zuddas, A. (eds) Oxford Textbook of Attention Deficit Hyperactivity Disorder. Oxford: Oxford University Press.Google Scholar
Danckaerts, M., Sonuga-Barke, E. J., Banaschewski, T., Buitelaar, J., Dopfner, M., Hollis, C., Santosh, P., Rothenberger, A., Sergeant, J., Steinhausen, H. C., Taylor, E., Zuddas, A., and Coghill, D. 2010. The quality of life of children with attention deficit/hyperactivity disorder: a systematic review. Eur Child Adolesc Psychiatry, 19, 83105.Google Scholar
Danielson, M. L., Bitsko, R. H., Ghandour, R. M., Holbrook, J. R., Kogan, M. D., and Blumberg, S. J. 2018. Prevalence of parent-reported ADHD diagnosis and associated treatment among U.S. children and adolescents, 2016. J Clin Child Adolesc Psychol, 47, 199212.Google Scholar
Davies, W. 2014. Sex differences in Attention Deficit Hyperactivity Disorder: Candidate genetic and endocrine mechanisms. Front Neuroendocrinol, 35(3), 331–46.Google Scholar
Dirlikov, B., Rosch, Shiels, Crocetti, K., Denckla, D., Mahone, M. B., E. M., and Mostofsky, S. H. 2015. Distinct frontal lobe morphology in girls and boys with ADHD. Neuroimage Clin, 7, 222–9.Google Scholar
Dopfner, M. 2015. Psychosocial and other non-pharmacological treatments. In: Banaschewski, T., Zuddas, A., Asherson, P., Buitelaar, J., Coghill, D., Danckaerts, M., Dopfner, M., Rohde, L. A., Sonuga-Barke, E., and Taylor, E. (eds) ADHD and Hyperkinetic Disorder. 2nd ed. Oxford: Oxford University Press.Google Scholar
Dopfner, M., Breuer, D., Wille, N., Erhart, M., and Ravens-Sieberer, U. 2008. How often do children meet ICD-10/DSM-IV criteria of attention deficit-/hyperactivity disorder and hyperkinetic disorder? Parent-based prevalence rates in a national sample – results of the BELLA study. Eur Child Adolesc Psychiatry, 17 Suppl 1, 5970.Google Scholar
Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., and Van Engeland, H. 2001. Anatomical MRI of the developing human brain: what have we learned? J Am Acad Child Adolesc Psychiatry, 40, 1012–20.Google Scholar
Epstein, J. N., Johnson, D. E., and Conners, C. K. 2001. CAADID: Conners Adult ADHD Diagnstic Interview for DSM-IV. Toronto: Multi Health Systems.Google Scholar
Eriksson, J. M., Lundstrom, S., Lichtenstein, P., Bejerot, S., and Eriksson, E. 2016. Effect of co-twin gender on neurodevelopmental symptoms: a twin register study. Mol Autism, 7, 8.Google Scholar
Faraone, S. V., Asherson, P., Banaschewski, T., Biederman, J., Buitelaar, J. K., Ramos-Quiroga, J. A., Rohde, L. A., Sonuga-Barke, E. J. S., Tannock, R., and Franke, B. 2015. Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 1, 15020.Google Scholar
Faraone, S. V., Biederman, J., and Mick, E. 2006. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med, 36, 159–65.Google Scholar
Fedele, D. A., Lefler, E. K., Hartung, C. M., and Canu, W. H. 2012. Sex differences in the manifestation of ADHD in emerging adults. J Atten Disord, 16, 109–17.Google Scholar
Gaub, M. and Carlson, C. L. 1997. Gender differences in ADHD: a meta-analysis and critical review. J Am Acad Child Adolesc Psychiatry, 36, 1036–45.Google Scholar
Gershon, J. 2002. Meta-analysis gender differences ADHD. J Atten Disord, 5, 143–54.Google Scholar
Gillies, G. E., Virdee, K., Mcarthur, S., and Dalley, J. W. 2014. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: a molecular, cellular and behavioral analysis. Neuroscience, 282(special issue), 6985.Google Scholar
Gomez, R. 2013. ADHD and Hyperkinetic Disorder Symptoms in Australian adults: descriptive scores, incidence rates, factor structure, and gender invariance. J Atten Disord, 20(4), 325–34.Google Scholar
Graetz, B. W., Sawyer, M. G., and Baghurst, P. 2005. Gender differences among children with DSM-IV ADHD in Australia. J Am Acad Child Adolesc Psychiatry, 44, 159–68.Google Scholar
Greven, C., Richards, J., and Buitelaar, J. 2018. Sex differences in ADHD. In: Banaschewski, T., Coghill, D., and Zuddas, A. (eds) Oxford Textbook of ADHD. Oxford: Oxford University press.Google Scholar
Greven, C. U., Rijsdijk, F. V., and Plomin, R. 2011. A twin study of ADHD symptoms in early adolescence: hyperactivity-impulsivity and inattentiveness show substantial genetic overlap but also genetic specificity. J Abnorm Child Psychol, 39, 265–75.Google Scholar
Healthcare Improvement Scotland. 2012. Attention Deficit and Hyperkinetic Disorders: Services Over Scotland. Edinburgh: NHS Scotland.Google Scholar
Herguner, S., Harmanci, H., and Toy, H. 2015. Attention deficit-hyperactivity disorder symptoms in women with polycystic ovary syndrome. Int J Psychiatry Med, 50, 317–25.Google Scholar
Hervey, A. S., Epstein, J. N., and Curry, J. F. 2004. Neuropsychology of adults with attention-deficit/hyperactivity disorder: a meta-analytic review. Neuropsychology, 18, 485503.Google Scholar
Hodgkins, P., Shaw, M., Coghill, D., and Hechtman, L. 2012. Amfetamine and methylphenidate medications for attention-deficit/hyperactivity disorder: complementary treatment options. Eur Child Adolesc Psychiatry, 21, 477–92.Google Scholar
Holden, S. E., Jenkins-Jones, S., Poole, C. D., Morgan, C. L., Coghill, D., and Currie, C. J. 2013. The prevalence and incidence, resource use and financial costs of treating people with attention deficit/hyperactivity disorder (ADHD) in the United Kingdom (1998 to 2010). Child Adolesc Psychiatry Ment Health, 7, 34.Google Scholar
Hudziak, J. J., Achenbach, T. M., Althoff, R. R., and Pine, D. S. 2007. A dimensional approach to developmental psychopathology. Int J Methods Psychiatr Res, 16 Suppl 1, S16S23.Google Scholar
Jacobson, L. A., Peterson, D. J., Rosch, K. S., Crocetti, D., Mori, S., and Mostofsky, S. H. 2015. Sex-based dissociation of white matter microstructure in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry, 54, 938–46.Google Scholar
Jensen, C. M. and Steinhausen, H. C. 2015. Comorbid mental disorders in children and adolescents with attention-deficit/hyperactivity disorder in a large nationwide study. Atten Defic Hyperact Disord, 7, 2738.Google Scholar
Jin, W., Du, Y., Zhong, X., and Coghill, D. 2013. Prevalence and contributing factors to attention deficit hyperactivity disorder: A study of five- to fifteen-year-old children in Zhabei District, Shanghai. Asia Pac Psychiatry, 6(4), 397404.Google Scholar
Jonsson, U., Alaie, I., Lofgren Wilteus, A., Zander, E., Marschik, P. B., Coghill, D., and Bolte, S. 2017. Annual research review: quality of life and childhood mental and behavioural disorders – a critical review of the research. J Child Psychol Psychiatry, 58, 439–69.Google Scholar
Kan, K. J., Dolan, C. V., Nivard, M. G., Middeldorp, C. M., Van Beijsterveldt, C. E., Willemsen, G., and Boomsma, D. I. 2013. Genetic and environmental stability in attention problems across the lifespan: evidence from the Netherlands twin register. J Am Acad Child Adolesc Psychiatry, 52, 1225.Google Scholar
Kessler, R. C., Adler, L., Barkley, R., Biederman, J., Conners, C. K., Demler, O., Faraone, S. V., Greenhill, L. L., Howes, M. J., Secnik, K., Spencer, T., Ustun, T. B., Walters, E. E., and Zaslavsky, A. M. 2006. The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry, 163, 716–23.Google Scholar
Kooij, J. J. 2012. Adult ADHD: Diagnostic Assessment and Treatment. New York: Springer.Google Scholar
Kooij, S. 2019. DIVA 2.0 the structured Diagnostic Interview for Adult ADHD. www.divacenter.eu (accessed 13 September 2020).Google Scholar
Kooij, S., Asherson, P., and Rosler, M. 2018. ADHD in adults: assessment issues. In: Banaschewski, T., Coghill, D., and Zuddas, A. (eds) Oxford Textbook of ADHD. Oxford: Oxford University Press.Google Scholar
Larsson, H., Asherson, P., Chang, Z., Ljung, T., Friedrichs, B., Larsson, J. O., and Lichtenstein, P. 2013. Genetic and environmental influences on adult attention deficit hyperactivity disorder symptoms: a large Swedish population-based study of twins. Psychol Med, 43, 197207.Google Scholar
Laufer, M. W. and Denhoff, E. 1957. Hyperkinetic behavior syndrome in children. J Pediatr, 50, 463–74.Google Scholar
Lee, S. S., Humphreys, K. L., Flory, K., Liu, R., and Glass, K. 2011. Prospective association of childhood attention-deficit/hyperactivity disorder (ADHD) and substance use and abuse/dependence: a meta-analytic review. Clin Psychol Rev, 31, 328–41.Google Scholar
Lichtenstein, P., Halldner, L., Zetterqvist, J., Sjolander, A., Serlachius, E., Fazel, S., Langstrom, N., and Larsson, H. 2012. Medication for attention deficit-hyperactivity disorder and criminality. N Engl J Med, 367, 2006–14.Google Scholar
Loke, H., Harley, V., and Lee, J. 2015. Biological factors underlying sex differences in neurological disorders. Int J Biochem Cell Biol, 65, 139–50.Google Scholar
Mahone, E. M., Ranta, M. E., Crocetti, D., O’Brien, J., Kaufmann, W. E., Denckla, M. B., and Mostofsky, S. H. 2011. Comprehensive examination of frontal regions in boys and girls with attention-deficit/hyperactivity disorder. J Int Neuropsychol Soc, 17, 1047–57.Google Scholar
Matte, B., Anselmi, L., Salum, G. A., Kieling, C., Goncalves, H., Menezes, A., Grevet, E. H., and Rohde, L. A. 2015. ADHD in DSM-5: a field trial in a large, representative sample of 18- to 19-year-old adults. Psychol Med, 45, 361–73.Google Scholar
MTA Cooperative Group 1999. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Multimodal treatment study of children with ADHD. Arch Gen Psychiatry, 56, 1073–86.Google Scholar
NICE 2008. Attention Deficit Hyperactivity Disorder Diagnosis and Management of ADHD in Children, Young People and Adults. London: National Institute for Health and Clinical Excellence.Google Scholar
NICE 2018. Attention Deficit Hyperactivity Disorder: Diagnosis and Management. Nice Guideline 87. London: National Institute for Health and Clinical Excellence.Google Scholar
Nikolas, M. A. and Burt, S. A. 2010. Genetic and environmental influences on ADHD symptom dimensions of inattention and hyperactivity: a meta-analysis. J Abnorm Psychol, 119, 117.Google Scholar
Novik, T. S., Hervas, A., Ralston, S. J., Dalsgaard, S., Rodrigues Pereira, R., and Lorenzo, M. J. 2006. Influence of gender on attention-deficit/hyperactivity disorder in Europe – ADORE. European Child and Adolescent Psychiatry, 15 Suppl 1, 115–24.Google Scholar
Nussbaum, N. L. 2012. ADHD and female specific concerns: a review of the literature and clinical implications. J Atten Disord, 16, 87100.Google Scholar
Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J., and Rohde, L. A. 2007. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry, 164, 942–8.Google Scholar
Polanczyk, G. V., Willcutt, E. G., Salum, G. A., Kieling, C., and Rohde, L. A. 2014. ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. Int J Epidemiol, 43(2), 434–42.Google Scholar
Quintero, J., Ramos-Quiroga, J. A., Sebastian, J. S., Montanes, F., Fernandez-Jaen, A., Martinez-Raga, J., Giral, M. G., Graell, M., Mardomingo, M. J., Soutullo, C., Eiris, J., Tellez, M., Pamias, M., Correas, J., Sabate, J., Garcia-Orti, L., and Alda, J. A. 2018. Health care and societal costs of the management of children and adolescents with attention-deficit/hyperactivity disorder in Spain: a descriptive analysis. BMC Psychiatry, 18, 40.Google Scholar
Raman, S. R., Man, K. K. C., Bahmanyar, S., Berard, A., Bilder, S., Boukhris, T., Bushnell, G., Crystal, S., Furu, K., Kaoyang, Y. H., Karlstad, O., Kieler, H., Kubota, K., Lai, E. C., Martikainen, J. E., Maura, G., Moore, N., Montero, D., Nakamura, H., Neumann, A., Pate, V., Pottegard, A., Pratt, N. L., Roughead, E. E., Macias Saint-Gerons, D., Sturmer, T., Su, C. C., Zoega, H., Sturkenbroom, M., Chan, E. W., Coghill, D., Ip, P., and Wong, I. C. K. 2018. Trends in attention-deficit hyperactivity disorder medication use: a retrospective observational study using population-based databases. Lancet Psychiatry, 5, 824–35.Google Scholar
Robison, R. J., Reimherr, F. W., Marchant, B. K., Faraone, S. V., Adler, L. A., and West, S. A. 2008. Gender differences in 2 clinical trials of adults with attention-deficit/hyperactivity disorder: a retrospective data analysis. J Clin Psychiatry, 69, 213–21.Google Scholar
Rohde, L. A. 2008. Is there a need to reformulate attention deficit hyperactivity disorder criteria in future nosologic classifications? Child Adolesc Psychiatr Clin N Am, 17, 405–20.Google Scholar
Rucklidge, J. J. 2010. Gender differences in attention-deficit/hyperactivity disorder. Psychiatr Clin North Am, 33, 357–73.Google Scholar
Sassi, R. B. 2010. Attention-deficit hyperactivity disorder and gender. Arch Womens Ment Health, 13, 2931.Google Scholar
Shaw, P., Gilliam, M., Liverpool, M., Weddle, C., Malek, M., Sharp, W., Greenstein, D., Evans, A., Rapoport, J., and Giedd, J. 2011. Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: support for a dimensional view of attention deficit hyperactivity disorder. Am J Psychiatry, 168, 143–51.Google Scholar
Simon, V., Czobor, P., Balint, S., Meszaros, A., and Bitter, I. 2009. Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry, 194, 204–11.Google Scholar
Sonuga-Barke, E. J., Brandeis, D., Cortese, S., Daley, D., Ferrin, M., Holtmann, M., Stevenson, J., Danckaerts, M., Van Der Oord, S., Dopfner, M., Dittmann, R. W., Simonoff, E., Zuddas, A., Banaschewski, T., Buitelaar, J., Coghill, D., Hollis, C., Konofal, E., Lecendreux, M., Wong, I. C., Sergeant, J., and European, A. G. G. 2013. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. Am J Psychiatry, 170, 275–89.Google Scholar
Souza, I., Pinheiro, M. A., Denardin, D., Mattos, P., and Rohde, L. A. 2004. Attention-deficit/hyperactivity disorder and comorbidity in Brazil: comparisons between two referred samples. Eur Child Adolesc Psychiatry, 13, 243–8.Google Scholar
Staller, J. and Faraone, S. V. 2006. Attention-deficit hyperactivity disorder in girls: epidemiology and management. CNS Drugs, 20, 107–23.Google Scholar
Steinhausen, H. C., Novik, T. S., Baldursson, G., Curatolo, P., Lorenzo, M. J., Rodrigues Pereira, R., Ralston, S. J., and Rothenberger, A. 2006. Co-existing psychiatric problems in ADHD in the ADORE cohort. European Child and Adolescent Psychiatry, 15 Suppl 1, I25–9.Google Scholar
Swanson, J. M., Arnold, L. E., Jensen, P., Hinshaw, S. P., Hechtman, L. T., Conners, C. K., Kraemer, H. C., Wigal, T., Vitiello, B., Elliot, G. R., Abikoff, H. B., Hoza, B., Newcorn, J. H., Wells, K., Lerner, M., Molina, B. S. G., Epstein, J. N., Owens, E. B., Waxmonsky, J., Murray, D. W., Sibley, M. H., Mitchell, J. T., Roy, A., Stehli, A., and Group, M. C. 2018. Long- term outcomes in the multimodal treatment study of children with ADHD (the MTA): from beginning to end. In: Banaschewski, T., Coghill, D., and Zuddas, A. (eds) The Oxford Textbook of ADHD. Oxford: Oxford University Press.Google Scholar
Taylor, E. 2011. Antecedents of ADHD: a historical account of diagnostic concepts. Atten Defic Hyperact Disord, 3, 6975.Google Scholar
Ustun, B., Adler, L. A., Rudin, C., Faraone, S. V., Spencer, T. J., Berglund, P., Gruber, M. J., and Kessler, R. C. 2017. The World Health Organization Adult Attention-Deficit/Hyperactivity Disorder Self-Report Screening Scale for DSM-5. JAMA Psychiatry, 74, 520–6.Google Scholar
Van De Glind, G., Van Den Brink, W., Koeter, M. W., Carpentier, P. J., Van Emmerik-Van Oortmerssen, K., Kaye, S., Skutle, A., Bu, E. T., Franck, J., Konstenius, M., Moggi, F., Dom, G., Verspreet, S., Demetrovics, Z., Kapitany-Foveny, M., Fatseas, M., Auriacombe, M., Schillinger, A., Seitz, A., Johnson, B., Faraone, S. V., Ramos-Quiroga, J. A., Casas, M., Allsop, S., Carruthers, S., Barta, C., Schoevers, R. A., Group, I. R., and Levin, F. R. 2013. Validity of the Adult ADHD Self-Report Scale (ASRS) as a screener for adult ADHD in treatment seeking substance use disorder patients. Drug Alcohol Depend, 132, 587–96.Google Scholar
Van Lieshout, M., Luman, M., Twisk, J. W., Van Ewijk, H., Groenman, A. P., Thissen, A. J., Faraone, S. V., Heslenfeld, D. J., Hartman, C. A., Hoekstra, P. J., Franke, B., Buitelaar, J. K., Rommelse, N. N., and Oosterlaan, J. 2016. A 6-year follow-up of a large European cohort of children with attention-deficit/hyperactivity disorder-combined subtype: outcomes in late adolescence and young adulthood. Eur Child Adolesc Psychiatry, 25, 1007–17.Google Scholar
Van Voorhees, E. E., Mitchell, J. T., Mcclernon, F. J., Beckham, J. C., and Kollins, S. H. 2012. Sex, ADHD symptoms, and smoking outcomes: an integrative model. Med Hypotheses, 78, 585–93.Google Scholar
Waddell, J. and Mccarthy, M. M. 2012. Sexual differentiation of the brain and ADHD: what is a sex difference in prevalence telling us? Curr Top Behav Neurosci, 9, 341–60.Google Scholar
Waschbusch, D. A. and King, S. 2006. Should sex-specific norms be used to assess attention-deficit/hyperactivity disorder or oppositional defiant disorder? J Consult Clin Psychol, 74, 179–85.Google Scholar
Wilens, T. E. 2007. The nature of the relationship between attention-deficit/hyperactivity disorder and substance use. J Clin Psychiatry, 68 Suppl 11, 48.Google Scholar
Willcutt, E. G. 2012. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics, 9, 490–9.Google Scholar
Willcutt, E. G., Pennington, B. F., Chhabildas, N. A., Friedman, M. C., and Alexander, J. 1999. Psychiatric comorbidity associated with DSM-IV ADHD in a nonreferred sample of twins. J Am Acad Child Adolesc Psychiatry, 38, 1355–62.Google Scholar
Williamson, D. and Johnston, C. 2015. Gender differences in adults with attention-deficit/hyperactivity disorder: A narrative review. Clin Psychol Rev, 40, 1527.Google Scholar
Yoshimasu, K., Barbaresi, W. J., Colligan, R. C., Voigt, R. G., Killian, J. M., Weaver, A. L., and Katusic, S. K. 2012. Childhood ADHD is strongly associated with a broad range of psychiatric disorders during adolescence: a population-based birth cohort study. J Child Psychol Psychiatry, 53, 1036–43.Google Scholar
Young, S., Moss, D., Sedgwick, O., Fridman, M., and Hodgkins, P. 2015. A meta-analysis of the prevalence of attention deficit hyperactivity disorder in incarcerated populations. Psychological Medicine, 45, 247–58.Google Scholar
Zayats, T., Johansson, S., and Haavik, J. 2015. Expanding the toolbox of ADHD genetics. How can we make sense of parent of origin effects in ADHD and related behavioral phenotypes? Behav Brain Funct, 11, 33.Google Scholar
Zuddas, A., Banaschewski, T., Coghill, D., and Stein, M. A. 2018. ADHD treatment: psychostimulants. In: Banaschewski, T., Coghill, D., and Zuddas, A. (eds) Oxford Textbook of Attention Deficit Hyperactivity Disorder. Oxford: Oxford University Press.Google Scholar

References

Alexander, G. M. 2014. Postnatal testosterone concentrations and male social development. Front Endocrinol (Lausanne), 5, 15.Google Scholar
Altemus, M., Sarvaiya, N., and Neill Epperson, C. 2014. Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol, 35, 320–30.Google Scholar
Archer, J. 2019. The reality and evolutionary significance of human psychological sex differences. Biol Rev Camb Philos Soc, 94, 13811415.Google Scholar
Arnett, J. J. 1999. Adolescent storm and stress, reconsidered. Am Psychol, 54, 317–26.Google Scholar
Bauer, M., Andreassen, O. A., Geddes, J. R., Vedel Kessing, L., Lewitzka, U., Schulze, T. G., and Vieta, E. 2018. Areas of uncertainties and unmet needs in bipolar disorders: clinical and research perspectives. Lancet Psychiatry, 5, 930–9.Google Scholar
Becker, J. B. 2009. Sexual differentiation of motivation: a novel mechanism? Horm Behav, 55, 646–54.Google Scholar
Berenbaum, S. A. and Beltz, A. M. 2011. Sexual differentiation of human behavior: effects of prenatal and pubertal organizational hormones. Front Neuroendocrinol, 32, 183200.CrossRefGoogle ScholarPubMed
Berenbaum, S. A., Beltz, A. M., and Corley, R. 2015. The importance of puberty for adolescent development: conceptualization and measurement. Adv Child Dev Behav, 48, 5392.Google Scholar
Bezdickova, M., Molikova, R., Bebarova, L., and Kolar, Z. 2007. Distribution of nuclear receptors for steroid hormones in the human brain: a preliminary study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 151, 6971.Google Scholar
Birmaher, B. and Rozel, J. S. 2003. Unipolar depression – a lifespan perpsetive: ‘the school age child’. In: Goodyer, I. M. (ed.) Unipolar Depression: A Lifespan Perspective. Oxford: Oxford University Press.Google Scholar
Bramen, J. E., Hranilovich, J. A., Dahl, R. E., Chen, J., Rosso, C., Forbes, E. E., Dinov, I. D., Worthman, C. M., and Sowell, E. R. 2012. Sex matters during adolescence: testosterone-related cortical thickness maturation differs between boys and girls. PLoS One, 7, e33850.Google Scholar
Cameron, H. A. and Gould, E. 1994. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience, 61, 203–9.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., Mcclay, J., Mill, J., Martin, J., Braithwaite, A., and Poulton, R. 2003. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–9.Google Scholar
Clarkson, T., Eaton, N. R., Nelson, E. E., Fox, N. A., Leibenluft, E., Pine, D. S., Heckelman, A. C., Sequeira, S. L., and Jarcho, J. M. 2019. Early childhood social reticence and neural response to peers in preadolescence predict social anxiety symptoms in midadolescence. Depress Anxiety, 36, 676–89.Google Scholar
Cohen-Kettenis, P. T. 2005. Gender change in 46,XY persons with 5alpha-reductase-2 deficiency and 17beta-hydroxysteroid dehydrogenase-3 deficiency. Arch Sex Behav, 34, 399410.Google Scholar
Cortes, M. E., Carrera, B., Rioseco, H., Pablo Del Rio, J., and Vigil, P. 2015. The role of kisspeptin in the onset of puberty and in the ovulatory mechanism: a mini-review. J Pediatr Adolesc Gynecol, 28, 286–91.Google Scholar
Costa, R., Dunsford, M., Skagerberg, E., Holt, V., Carmichael, P., and Colizzi, M. 2015. Psychological support, puberty suppression, and psychosocial functioning in adolescents with gender dysphoria. J Sex Med, 12, 2206–14.Google Scholar
Cowen, P. J. and Browning, M. 2015. What has serotonin to do with depression? World Psychiatry, 14, 158–60.Google Scholar
Dalley, J. W. and Roiser, J. P. 2012. Dopamine, serotonin and impulsivity. Neuroscience, 215, 4258.Google Scholar
Duarte-Guterman, P., Lieblich, S., Wainwright, S. R., Chow, C., Chaiton, J., Watson, N. V., and Galea, L. A. M. 2019. Androgens enhance adult hippocampal neurogenesis in males but not females in an age-dependent manner. Endocrinology, 160(9), 2128–36.Google Scholar
Duffy, A., Jones, S., Goodday, S., and Bentall, R. 2015. Candidate risks indicators for bipolar disorder: early intervention opportunities in high-risk youth. Int J Neuropsychopharmacol, 19.Google Scholar
Duque Ede, A. and Munhoz, C. D. 2016. The pro-inflammatory effects of glucocorticoids in the brain. Front Endocrinol (Lausanne), 7, 78.Google Scholar
Durwood, L., Mclaughlin, K. A., and Olson, K. R. 2017. Mental health and self-worth in socially transitioned transgender youth. J Am Acad Child Adolesc Psychiatry, 56, 116–23 e2.Google Scholar
Farooqi, N. A. I., Scotti, M., Yu, A., Lew, J., Monnier, P., Botteron, K. N., Campbell, B. C., Booij, L., Herba, C. M., Seguin, J. R., Castellanos-Ryan, N., Mccracken, J. T., and Nguyen, T. V. 2019. Sex-specific contribution of DHEA-cortisol ratio to prefrontal-hippocampal structural development, cognitive abilities and personality traits. J Neuroendocrinol, 31, e12682.Google Scholar
Fawcett, J. W., Oohashi, T., and Pizzorusso, T. The role of perineurional nets and perinodal extracellular matrix in neuronal function. Nat Rev Neurosci. 2019 (8):451465.Google Scholar
Forbes, E. E. and Dahl, R. E. 2010. Pubertal development and behavior: hormonal activation of social and motivational tendencies. Brain Cogn, 72, 6672.Google Scholar
Foulkes, L. and Blakemore, S. J. 2018. Studying individual differences in human adolescent brain development. Nat Neurosci, 21, 315–23.Google Scholar
Garg, E., Chen, L., Nguyen, T. T. T., Pokhvisneva, I., Chen, L. M., Unternaehrer, E., Macisaac, J. L., Mcewen, L. M., Mah, S. M., Gaudreau, H., Levitan, R., Moss, E., Sokolowski, M. B., Kennedy, J. L., Steiner, M. S., Meaney, M. J., Holbrook, J. D., Silveira, P. P., Karnani, N., Kobor, M. S., O’Donnell, K. J., and Mavan Study, T. 2018. The early care environment and DNA methylome variation in childhood. Dev Psychopathol, 30, 891903.Google Scholar
Goddings, A. L., Burnett Heyes, S., Bird, G., Viner, R. M., and Blakemore, S. J. 2012. The relationship between puberty and social emotion processing. Dev Sci, 15, 801–11.Google Scholar
Goodyer, I. M. 2003. Unipolar Depression: A Lifespan Perspective. Oxford: Oxford University Press.Google Scholar
Goodyer, I. M., Croudace, T., Dudbridge, F., Ban, M., and Herbert, J. 2010. Polymorphisms in BDNF (Val66Met) and 5-HTTLPR, morning cortisol and subsequent depression in at-risk adolescents. Br J Psychiatry, 197, 365–71.Google Scholar
Goodyer, I. M., Herbert, J., and Tamplin, A. 2003. Psychoendocrine antecedents of persistent first-episode major depression in adolescents: a community-based longitudinal enquiry. Psychol Med, 33, 601–10.Google Scholar
Goodyer, I. M. and Wilkinson, P. O. 2019. Practitioner review: therapeutics of unipolar major depressions in adolescents. J Child Psychol Psychiatry, 60, 232–43.Google Scholar
Gottlieb, B., Beitel, L. K., Nadarajah, A., Paliouras, M., and Trifiro, M. 2012. The androgen receptor gene mutations database: 2011 update. Hum Mutat.Google Scholar
Halligan, S. L., Herbert, J., Goodyer, I. M., and Murray, L. 2004. Exposure to postnatal depression predicts elevated cortisol in adolescent offspring. Biol Psychiatry, 55, 376–81.Google Scholar
Harrington, R. 2003. Adolescence. In: Goodyer, I. M. (ed.) Unipolar Depression: A Lifespan Perspective. Oxford: Oxford University Press.Google Scholar
Heim, C. and Binder, E. B. 2012. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp Neurol, 233, 102–11.Google Scholar
Herbert, J. 2017. Testosterone: The Molecule Behind Power, Sex and the Will to Win. Oxford: Oxford University Press.Google Scholar
Herbert, J. and Lucassen, P. J. 2016. Depression as a risk factor for Alzheimer’s disease: genes, steroids, cytokines and neurogenesis – what do we need to know? Front Neuroendocrinol, 41, 153–71.Google Scholar
Herting, M. M., Gautam, P., Spielberg, J. M., Dahl, R. E., and Sowell, E. R. 2015. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation. PLoS One, 10, e0119774.Google Scholar
Hines, M. 2006. Brain Gender. Oxford: Oxford University Press.Google Scholar
Hines, M. 2011. Gender development and the human brain. Annu Rev Neurosci, 34, 6988.Google Scholar
Hines, M., Ahmed, S. F., and Hughes, I. A. 2003. Psychological outcomes and gender-related development in complete androgen insensitivity syndrome. Arch Sex Behav, 32, 93101.Google Scholar
Hochberg, Z. and Belsky, J. 2013. Evo-devo of human adolescence: beyond disease models of early puberty. BMC Med, 11, 113.Google Scholar
Hodes, G. E. and Epperson, C. N. 2019. Sex differences in vulnerability and resilience to stress across the life span. Biol Psychiatry, 86(6), 421–32.Google Scholar
Joels, M. and De Kloet, E. R. 1994. Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Prog Neurobiol, 43, 136.Google Scholar
Karg, K., Burmeister, M., Shedden, K., and Sen, S. 2011. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry, 68, 444–54.Google Scholar
Khandaker, G. M., Stochl, J., Zammit, S., Goodyer, I., Lewis, G., and Jones, P. B. 2018. Childhood inflammatory markers and intelligence as predictors of subsequent persistent depressive symptoms: a longitudinal cohort study. Psychol Med, 48, 1514–22.Google Scholar
Kilford, E. J., Garrett, E., and Blakemore, S. J. 2016. The development of social cognition in adolescence: an integrated perspective. Neurosci Biobehav Rev, 70, 106–20.Google Scholar
Kircanski, K., Sisk, L. M., Ho, T. C., Humphreys, K. L., King, L. S., Colich, N. L., Ordaz, S. J., and Gotlib, I. H. 2019. Early life stress, cortisol, frontolimbic connectivity, and depressive symptoms during puberty. Dev Psychopathol, 31, 1011–22.Google Scholar
Kosti, K., Athanasiadis, L., and Goulis, D. G. 2019. Long-term consequences of androgen insensitivity syndrome. Maturitas, 127, 51–4.Google Scholar
Kritzer, M. 2004. The distribution of immunoreactivity for intracellular androgen receptors in the cerebral cortex of hormonally intact adult male and female rats: localization in pyramidal neurons making corticocortical connections. Cereb Cortex, 14, 268–80.Google Scholar
Lenroot, R. K. and Giedd, J. N. 2010. Sex differences in the adolescent brain. Brain Cogn, 72, 4655.Google Scholar
Lijster, J. M., Dierckx, B., Utens, E. M., Verhulst, F. C., Zieldorff, C., Dieleman, G. C., and Legerstee, J. S. 2017. The age of onset of anxiety disorders. Can J Psychiatry, 62, 237–46.Google Scholar
Mahfouda, S., Moore, J. K., Siafarikas, A., Zepf, F. D., and Lin, A. 2017. Puberty suppression in transgender children and adolescents. Lancet Diabetes Endocrinol, 5, 816–26.Google Scholar
Matsuda, K. I., Mori, H., and Kawata, M. 2012. Epigenetic mechanisms are involved in sexual differentiation of the brain. Rev Endocr Metab Disord, 13, 163–71.Google Scholar
Meaney, M. J. and Szyf, M. 2005. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci, 7, 103–23.Google Scholar
Melo, K. F., Mendonca, B. B., Billerbeck, A. E., Costa, E. M., Inacio, M., Silva, F. A., Leal, A. M., Latronico, A. C., and Arnhold, I. J. 2003. Clinical, hormonal, behavioral, and genetic characteristics of androgen insensitivity syndrome in a Brazilian cohort: five novel mutations in the androgen receptor gene. J Clin Endocrinol Metab, 88, 3241–50.Google Scholar
Mendonca, B. B., Batista, R. L., Domenice, S., Costa, E. M., Arnhold, I. J., Russell, D. W., and Wilson, J. D. 2016. Steroid 5alpha-reductase 2 deficiency. J Steroid Biochem Mol Biol, 163, 206–11.Google Scholar
Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J., and Jovanovic, T. 2017. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology, 42, 254–70.Google Scholar
Mihalik, A., Ferreira, F. S., Rosa, M. J., Moutoussis, M., Ziegler, G., Monteiro, J. M., Portugal, L., Adams, R. A., Romero-Garcia, R., VErtes, P. E., Kitzbichler, M. G., Vasa, F., Vaghi, M. M., Bullmore, E. T., Fonagy, P., Goodyer, I. M., Jones, P. B., Consortium, N., Dolan, R., and Mourao-Miranda, J. 2019. Brain-behaviour modes of covariation in healthy and clinically depressed young people. Sci Rep, 9, 11536.Google Scholar
Moriguchi, S., Shinoda, Y., Yamamoto, Y., Sasaki, Y., Miyajima, K., Tagashira, H., and Fukunaga, K. 2013. Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice. PLoS One, 8, e60863.Google Scholar
Mullins, N. and Lewis, C. M. 2017. Genetics of depression: progress at last. Curr Psychiatry Rep, 19, 43.Google Scholar
Natu, V. S., Gomez, J., Barnett, M., Kirilina, E., Jaeger, C., Zhen, Z., Cox, S., Weiner, K. S., Weiskopf, N., and Grill-Spector, K. 8 October 2019. Apparent thinning of human visual cortex during childhood is associated with myelinisation. Proc Natl Acad Sci USA, 116(41), 20750–9, first published 23 September 2019.Google Scholar
Netherton, C., Goodyer, I., Tamplin, A., and Herbert, J. 2004. Salivary cortisol and dehydroepiandrosterone in relation to puberty and gender. Psychoneuroendocrinology, 29, 125–40.Google Scholar
Nugent, B. M., Wright, C. L., Shetty, A. C., Hodes, G. E., Lenz, K. M., Mahurkar, A., Russo, S. J., Devine, S. E., and Mccarthy, M. M. 2015. Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci, 18, 690–7.Google Scholar
Nunez, J. L., Huppenbauer, C. B., Mcabee, M. D., Juraska, J. M., and Doncarlos, L. L. 2003. Androgen receptor expression in the developing male and female rat visual and prefrontal cortex. J Neurobiol, 56, 293302.Google Scholar
Ojeda, S. R. and Lomniczi, A. 2014. Puberty in 2013: unravelling the mystery of puberty. Nat Rev Endocrinol, 10, 67–9.Google Scholar
Owens, M., Herbert, J., Jones, P. B., Sahakian, B. J., Wilkinson, P. O., Dunn, V. J., Croudace, T. J., and Goodyer, I. M. 2014. Elevated morning cortisol is a stratified population-level biomarker for major depression in boys only with high depressive symptoms. Proc Natl Acad Sci U S A, 111, 3638–43.Google Scholar
Peper, J. S., Hulshoff Pol, H. E., Crone, E. A., and Van Honk, J. 2011. Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies. Neuroscience, 191, 2837.Google Scholar
Piekarski, D. J., Johnson, C. M., Boivin, J. R., Thomas, A. W., Lin, W. C., Delevich, K., E, M. G., and Wilbrecht, L. 2017. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res, 1654, 123–44.Google Scholar
Puckett, J. A., Matsuno, E., Dyar, C., MUstanski, B., and Newcomb, M. E. 2019. Mental health and resilience in transgender individuals: What type of support makes a difference? J Fam Psychol, 33(8), 954–64.Google Scholar
Rainville, J. R. and Hodes, G. E. 2019. Inflaming sex differences in mood disorders. Neuropsychopharmacology, 44, 184–99.Google Scholar
Ranta, K., Vaananen, J., Frojd, S., Isomaa, R., Kaltiala-Heino, R., and Marttunen, M. 2017. Social phobia, depression and eating disorders during middle adolescence: longitudinal associations and treatment seeking. Nord J Psychiatry, 71, 605–13.Google Scholar
Rowe, R., Maughan, B., WorthmaN, C. M., Costello, E. J., and Angold, A. 2004. Testosterone, antisocial behavior, and social dominance in boys: pubertal development and biosocial interaction. Biol Psychiatry, 55, 546–52.Google Scholar
Sandberg, D. E. and Meyer-Bahlburg, H. F. 1994. Variability in middle childhood play behavior: effects of gender, age, and family background. Arch Sex Behav, 23, 645–63.Google Scholar
Sapolsky, R. M. 1996. Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress, 1, 119.Google Scholar
Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R., Weber, J., Mischel, W., Casey, B. J., and Ochsner, K. N. 2017. The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Dev Cogn Neurosci, 25, 128–37.Google Scholar
Uenoyama, Y., Inoue, N., Nakamura, S., and Tsukamura, H. 2019. Central mechanism controlling pubertal onset in mammals: a triggering role of kisspeptin. Front Endocrinol (Lausanne), 10, 312.Google Scholar
Uher, R. and Mcguffin, P. 2008. The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Mol Psychiatry, 13, 131–46.Google Scholar
Van Harmelen, A. L., Kievit, R. A., Ioannidis, K., Neufeld, S., Jones, P. B., Bullmore, E., Dolan, R., Consortium, N., Fonagy, P., and Goodyer, I. 2017. Adolescent friendships predict later resilient functioning across psychosocial domains in a healthy community cohort. Psychol Med, 47, 2312–22.Google Scholar
Van Meter, A., Moreira, A. L. R., and Youngstrom, E. 2019. Updated meta-analysis of epidemiologic studies of pediatric bipolar disorder. J Clin Psychiatry, 80.Google Scholar
Vermeersch, H., T’Sjoen, G., Kaufman, J. M., Vincke, J., and Van Houtte, M. 2010. Testosterone, androgen receptor gene CAG repeat length, mood and behaviour in adolescent males. Eur J Endocrinol, 163, 319–28.Google Scholar
Wagner, C. A., Alloy, L. B., and Abramson, L. Y. 2015. Trait rumination, depression, and executive functions in early adolescence. J Youth Adolesc, 44, 1836.Google Scholar
Wierenga, L. M., Bos, M. G. N., Schreuders, E., Kamp, VD, Peper, F., Tamnes, J. S., C. K., and Crone, E. A. 2018. Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology, 91, 105–14.Google Scholar
Yohn, C. N., Gergues, M. M., and Samuels, B. A. 2017. The role of 5-HT receptors in depression. Mol Brain, 10, 28.Google Scholar
Zhang, J., Yoa, W., and Hashimoto, K. 2016. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Current Neuropharmacology, 14, 721–31.Google Scholar

References

Abel, K. M., Drake, R., and Goldstein, J. M. 2010. Sex differences in schizophrenia. International Review of Psychiatry, 22, 417–28.Google Scholar
Addington, J., Addington, D., and Maticka-Tyndale, E. 1991. Cognitive functioning and positive and negative symptoms in schizophrenia. Schizophrenia Research, 5, 123–34.Google Scholar
Allen, D. N., Strauss, G. P., Barchard, K. A., Vertinski, M., Carpenter, W. T., and Buchanan, R. W. 2013. Differences in developmental changes in academic and social premorbid adjustment between males and females with schizophrenia. Schizophrenia Research, 146, 132–7.Google Scholar
Angermeyer, M. C., Kühn, L., and Goldstein, J. M. 1990. Gender and the course of schizophrenia: differences in treated outcomes. Schizophrenia Bulletin, 16, 293307.Google Scholar
Arendt, M., Mortensen, P. B., Rosenberg, R., Pedersen, C. B., and Waltoft, B. L. 2008. Familial predisposition for psychiatric disorder: comparison of subjects treated for cannabis-induced psychosis and schizophrenia. Archives of General Psychiatry, 65, 1269–74.Google Scholar
Baldwin, C. H. and Srivastava, L. K. 2015. Can the neurodevelopmental theory account for sex differences in schizophrenia across the life span? Journal of Psychiatry and Neuroscience, 40, 75–7.Google Scholar
Bergemann, N. and Riecher-Rössler, A. 2005. Estrogen Effects in Psychiatric Disorders. Austria: Springer Science and Business Media.Google Scholar
Campellone, T. R. and Kring, A. M. 2013. Context and the perception of emotion in schizophrenia: sex differences and relationships with functioning. Schizophrenia Research, 149, 192–3.Google Scholar
Castle, D. J., Abel, K., Takei, N., and Murray, R. M. 1995. Gender differences in schizophrenia: hormonal effect or subtypes? Schizophrenia Bulletin, 21, 112.Google Scholar
Castle, D. J. and Murray, R. M. 1993. The epidemiology of late-onset schizophrenia. Schizophrenia Bulletin, 19, 691700.Google Scholar
Castle, D. J., Sham, P., and Murray, R. 1998. Differences in distribution of ages of onset in males and females with schizophrenia. Schizophrenia Research, 33, 179–83.Google Scholar
Castle, D. J., Sham, P., Wessely, S., and Murray, R. 1994. The subtyping of schizophrenia in men and women: a latent class analysis. Psychological Medicine, 24, 4151.Google Scholar
Da Silva, T. L. and Ravindran, A. V. 2015. Contribution of sex hormones to gender differences in schizophrenia: a review. Asian Journal of Psychiatry, 18, 214.Google Scholar
Dalman, C., Allebeck, P., Cullberg, J., Grunewald, C., and Köster, M. 1999. Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. JAMA Psychiatry, 56, 234–40.Google Scholar
Eranti, S. V., Maccabe, J. H., Bundy, H. and Murray, R. M. 2013. Gender difference in age at onset of schizophrenia: a meta-analysis. Psychological Medicine, 43(1), 155–67.Google Scholar
Falkenburg, J. and Tracy, D. K. 2014. Sex and schizophrenia: a review of gender differences. Psychosis, 6, 61–9.Google Scholar
Fazel, S., Gulati, G., Linsell, L., Geddes, J. R., and Grann, M. 2009. Schizophrenia and violence: systematic review and meta-analysis. PLOS Medicine, 6, e1000120.Google Scholar
Ghadirian, A. M., Chouinard, G., and Annable, L. 1982. Sexual dysfunction and plasma prolactin levels in neuroleptic-treated schizophrenic outpatients. Journal of Nervous and Mental Disease, 170, 463–7.Google Scholar
Gorwood, P., Leboyer, M., Jay, M., Payan, C., and Feingold, J. 1995. Gender and age at onset in schizophrenia: impact of family history. Am J Psychiatry, 152.Google Scholar
Häfner, H. 2003. Gender differences in schizophrenia. Psychoneuroendocrinology, 28, 1754.Google Scholar
Häfner, H., An Der Heiden, W., Behrens, S., Gattaz, W. F., Hambrecht, M., Löffler, W., Maurer, K., Munk-Jørgensen, P., Nowotny, B., and Riecher-Rössler, A. 1998. Causes and consequences of the gender difference in age at onset of schizophrenia. Schizophrenia bulletin, 24, 99113.Google Scholar
Haijma, S. V., Van Haren, N., Cahn, W., Koolschijn, P. C. M. P., Hulshoff Pol, H. E., and Kahn, R. S. 2013. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophrenia Bulletin, 39, 1129–38.Google Scholar
Han, M., Huang, X.-F., Chen, D. C., Xiu, M. H., Hui, L., Liu, H., Kosten, T. R., and Zhang, X. Y. 2012. Gender differences in cognitive function of patients with chronic schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 39, 358–63.Google Scholar
Hor, K. and Taylor, M. 2010. Review: suicide and schizophrenia: a systematic review of rates and risk factors. Journal of Psychopharmacology, 24, 8190.Google Scholar
Isohanni, M., Jones, P. B., Moilanen, K., Rantakallio, P., Veijola, J., Oja, H., Koiranen, M., Jokelainen, J., Croudace, T., and Järvelin, M. R. 2001. Early developmental milestones in adult schizophrenia and other psychoses. A 31-year follow-up of the Northern Finland 1966 Birth Cohort. Schizophrenia Research, 52, 119.Google Scholar
Karilampi, U., Helldin, L., and Archer, T. 2011. Cognition and global assessment of functioning in male and female outpatients with schizophrenia spectrum disorders. The Journal of Nervous and Mental Disease, 199, 445–8.Google Scholar
Kebede, D., Alem, A., Shibre, T., Negash, A., Fekadu, A., and Fekadu, D. 2003. Onset and clinical course of schizophrenia in Butajira-Ethiopia – a community-based study. Soc Psychiatry Psychiatr Epidemiol, 38(11), 325–31.Google Scholar
Kulkarni, J., De Castella, A., Headey, B., Marston, N., Sinclair, K., Lee, S., Gurvich, C., Fitzgerald, P. B., and Burger, H. 2011. Estrogens and men with schizophrenia: is there a case for adjunctive therapy? Schizophrenia Research, 125, 278–83.Google Scholar
Leung, A. and Chue, P. 2000. Sex differences in schizophrenia, a review of the literature. Acta Psychiatrica Scandinavica, 101, 338.Google Scholar
Levin, E. D. and Rezvani, A. H. 2007. Nicotinic interactions with antipsychotic drugs, models of schizophrenia and impacts on cognitive function. Biochemical Pharmacology, 74, 1182–91.Google Scholar
Li, R., Ma, X., Wang, G., Yang, J., and Wang, C. 2016. Why sex differences in schizophrenia? Journal of Translational Neuroscience, 1, 3742.Google Scholar
Lin, C.-H., Huang, C.-L., Chang, Y.-C., Chen, P.-W., Lin, C.-Y., Tsai, G. E., and Lane, H.-Y. 2013. Clinical symptoms, mainly negative symptoms, mediate the influence of neurocognition and social cognition on functional outcome of schizophrenia. Schizophrenia Research, 146, 231–7.Google Scholar
Lindamer, L. A., Lohr, J. B., Harris, M. J., Mcadams, L. A., and Jeste, D. V. 1999. Gender-related clinical differences in older patients with schizophrenia. The Journal of Clinical Psychiatry, 60, 61–7; quiz 68–9.Google Scholar
Mendrek, A. and Mancini-Marïe, A. 2016. Sex/gender differences in the brain and cognition in schizophrenia. Neuroscience and Biobehavioral Reviews, 67, 5778.Google Scholar
Ochoa, S., Usall, J., Cobo, J., Labad, X., and Kulkarni, J. 2012. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophrenia Research and Treatment, 1–9.Google Scholar
Ösby, U., Correia, N., Brandt, L., Ekbom, A., and Sparén, P. 2000. Mortality and causes of death in schizophrenia in Stockholm County, Sweden. Schizophrenia Research, 45, 21–8.Google Scholar
Ran, M.-S., Mao, W.-J., Chan, C. L.-W., Chen, E. Y.-H., and Conwell, Y. 2018. Gender differences in outcomes in people with schizophrenia in rural China: 14-year follow-up study. British Journal of Psychiatry, 206, 283–8.Google Scholar
Räsänen, S., Pakaslahti, A., Syvälahti, E., Jones, P., and Isohanni, M. 2000. Sex differences in schizophrenia: a review. Nordic Journal of Psychiatry, 54, 3745.Google Scholar
Roy, M.-A., Maziade, M., Labbé, A., and Mérette, C. 2001. Male gender is associated with deficit schizophrenia: a meta-analysis. Schizophrenia Research, 47, 141–7.Google Scholar
Sanfilipo, M., Lafargue, T., Rusinek, H., Arena, L., Loneragan, C., Lautin, A., Feiner, D., Rotrosen, J., and Wolkin, A. 2000. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Archives of General Psychiatry, 57, 471–80.Google Scholar
Scholten, M. R. M., Aleman, A., Montagne, B., and Kahn, R. S. 2005. Schizophrenia and processing of facial emotions: sex matters. Schizophrenia Research, 78, 61–7.Google Scholar
Seeman, M. V. 2004. Gender differences in the prescribing of antipsychotic drugs. Focus, 161, 1324–33.Google Scholar
Sham, P. C., Castle, D. J., Wessely, S., Farmer, A. E., and Murray, R. M. 1996. Further exploration of a latent class typology of schizophrenia. Schizophrenia Research, 20, 105–15.Google Scholar
Smith, S. 2010. Gender differences in antipsychotic prescribing. International Review of Psychiatry, 22, 472–84.Google Scholar
Strauss, G. P., Horan, W. P., Kirkpatrick, B., Fischer, B. A., Keller, W. R., Miski, P., Buchanan, R. W., Green, M. F., and CarpenterJr, W. T. 2013. Deconstructing negative symptoms of schizophrenia: avolition–apathy and diminished expression clusters predict clinical presentation and functional outcome. Journal of Psychiatric Research, 47, 783–90.Google Scholar
Szymanski, S., Lieberman, J. A., Alvir, J. M., and Mayerhoff, D. 1995. Gender differences in onset of illness, treatment response, course, and biologic indexes in first-episode schizophrenic patients. The American Journal of Psychiatry, 152, 698.Google Scholar
Takahashi, S., Matsuura, M., Tanabe, E., Yara, K., Nonaka, K., Fukura, Y., Kikuchi, M., and Kojima, T. 2000. Age at onset of schizophrenia: gender differences and influence of temporal socioeconomic change. Psychiatry and Clinical Neurosciences, 54, 153–6.Google Scholar
Tsuang, M. 2000. Schizophrenia: genes and environment. Biological Psychiatry, 47(3), 210–20. doi:10.1016/S0006-3223(99)00289-9Google Scholar
Uggerby, P., Nielsen, R. E., Correll, C. U., and Nielsen, J. 2011. Characteristics and predictors of long-term institutionalization in patients with schizophrenia. Schizophrenia Research, 131, 120–6.Google Scholar
Usall, J., Haro, J., Ochoa, S., Marquez, M., Araya, S., and Group, N. 2002. Influence of gender on social outcome in schizophrenia. Acta Psychiatrica Scandinavica, 106(5), 337–42.Google Scholar
Van Os, J., Kenis, G., and Rutten, B. P. F. 2010. The environment and schizophrenia. Nature, 468, 203.Google Scholar
Vaskinn, A., Sundet, K., Simonsen, C., Hellvin, T., Melle, I., and Andreassen, O. A. 2011. Sex differences in neuropsychological performance and social functioning in schizophrenia and bipolar disorder. Neuropsychology, 25, 499510.Google Scholar
Venkatesh, B. K., Thirthalli, J., Naveen, M. N., Kishorekumar, K. V., Arunachala, U., Venkatasubramanian, G., Subbakrishna, D. K., and Gangadhar, B. N. 2008. Sex difference in age of onset of schizophrenia: findings from a community‐based study in India. World Psychiatry, 7, 173–6.Google Scholar
Weiser, M., Davidson, M., and Noy, S. 2005. Comments on risk for schizophrenia. Schizophrenia Research, 79(1), 1521.Google Scholar
Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W., David, A. S., Murray, R. M., and Bullmore, E. T. 2000. Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157, 1625.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×