Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T05:36:45.331Z Has data issue: false hasContentIssue false

3 - Body Cavity Fluids

Published online by Cambridge University Press:  05 March 2021

Ji-Weon Park
Affiliation:
Rush University, Chicago
Paolo Gattuso
Affiliation:
Rush University, Chicago
Vijaya B. Reddy
Affiliation:
Rush University, Chicago
Shahla Masood
Affiliation:
University of Florida
Get access

Summary

The nondiagnostic category is used only after an adequate and representative amount of fluid has been processed and examined

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Chandra, A, Crothers, BA, Iyama, -Kurtycz, D, Schmitt, F, eds. The International System for Reporting Serous Fluid Cytopathology. Springer-Verlag: New York (In Press).Google Scholar
Pereira, TC, Saad, RS, Liu, Y, Silverman, JF. The diagnosis of malignancy in effusion cytology: A pattern recognition approach. Adv Anat Pathol 2006; 13: 174184.CrossRefGoogle ScholarPubMed

Secondary Sources

Carter, D, True, L, Otis, CN. Serous membranes. In: Sternberg, SS, ed. Histology for Pathologists, 2nd edn. Philadelphia, PA: Lippincott-Raven, 1997: 223239.Google Scholar
Light, RW, MacGregor, MI, Lushsinger, PC, Ball, WC, Jr. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med 1972; 77(4): 507513.Google Scholar
Light, RW. Management of pleural effusions. J Formos Med Assoc 2000; 99(7): 523531.Google Scholar
Porcel, JM, Alvarez, M, Salud, A, Vives, M. Should a cytologic study be ordered in transudative pleural effusions? Chest 1999; 116: 18361837.Google Scholar
Bedrossian, CWM. Diagnostic problems in serous effusions. Diagn Cytopathol 1998 Aug; 19(2): 131137.Google Scholar
Bedrossian, CWM. Malignant Effusions: A Multimodal Approach to Cytologic Diagnosis. New York: Igaku-Shoin Medical Publishers Inc., 1994. pp. 2651.Google Scholar
Bibbo, M. Comprehensive Cytopathology, 2nd edn. Philadelphia: WB Saunders, 1997: 551621.Google Scholar
Domagala, W, Koss, LG. Surface configuration of mesothelial cells in effusions. A comparative light microscopic and scanning electron microscopic study. Virchows Arch B Cell Pathol Incl Mol Pathol 1979; 30(2): 231–243.Google ScholarPubMed
Koss, L. Effusions in the absence of cancer. In: Diagnostic Cytology and its Histopathologic Bases, 4th edn. Philadelphia: JB Lippincott, 1992: 10821115.Google Scholar
McGowan, L, Bunnang, B. Morphology of mesothelial cells in peritoneal fluid from normal women. Acta Cytol 1974; 18(3): 205209.Google Scholar
Radzum, HJ, Dommes, M, Henselmans, M, Parwaresch, MR. Resident human peritoneal macrophages: a monocytic cell line. Acta Cytol 1982; 26(3): 363366.Google Scholar
Ryan, GB, Groberty, J, Majno, G. Mesothelial injury and recovery. Am J Pathol 1973; 71(1): 93112.Google ScholarPubMed
Vladutiu, A, Brason, FW, Alder, RH. Differential diagnosis of pleural effusions. Chest 1981; 79(3): 297301.Google Scholar
Wojcik, EM, Naylor, B. Collagen balls in peritoneal washings: prevalence, morphology, origin and significance. Acta Cytol 1992; 36(4): 446470.Google ScholarPubMed
Zimmerman, RL. Effusion cytology: Keeping researchers and journals in business for the past 20 years – and it is not over yet. Curr Diagn Pathol 2005; 11: 194202.CrossRefGoogle Scholar
Bertoli, G, Anata, CM, Agosti, E. Mast cells in eosinophilic pleural effusions. Acta Cytol 1981; 25(4): 431–432.Google Scholar
Farah, MG, Nassar, VH, Shahid, M. Marked eosinophilia and eosinophilic pleural effusion in Hodgkin’s disease. Report of a case with review of the literature. J Med Liban 1973; 26(5): 513521.Google Scholar
Kalomenidis, I, Mohamed, KH, Lane, KB, et al. Pleural fluid levels of vascular cell adhesion molecule-1 are elevated in eosinophilic pleural effusions. Chest 2003; 124(1): 159166.CrossRefGoogle ScholarPubMed
Naylor, B, Novak, PM. Charcot-Leyden crystals in pleural fluids. Acta Cytol 1985; 29(5): 781784.Google Scholar
Veress, JF, Koss, LG, Schreiber, K. Eosinophilic pleural effusions. Acta Cytol 1979; 23(1): 4044.Google ScholarPubMed
Bibbo, M. Comprehensive Cytopathology, 2nd edn. Philadelphia: WB Saunders, 1997: 551621.Google Scholar
Boddington, MM, Sprigs, AI, Morton, JA, Mowat, AG. Cytodiagnosis of rheumatoid pleural effusions. J Clin Pathol 1971; 24(2): 95106.Google Scholar
Fernandez-Muixi, J, Vidal, F, Razquin, S, et al. Pleural effusion as initial presentation of rheumatoid arthritis: cytological diagnosis. Arch Bronconeumol 1996; 32(8): 427429.Google ScholarPubMed
Montes, S, Guarda, LA. Cytology of pleural effusions in rheumatoid arthritis. Diagn Cytopathol 1988; 4(1): 7173.Google Scholar
Naylor, B. The pathognomonic cytologic picture of rheumatoid pleuritis. Acta Cytol 1990; 34(4): 465473.Google ScholarPubMed
Chao, T-Y, Huang, SH, Chu, CC. Lupus erythematosus cells in pleural effusions: diagnostic of systemic lupus erythematosus? Acta Cytol 1997; 41(4): 12311233.Google Scholar
Fazio, J, Freidman, HD, Swerdlow, J, Michiel, RR. Diagnosis of systemic lupus erythematosus in an elderly male by pericardial fluid cytology: a case report. Diagn Cytopathol 1998; 18(5): 346348.Google Scholar
Kaplan, AI, Zakher, F, Sabine, S. Drug-induced lupus erythematosus with in vivo lupus erythematosus cells in pleural fluid. Chest 1978; 73(6): 875876.Google Scholar
Naylor, B. Cytological aspects of pleural, peritoneal and pericardial fluids from patients with systemic lupus erythematosus. Cytopathology 1992; 3(1): 18.CrossRefGoogle ScholarPubMed
Reda, MG, Baigelman, W. Pleural effusion in systemic lupus erythematosus. Acta Cytol 1980; 24(6): 553557.Google Scholar
Ellison, E, Lapuerta, P, Martin, SE. Cytologic features of mycobacterial pleuritis: logistic regression and statistical analysis of a blinded, case-controlled study. Diagn Cytopathol 1998; 19(3): 173176.Google Scholar
Jones, D, Lieb, T, Narita, M, Hollender, ES, et al. Mesothelial cells in tuberculous pleural effusion of HIV-infected patients. Chest 2000; 117(1): 289291.Google Scholar
Kataria, KP, Khurshid, I. Adenosine deaminase in the diagnosis of tuberculous pleural effusion. Chest 2001; 120(2): 334336.Google Scholar
Reechaipichitkul, W, Lulitanond, VSungkeeree, S, Patjanasoontorn, BRapid diagnosis of tuberculous pleural effusion using polymerase chain reaction. Southeast Asian J Trop Med Public Health 2000; 31(3): 509514.Google Scholar
San Jose, ME, Valdes, L, Saavedra, MJ, et al. Lymphocyte populations in tuberculous pleural effusions. Ann Clin Biochem 1999; 36(4): 492500.CrossRefGoogle ScholarPubMed
Spieler, P. The cytologic diagnosis of tuberculosis in pleural effusions. Acta Cytol 1979; 23(5): 374379.Google ScholarPubMed
Ungerer, JP, Oosthuizen, HM, Retief, JH, Bissbort, SH. Significance of adenosine, deaminase activity and its isoenzymes in tuberculous effusions. Chest 1994; 106(1): 3337.Google Scholar
Angel, A, Jeffries, P, Valente, P, et al. Herpes virus infection in peritoneal fluid: a case report and review of literature. Diagn Cytopathol 2005; 32(1): 4446.Google Scholar
Bedrossian, CWM. Malignant Effusions: A Multimodal Approach to Cytologic Diagnosis. New York, NY: Igaku-Shoin Medical Publishers Inc., 1994: 5284.Google Scholar
Bibbo, M. Comprehensive Cytopathology, 2nd edn. Philadelphia: WB Saunders, 1997: 551621.Google Scholar
Elwood, LJ, Dobrzanski, D, Feuerstein, IM, Solomon, D. Pneumocystis carinii in pleural fluid: the cytologic appearance. Acta Cytol 1991; 35(6): 761764.Google ScholarPubMed
Goodman, ZD, Gupta, PK, Frost, JK, Erozan, YS. Cytodiagnosis of viral infections in body cavity fluids. Acta Cytol 1979; 23(3): 204208.Google Scholar
Anderson, WJ, Skinner, DB, Zuidema, GD, Cameron, JL. Chronic pancreatic pleural effusions. Surg Gynecol Obstet. 1973; 137(5): 827830.Google Scholar
Bedrossian, CWM. Malignant Effusions: A Multimodal Approach to Cytologic Diagnosis. New York: Igaku-Shoin Medical Publishers Inc., 1994: 85100.Google Scholar
Bibbo, M. Comprehensive Cytopathology, 2nd edn. Philadelphia: WB Saunders, 1997: 551621.Google Scholar
Buja, LM, Friedman, CA, Roberts, WC. Hemorrhagic pericarditis in uremia. Clinicopathologic studies in six patients. Arch Pathol 1970; 90(4): 325330.Google Scholar
Craig, R, Sparberg, M, Ivanovich, P, Rice, L, Dordal, E. Nephrogenic ascites. Arch Intern Med 1974; 134(2): 276279.Google Scholar
Schindler, SC, Schaefer, JW, Hull, D, Griffen, WO, Jr. Chronic pancreatic ascites. Gastroenterology 1970; 59(3): 453459.CrossRefGoogle ScholarPubMed
Wilson, JA, Suguitan, EA, Cassidy, WA, et al. Characteristic of ascitic fluid in the alcoholic cirrhotic. Dig Dis Sci 1979; 24(8): 645648.Google Scholar
Xiol, X, Castellote, J, Baliellas, C, Ariza, J, et al. Spontaneous bacterial empyema in cirrhotic patients: analysis of eleven cases. Hepatology 1990; 11(3): 365370.Google Scholar
Attanoos, RL, Griffin, A, Gibbs, AR. The use of immunohistochemistry in distinguishing reactive from neoplastic mesothelium. A novel use for desmin and comparative evaluation with epithelial membrane antigen, p53, platelet-derived growth factor-receptor, P-glycoprotein and Bcl-2. Histopathology 2003; 43(3): 231238.Google Scholar
Bedrossian, CWM. Malignant Effusions: A Multimodal Approach to Cytologic Diagnosis. New York: Igaku-Shoin Medical Publishers Inc., 1994: 101119.Google Scholar
Bjorkqvist, AM, Tammilehto, L, Anttila, S, et al. Recurrent DNA copy number changes in 1q, 4q, 6q, 9p, 13q, 14q and 22q detected by comparative genomic hybridization in malignant mesothelioma. Br J Cancer 1997; 75(4): 523527.Google Scholar
Carbone, M, Kratzke, RA, Testa, JR. The pathogenesis of mesothelioma. Semin Oncol 2002; 29(1): 217.Google Scholar
Chu, A, Litzky, L, Pasha, T, et al. Utility of D2-40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol 2005; 18(1): 105110.Google Scholar
Cristaudo, A, Foddis, R, Vivaldi, A, et al. SV40 enhances the risk of malignant mesothelioma among people exposed to asbestos: a molecular epidemiologic case-control study. Cancer Res 2005; 65(21): 30493052.Google Scholar
Fetch, PA, Simsir, A, Brosky, K, Abati, A. Comparison of three commonly used cytologic preparations in effusion immunocytochemistry. Diagn Cytopathol 2002; 26: 6166.Google Scholar
Flejter, WL, Li, FP, Antman, KH, Testa, JR. Recurring loss involving chromosomes 1, 3, and 22 in malignant mesothelioma: possible sites of tumor suppressor genes. Genes Chromosomes Cancer 1989; 1(2): 148154.Google Scholar
Gibas, Z, Li, FP, Antman, KH, Bernal, S, et al. Chromosome changes in malignant mesothelioma. Cancer Genet Cytogenet 1986; 20(3–4): 191201.Google Scholar
Grundy, GW, Miller, RW. Malignant mesothelioma in childhood: report of 13 cases. Cancer 1972; 30(5): 12161218.Google Scholar
Hasteh, F, Lin, GY, Weidner, N, Michael, CW. The use of immunohistochemistry to distinguish reactive mesothelial cells from malignant mesothelioma in cytologic effusions . Cancer (Cancer Cytopathology) 2010; 118(2): 9096.Google Scholar
Hurlimann, J. Desmin and neural marker expression in mesothelial cells and mesotheliomas. Hum Pathol 1994; 25(8): 753777.Google Scholar
Husain, AN, Colby, TV, Ordo´nez, NG, et al. Guidelines for Pathologic Diagnosis of Malignant Mesothelioma 2017 Update of the Consensus Statement From the International Mesothelioma Interest Group. Arch Pathol Lab Med 2018; 142: 89108.Google Scholar
Illei, PB, Ladanyi, M, Rusch, VW, Zakowski, MF. The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer 2003; 99(1): 5156.Google Scholar
Kaneko, C, Niimi, H, Shinzato, M, Shamoto, M. Comparative studies of the same adenocarcinoma cells, macrophages, and mesothelial cells by light microscopy, scanning electron microscopy, and transmission electron microscopy. Diagn Cytopathol 1994; 11(4): 333342.Google Scholar
Kimura, N, Kimura, I. Podoplanin as a marker for mesothelioma. Pathol Int 2005; 55(2): 8386.Google Scholar
Kumar, ND, Bhatia, A, Misra, K, Suri, JC. Comparison of pleural fluid cytology and pleural biopsy in the evaluation of pleural effusion. J Indian Med Assoc. 1995; 93(8): 307309.Google ScholarPubMed
Ladanyi, M. Implications of P16/CDKN2A deletion in pleural mesotheliomas. Lung Cancer 2005; 49(Suppl 1): S95S98.Google Scholar
Langerak, AW, De Laat, PA, Van Der Linden-Van Beurden, CA, et al. Expression of platelet-derived growth factor (PDGF) and PDGF receptors in human malignant mesothelioma in vitro and in vivo. J Pathol 1996; 178(2): 151160.Google Scholar
Li, Q, Bavikatty, N, Michael, CW. The role of immunohistochemistry in distinguishing squamous cell carcinoma from mesothelioma and adenocarcinoma in pleural effusion. Semin Diagn Pathol 2006; 23(1): 1519.Google Scholar
Manfredi, JJ, Dong, J, Liu, WJ, et al. Evidence against a role for SV40 in human mesothelioma. Cancer Res 2005; 65(7): 26022609.Google Scholar
Onofre, FBDM, Onofre, ASC, Pomjanski, N, et al. 9p21 deletion in the diagnosis of malignant mesothelioma in seroud effusions additional to Immunocytochemistry, DNA-ICM, and AgNOR analysis. Cancer (Cancer Cytopathol) 2008; 114: 204215.Google Scholar
Ordoñez, N. D2-40 and podoplanin are highly specific and sensitive immunohistochemical markers of epithelioid malignant mesothelioma. Hum Pathol 2005; 36(4): 372380.Google Scholar
Ordoñez, N. Immunohistochemical diagnosis of epithelioid mesothelioma: An update. Arch Pathol Lab Med 2005; 129(11): 14071414.CrossRefGoogle ScholarPubMed
Ordoñez, N. The diagnostic utility of immunohistochemistry in distinguishing between mesothelioma and renal cell carcinoma: A comparative study. Hum Pathol 2004; 35(6): 697710.Google Scholar
Ordoñez, N. Value of E-cadherin and N-cadherin immunostaining in the diagnosis of mesothelioma. Hum Pathol 2003; 34(8): 749755.Google Scholar
Ordoñez, N. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod Pathol 2003; 16(3): 192197.Google Scholar
Politi, E, Kandaraki, C, Apostolopoulou, C, et al. Immunocytochemical panel for distinguishing between carcinoma and reactive mesothelial cells in body cavity fluids. Diagn Cytopathol 2005; 32(3): 151155.Google Scholar
Prakash, UB, Reiman, HM. Comparison of needle biopsy with cytologic analysis for the evaluation of pleural effusion: analysis of 414 cases. Mayo Clin Proc 1985; 60(3): 158164.Google Scholar
Prins, JB, Williamson, KA, Kamp, MM, et al. The gene for the cyclin-dependent- kinase-4 inhibitor, CDKN2A, is preferentially deleted in malignant mesothelioma. Int J Cancer 1998; 75(4): 649653.Google Scholar
Puntoni, R, Filiberti, R, Cerrano, PG, et al. Implementation of a molecular epidemiology approach to human pleural malignant mesothelioma. Mutat Res 2003; 544(2–3): 385396.Google Scholar
Renshaw, AA, Dean, BR, Antman, KH, et al. The role of cytologic evaluation of pleural fluid in the diagnosis of malignant mesothelioma. Chest 1997; 111(1): 106109.Google Scholar
Saad, RS, Cho, P, Liu, Y, Silverman, JF. The value of epithelial membrane antigen expression in separating benign mesothelial proliferation from malignant mesothelioma: a comparative study. Diagn Cytopathol 2005; 32(3): 156159.Google Scholar
Scherpereel, A, Grigoriu, B, Conti, M, et al. Soluble mesothelin-related peptides in the diagnosis of malignant pleural mesothelioma. Am J Respir Crit Care Med 2006; 173(10): 11551160.Google Scholar
Shen, J, Pinkus, GS, Deshpande, V, Cibas, ESUsefulness of EMA, GLUT-1and XIAP for the cytologic diagnosis of malignant mesothelioma in body cavity fluids. AM J Clin Pathol 2009; 131: 516523.Google Scholar
Shivapurkar, N, Virmani, AK, Wistuba, II, et al. Deletions of chromosome 4 at multiple sites are frequent in malignant mesothelioma and small cell lung carcinoma. Clin Cancer Res 1999; 5(1): 1723.Google Scholar
Sivertsen, S, Berner, A, Michael, CW, et al. Cadherin expression in ovarian carcinoma and malignant mesothelioma cell effusions. Acta Cytol 2006 Nov–Dec; 50(6): 603–607.Google Scholar
Taguchi, T, Jhanwar, SC, Siegfried, JM, et al. Recurrent deletions of specific chromosomal sites in 1p, 3p, 6q, and 9p in human malignant mesothelioma. Cancer Res 1993; 53(18): 43494355.Google ScholarPubMed
Tao, LC. Cytopathology of malignant effusions. In: Johnston, WW, ed. ASCP Theory and Practice of Cytopathology 6, Chicago, IL: ASCP Press, 1996: 203229.Google Scholar
Wong, L, Zhou, J, Anderson, D, Kratzke, RA. Inactivation of p16INK4a expression in malignant mesothelioma by methylation. Lung Cancer 2002; 38(2): 131136.Google Scholar
Yang, CT, You, L, Lin, YC, et al. A comparison analysis of anti-tumor efficacy of adenoviral gene replacement therapy (p14ARF and p16INK4A) in human mesothelioma cells. Anticancer Res 2003; 23(1A): 331996, 8.Google Scholar
Bhargava, R, Beriwal, S, Dabbs, DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol 2007; 127(1): 103113.Google Scholar
Ciampa, A, Fanger, G, Khan, A, et al. Mammaglobin and CRxA-01 in pleural effusion cytology: potential utility of distinguishing metastatic breast carcinomas from other cytoker-atin 7-positive/cytokeratin 20-negative carcinomas. Cancer (Cancer Cytopathol) 2004; 102(6): 368–172.Google Scholar
DeMay, RM. The Art and Science of Cytopathology, Exfoliative Pathology. Chicago, IL: ASCP Press, 1996: 269285.Google Scholar
Demay, R. The Pap smear. The Art and Science of Cytopathology, Exfoliative Pathology. Chicago, IL: ASCP Press, 1996:61205.Google Scholar
Ehya, H. Effusion cytology. Clin Lab Med 1991; 11(2): 443467.Google Scholar
El Hag, MI, Ha, J, Farag, R, et al. Utility of GATA-3 in the work up of breast adenocarcinoma and its differential diagnosis in serous effusions: A cell block microarray study. Diagn Cytopathol 2016; 44(9): 731736.Google Scholar
Galindo, LM. Effusion cytopathology. In: Atkinson, BF, Silverman, JF, eds. Atlas of Difficult Diagnoses in Cytopathology, 1st edn. Philadelphia, PA: WB Saunders, 1998: 168178.Google Scholar
Johnston, WW. The malignant pleural effusion. A review of cytopathologic diagnoses of 584 specimens from 472 consecutive patients. Cancer 1985; 56(4): 905909.Google Scholar
Lee, BH, Hecht, JL, Pinkus, JL, Pinkus, GS. WT1, estrogen receptor, and progesterone receptor as markers for breast or ovarian primary sites in metastatic adenocarcinoma to body fluids. Am J Clin Pathol 2002; 117(5): 745750.Google Scholar
Naylor, B. Pleural, peritoneal, and pericardial fluids. In: Bibbo, M, ed. Comprehensive Cytopathology, 2nd edn. Philadelphia, PA: WB Saunders, 1997: 589621.Google Scholar
Silverman, JF. Effusion cytology of metastatic malignancy of unknown primary. Pathol Case Rev 2001; 6: 154160.Google Scholar
Staebler, A, Sherman, ME, Zaino, RJ, Ronnett, BM. Hormone receptor immunohistochemistry and human papillomavirus in situ hybridization are useful for distinguishing endocervical and endometrial adenocarcinomas. Am J Surg Pathol 2002; 26(8): 9981006.Google Scholar
Tot, T. Patterns of distribution of cytokeratins 20 and 7 in special types of invasive breast carcinoma: a study of 123 cases. Ann Diagn Pathol 1999; 3(6): 350356.Google Scholar
Zhu, W, Michael, CW. WT1, monoclonal CEA, TTF1, and CA125 antibodies in the differential diagnosis of lung, breast, and ovarian adenocarcinomas in serous effusions. Diagn Cytopathol 2007; 35(6): 370375.Google Scholar
Chuman, Y, Bergman, A, Ueno, T, et al. A member of the aspartic protease family, is abundantly expressed in normal lung and kidney tissue and is expressed in lung adenocarcinomas. FEBS Lett 1999; 462(1–2): 129134.Google Scholar
Dejmek, A, Naucler, P, Smedjeback, A, et al. A (TA02) is a useful alternative to thyroid transcription factor-1 (TTF-1) for the identification of pulmonary adenocarcinoma cells in pleural effusions. Diagn Cytopathol 2007; 35(8): 493497.Google Scholar
Hirano, T, Gong, Y, Yoshida, K, et al. Usefulness of TA02 (napsin A) to distinguish primary lung adenocarcinoma from metastatic lung adenocarcinoma. Lung Cancer 2003; 41(2): 155162.Google Scholar
Ng, WK, Chow, JC, Ng, PK. Thyroid transcription factor-1 is highly sensitive and specific in differentiating metastatic pulmonary from extrapulmonary adenocarcinoma in effusion fluid cytology specimens. Cancer 2002; 96(1): 4348.Google Scholar
Suzuki, A, Shijubo, N, Yamada, G, et al. A is useful to distinguish primary lung adenocarcinoma from adenocarcinomas of other organs. Pathol Res Pract 2005; 201(8–9): 579586.Google Scholar
Ueno, T, Linder, S, Na, CL, et al. Processing of pulmonary surfactant protein B by napsin and cathepsin H. J Biol Chem 2004; 279(16): 178184.Google Scholar
Frost, JK. The cell in health and disease: an evaluation of cellular morphologic expression of biologic behaviour. In Wied, GI, ed. Monographs in Clinical Cytology, 2nd edn. New York: Karger, 1986: 165186.Google Scholar
Huang, CC, Michael, CW. Cytomorphologic features of metastatic squamous cell carcinoma in serous effusions Cytopathology 2014; 25: 112–119.Google Scholar
Li, Q, Bavikatty, N, Michael, CW. The role of immunohistochemistry in distinguishing squamous cell carcinoma from mesothelioma and adenocarcinoma in pleural effusion. Semin Diagn Pathol 2006; 23(1): 1519.Google Scholar
Ordoñez, NG. The diagnostic utility of immunohistochemistry in distinguishing between epithelioid mesotheliomas and squamous carcinomas of the lung: a comparative study. Mod Pathol 2006; 19(3): 417428.Google Scholar
Smith-Purslow, MJ, Kini, SR, Naylor, B. Cells of squamous cell carcinoma in pleural, peritoneal and pericardial fluids: Origin and morphology. Acta Cytol 1989; 33(2): 245253.Google Scholar
Pu, RT, Pang, Y, Michael, CW. Utility of WT-1, P63, MOC31, mesothelin and Cytokeratin (K903and CK5/6) immunostains in differentiating adenocarcinoma, squamous cell carcinoma and malignant mesothelioma in effusions. Diagn Cytopathol 2008; 36: 2025.Google Scholar
Chhieng, DC, Ko, EC, Yee, HT, et al. Malignant pleural effusions due to small-cell lung carcinoma: a cytologic and immunocytochemical study. Diagn Cytopathol 2001; 25(6): 356360.Google Scholar
Kontogianni, K, Nicholson, AG, Butcher, DSheppard, MN. CD56: a useful tool for the diagnosis of small cell lung carcinomas on biopsies with extensive crush artifact. J Clin Pathol 2005; 58(9): 978980.Google Scholar
Pereira, TC, Saad, RS, Liu, Y, Silverman, JF. The diagnosis of malignancy in effusion cytology: a pattern recognition approach. Adv Anat Pathol 2006; 13(4): 174184.Google Scholar
Salhadin, A, Nasiell, M, Nasiell, K, Silfversward, C, et al. The unique cytologic picture of oat cell carcinoma in effusions. Acta Cytol 1976; 20(4): 298302.Google Scholar
Spieler, P, Gloor, F. Identification of types and primary sites of malignant tumors by examination of exfoliated tumor cells in serous fluids. Comparison with the diagnostic accuracy on small histologic biopsies. Acta Cytol 1985; 29(5): 753767.Google Scholar
Attanoos, RL, Webb, R, Dojcinov, SD, Gibbs, AR. Value of mesothelial and epithelial antibodies in distinguishing diffuse peritoneal mesothelioma in females from serous papillary carcinoma of the ovary and peritoneum. Histopathology 2002; 40(3): 237244.Google Scholar
Barnetson, RJ, Burnett, RA, Downie, I, et al. Immunohistochemical analysis of peritoneal mesothelioma and primary and secondary serous carcinoma of the peritoneum: antibodies to estrogen and progesterone receptors are useful. Am J Clin Pathol 2006; 125(1): 6776.Google Scholar
Covell, JL, Carry, JB, Feldman, PS. Peritoneal washings in ovarian tumors. Potential sources of error in cytologic diagnosis. Acta Cytol 1985; 29(3): 310316.Google Scholar
Creasman, WT, Rutledge, F. The prognostic value of peritoneal cytology in gynecologic malignant disease. Am J Obstet Gynecol 1971; 110(6): 773781.Google Scholar
Goldstein, NS, Bassi, D, Uzieblo, A. WT1 is an integral component of an antibody panel to distinguish pancreaticobiliary and some ovarian epithelial neoplasms. Am J Clin Pathol 2001; 116(2): 246252.Google Scholar
Gurley, AM, Hidvegi, DF, Cajulis, RS, Bacus, S. Morphologic and morphometric features of low grade serous tumours of the ovary. Diagn Cytopathol 1994; 11(3): 220225.Google Scholar
Johnson, TL, Kumur, NB, Hopkins, M, Hughes, JD. Cytologic features of ovarian tumours of low malignant potential in peritoneal fluids. Acta Cytol 1988; 32(4): 513518.Google Scholar
Keettel, WC, Pixley, EE, Buchsbaum, HJ. Experience with peritoneal cytology in the management of gynecologic malignancies. Am J Obstet Gynecol. 1974; 120(2): 174182.Google Scholar
Ordoñez, NG. Value of estrogen and progesterone receptor immunostaining in distinguishing between peritoneal mesotheliomas and serous carcinomas. Hum Pathol 2005; 36(11): 11631167.Google Scholar
Pisharodi, LR, Bedrossian, CW. Cytopathology of serous neoplasia of the ovary and the peritoneum: differential diagnosis from mesothelial proliferations. Diagn Cytopathol 1996; 15(4): 292295.Google Scholar
Stewart, CJ, Kennedy, JH. Peritoneal fluid cytology in serous borderline tumours of the ovary. Cytopathology 1998; 9(1): 3845.Google Scholar
Wiseman, R, Michael, CW, Roh, M. The utility of Pax 8 in the work-up of effusions and its role in separating ovarian from breast carcinoma. Diagn Cytopathol 2011; 39(9): 651656.Google Scholar
Zhu, W, Michael, CW. WT1, monoclonal CEA, TTF1, and CA125 antibodies in the differential diagnosis of lung, breast, and ovarian adenocarcinomas in serous effusions. Diagn Cytopathol 2007; 35(6): 370375.Google Scholar
Ziselman, EM, Harkavy, SE, Hogan, M, et al. Peritoneal washing cytology. Uses and diagnostic criteria in gynecologic neoplasms. Acta Cytol 1984; 28(2): 105110.Google Scholar
Albarracin, CT, Jafri, J, Montag, AG, et al. Differential expression of MUC2 and MUC5AC mucin genes in primary ovarian and metastatic colonic carcinoma. Hum Pathol 2000; 31(6): 672677.Google Scholar
Groisman, GM, Meir, A, Sabo, E. The value of Cdx2 immunostaining in differentiating primary ovarian carcinomas from colonic carcinomas metastatic to the ovaries. Int J Gynecol Pathol 2004; 23(1): 5257.Google Scholar
Ji, H, Isacson, C, Seidman, JD, et al. Cytokeratins 7 and 20, Dpc4, and MUC5AC in the distinction of metastatic mucinous carcinomas in the ovary from primary ovarian mucinous tumors: Dpc4 assists in identifying metastatic pancreatic carcinomas. Int J Gynecol Pathol 2002; 21(4): 391400.Google Scholar
Vang, R, Gown, AM, Barry, TS, et al. Immunohistochemistry for estrogen and progesterone receptors in the distinction of primary and metastatic mucinous tumors in the ovary: an analysis of 124 cases. Mod Pathol 2006; 19(1): 97105.Google Scholar
Vang, R, Gown, AM, Wu, LS, et al. Immunohistochemical expression of CDX2 in primary ovarian mucinous tumors and metastatic mucinous carcinomas involving the ovary: comparison with CK20 and correlation with coordinate expression of CK7. Mod Pathol 2006; 19(11): 14211428.Google Scholar
Covell, JL, Carry, JB, Feldman, PS. Peritoneal washings in ovarian tumors. Potential sources of error in cytologic diagnosis. Acta Cytol 1985; 29(3): 310316.Google Scholar
Silverberg, SG, Major, FJ, Blessing, JA, et al. Carcinosarcoma (malignant mixed mesodermal tumor) of the uterus. A Gynecologic Oncology Group pathologic study of 203 cases. Int J Gynecol Pathol 1990; 9(1): 119.Google Scholar
Ziselman, EM, Harkavy, SE, Hogan, M, et al. Peritoneal washing cytology. Uses and diagnostic criteria in gynecologic neoplasms. Acta Cytol 1984; 28(2): 105110.Google Scholar
Bedrossian, CWM. Malignant Effusions: A Multimodal Approach to Cytologic Diagnosis. New York, NY: Igaku-Shoin Medical Publishers Inc., 1994: 135137.Google Scholar
Bonenkamp, JJ, Songun, I, Hermans, J, van de Velde, CJ. Prognostic value of positive cytology findings from abdominal washings in patients with gastric cancer. Br J Surg, 1996; 83(5): 672674.Google Scholar
Park, SY, Kim, HS, Hong, EK, Kim, WH. Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum Pathol 2002; 33(11): 10781085.Google Scholar
Tao, LC. Cytopathology of malignant effusions. In: Johnston, WW, ed. ASCP Theory and Practice of Cytopathology 6, Chicago, IL: ASCP Press, 1996: 7980.Google Scholar
Bedrossian, CWM. Malignant Effusions: A Multimodal Approach to Cytologic Diagnosis. New York, NY: Igaku-Shoin Medical Publishers Inc., 1994: 137.Google Scholar
Gozalan, U, Yasti, AC, Yuksek, YN, et al., Peritoneal cytology in colorectal cancer: incidence and prognostic value. Am J Surg. 2007; 193(6): 672675.Google Scholar
Park, SY, Kim, HS, Hong, EK, Kim, WH. Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum Pathol. 2002; 33(11): 10781085.Google Scholar
Saad, RS, Essig, DL, Silverman, JF, Liu, Y. Diagnostic utility of CDX-2 expression in separating metastatic gastrointestinal adenocarcinoma from other metastatic adenocarcinoma in fine-needle aspiration cytology using cell blocks. Cancer. 2004; 102(3): 168173.Google Scholar
Suh, N, Yang, XJ, Tretiakova, MS, et al. Value of CDX2, villin, and alpha-meth-ylacyl coenzyme A racemase immunostains in the distinction between primary adenocarcinoma of the bladder and secondary colorectaladenocarcinoma. Mod Pathol. 2005; 18(9): 12171222.Google Scholar
Tao, LC. Cytopathology of malignant effusions. In: Johnston, WW, ed. ASCP Theory and Practice of Cytopathology 6, Chicago, IL: ASCP Press, 1996: 8081Google Scholar
Werling, RW, Yaziji, H, Bacchi, CE, Gown, AMCDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 2003; 27(3): 303310.Google Scholar
Bedrossian, CWM. Malignant Effusions: A Multimodal Approach to Cytologic Diagnosis. New York, NY: Igaku-Shoin Medical Publishers Inc., 1994: 137139.Google Scholar
Lei, S, Kini, J, Kim, K, Howard, JM. Pancreatic cancer. Cytologic study of peritoneal washings. Arch Surg 1994; 129(6): 639642.Google Scholar
Tao, LC. Cytopathology of malignant effusions. In: Johnston, WW, ed. ASCP Theory and Practice of Cytopathology 6, Chicago, IL: ASCP Press, 1996: 82.Google Scholar
Warsaw, AL. Implications of peritoneal cytology for staging of early pancreatic cancer. Am J Surg 1991; 169(1): 2634.Google Scholar
Fan, Z, van de Rijn, M, Montgomery, K, Rouse, RV. Hep par 1 antibody stain for the differential diagnosis of hepatocellular carcinoma: 676 tumors tested using tissue microarrays and conventional tissue sections. Mod Pathol 2003; 16(2): 137144.Google Scholar
Gu, M, Zena, RE. Columnar cells in smears from pseudomyxoma peritoneiDiagn Cytopathol 1997; 16(2): 182183.Google Scholar
Kakar, S, Muir, T, Murphy, LM, et al. Immunoreactivity of Hep Par 1 in hepatic and extrahepatic tumors and its correlation with albumin in situ hybridization in hepatocellular carcinoma. Am J Clin Pathol 2003; 119(3): 361366.Google Scholar
Lee, KR, Scully, RE. Mucinous tumors of the ovary: a clinicopathologic study of 196 borderline tumors (of intestinal type) and carcinomas, including an evaluation of 11 cases with ‘Pseudomyxoma peritonei. Am J Surg Pathol 2000; 24(11): 14471464.CrossRefGoogle ScholarPubMed
Leong, AS, Sormunen, RT, Tsui, WM, et al. Hep Par 1 and selected antibodies in the immuno-histological distinction of hepatocellular carcinoma from cholangiocarcinoma, combined tumours and metastatic carcinoma. Histopathology 1998; 33(4): 318324.Google Scholar
Mall, AS, Chirwa, N, Govender, D, et al. MUC2, MUC5AC and MUC5B in the mucus of a patient with pseudomyxoma peritonei: biochemical and immunohistochemical study. Pathol Int 2007; 57(8): 537547.Google Scholar
Ronnett, BM, Zahn, CM, Kurman, RJ, et al. Disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. A clinicopathologic analysis of 109 cases with emphasis on distinguishing pathologic features, site of origin, prognosis, and relationship to “Pseudomyxoma peritonei.” Am J Surg Pathol. 1995; 19(12): 13901408.CrossRefGoogle ScholarPubMed
Saad, RS, Luckasevic, TM, Noga, CM, et al. Diagnostic value of HepPar1, pCEA, CD10, and CD34 expression in separating hepatocellular carcinoma from metastatic carcinoma in fine-needle aspiration cytology. Diagn Cytopathol 2004; 30(1): 16.Google Scholar
Yan, H, Pestieau, SR, Shmookler, BM, Sugarbaker, PH. Histopathologic analysis in 46 patients with Pseudomyxoma peritonei syndrome: failure versus success with a second-look operation. Mod Pathol 2001; 14(3): 164171.Google Scholar
Ansari, MQ, Dawson, DB, Nador, R, et al. Primary body cavity-based AIDS-related lymphomas. Am J Clin Pathol 1996; 105(2): 221229.CrossRefGoogle ScholarPubMed
Ariad, S, Benharroch, D, Lupu, L, et al. Early peripheral lymph node involvement of human herpesvirus 8 associated body cavity-based lymphoma in a human immunodeficiency virus-negative patient. Arch Pathol Lab Med 2000; 124(5): 753755.Google Scholar
Banks, PM, Warnke, RA. Primary effusion lymphoma. In: Jaffe, ES, Harris, NL, Stein, H, Vardiman, JW, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2001.Google Scholar
Teot, LA, Geisinger, KR. Diagnostic esophageal cytology and its histologic basis. In Castell, DO, ed. The Esophagus, 2nd edn. Boston, MA: Little, Brown, 1995: 179204.Google Scholar
Das, DK, Gupta, SK, Ayyagari, S, et al. Pleural effusions in non-Hodgkin’s lymphoma. A cytomorphologic, cytochemical and immunologic study. Acta Cytol 1987; 31(2): 119124.Google Scholar
Dunphy, CH. Combined cytomorphologic and immunophenotypic approach to evaluation of effusions for lymphomatous involvement. Diagn Cytopathol 1996; 15(5): 427430.Google Scholar
Hallman, JR, Geisinger, KR. Cytology of fluids from pleural, peritoneal and pericardial cavities in children. A comprehensive study. Acta Cytol 1994; 38(2): 209217.Google Scholar
Huang, Q, Chang, KL, Gaal, K, Arber, DA. Primary effusion lymphoma with subsequent development of a small bowel mass in an HIV-seropositive patient: a case report and literature review. Am J Surg Pathol 2002; 26(10): 13631367.Google Scholar
Johnston, WW. The malignant pleural effusion. A review of cytopathologic diagnoses of 584 specimens from 472 consecutive patients. Cancer 1985; 56(4): 905909.Google Scholar
Mate, JL, Navarro, JT, Ariza, A, et al. Oral solid form of primary effusion lymphoma mimicking plasmablastic lymphoma. Hum Pathol 2004; 35(5): 632635.Google Scholar
Morel, P, Dupriez, A, Plantier-Colcher, J, et al. Long-term outcome of follicular low-grade lymphoma. A report of 91 patients. Ann Hematol 1993; 66(6): 303308.Google Scholar
Paner, GP, Jensen, J, Foreman, KE, Reyes, CV. HIV and HHV-8 negative primary effusion lymphoma in a patient with hepatitis C virus-related liver cirrhosis. Leuk Lymphoma 2003; 44(10): 18111814.Google Scholar
Sahn, SA. Malignant pleural effusion. In: Fishman, AP, Elias, JA, Fishman, JA, et al., eds. Fishman’s Pulmonary Diseases and Disorders, 3rd edn., New York: McGraw-Hill, 1998: 14291438.Google Scholar
Stonesifer, KJ, Xiang, JH, Wilkinson, EJ, et al. Flow cytometric analysis and cytopathology of body cavity fluids. Acta Cytol 1987; 31(2): 125130.Google Scholar
Tanaka, S, Katano, H, Tsukamoto, K, et al. HHV8-negative primary effusion lymphoma of the peritoneal cavity presenting with a distinct immunohistochemical phenotype. Pathol Int 2001; 51(4): 293300.Google Scholar
Vakar-Lopez, F, Yang, M. Peripheral T-cell lymphoma presenting as ascites: a case report and review of the literature. Diagn Cytopathol 1999; 20(6): 382384.Google Scholar
Ansari, MQ, Dawson, DB, Nador, R, et al. Primary body cavity-based AIDS-related lymphomas. Am J Clin Pathol 1996; 105(2): 221–219.Google Scholar
Ariad, S, Benharroch, D, Lupu, L, et al. Early peripheral lymph node involvement of human herpesvirus 8 associated body cavity-based lymphoma in a human immunodeficiency virus-negative patient. Arch Pathol Lab Med 2000; 124(5): 753755.Google Scholar
Banks, PM, Warnke, RA. Primary effusion lymphoma. In: Jaffe, ES, Harris, NL, Stein, H, Vardiman, JW, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2001.Google Scholar
Das, DK, Gupta, SK, Ayyagari, S, et al. Pleural effusions in non-Hodgkin’s lymphoma. A cytomorphologic, cytochemical and immunologic study. Acta Cytol 1987; 31(2): 119124.Google Scholar
Dunphy, CH. Combined cytomorphologic and immunophenotypic approach to evaluation of effusions for lymphomatous involvement. Diagn Cytopathol 1996; 15(5): 427430.Google Scholar
Hallman, JR, Geisinger, KR. Cytology of fluids from pleural, peritoneal and pericardial cavities in children. A comprehensive study. Acta Cytol 1994; 38(2): 209217.Google Scholar
Huang, Q, Chang, KL, Gaal, K, Arber, DA. Primary effusion lymphoma with subsequent development of a small bowel mass in an HIV-seropositive patient: a case report and literature review. Am J Surg Pathol 2002; 26(10): 13631367.Google Scholar
Johnston, WW. The malignant pleural effusion. A review of cytopathologic diagnoses of 584 specimens from 472 consecutive patients. Cancer 1985; 56(4): 905909.Google Scholar
Mate, JL, Navarro, JT, Ariza, A, et al. Oral solid form of primary effusion lymphoma mimicking plasmablastic lymphoma. Hum Pathol 2004; 35(5): 632635.Google Scholar
Morel, P, Dupriez, A, Plantier-Colcher, J, et al. Long-term outcome of follicular low-grade lymphoma. A report of 91 patients. Ann Hematol 1993; 66(6): 303308.Google Scholar
Paner, GP, Jensen, J, Foreman, KE, Reyes, CV. HIV and HHV-8 negative primary effusion lymphoma in a patient with hepatitis C virus-related liver cirrhosis. Leuk Lymphoma 2003; 44(10): 18111814.Google Scholar
Sahn, SA. Malignant pleural effusion. In: Fishman, AP, Elias, JA, Fishman, JA, et al., eds. Fishman’s Pulmonary Diseases and Disorders, 3rd edn., New York: McGraw-Hill, 1998: 14291438.Google Scholar
Stonesifer, KJ, Xiang, JH, Wilkinson, EJ, et al. Flow cytometric analysis and cytopathology of body cavity fluids. Acta Cytol 1987; 31(2): 125130.Google Scholar
Tanaka, S, Katano, H, Tsukamoto, K, et al. HHV8-negative primary effusion lymphoma of the peritoneal cavity presenting with a distinct immunohistochemical phenotype. Pathol Int 2001; 51(4): 293300.Google Scholar
Vakar-Lopez, F, Yang, M. Peripheral T-cell lymphoma presenting as ascites: a case report and review of the literature. Diagn Cytopathol 1999; 20(6): 382384.Google Scholar
Abadi, MA, Zakowski, MF. Cytologic features of sarcomas in fluids. Cancer 1998; 84(2): 7176.Google Scholar
Geisinger, KR, Hajdu, SI, Helson, L. Exfoliative cytology of nonlymphoreticular neoplasms in children. Acta Cytol 1984; 28(1): 1628.Google Scholar
Kumar, S, Perlman, E, Harris, CA, et al. Myogenin is a specific marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded tissues. Mod Pathol 2000; 13(9): 988993.Google Scholar
Hajdu, SI, Nolan, MA. Exfoliative cytology of malignant germ cell tumor. Acta Cytol 1975; 19(3): 255260.Google Scholar
Kashimura, M, Tsukamoto, N, Matsuyama, T, et al. Cytologic findings of ascites from patients with ovarian dysgerminoma. Acta Cytol 1983; 27: 5962.Google Scholar
Roncalli, M, Gribaudi, G, Simoncellu, D, et al. Cytology of yolk-sac tumor of the ovary in ascetic fluid. Acta Cytol 1988; 31(1): 113116.Google Scholar
Beaty, M, Fetch, PA, Wilder, AM, et al. Effusion cytology of malignant melanoma. Cancer Cytopathol 1997; 81(1): 5763.Google Scholar
Walts, AE. Malignant melanoma in effusions: a source of false-negative cytodiagnosis. Diagn Cytopathol 1986; 2(2): 150153.Google Scholar
Ordoñez, NG. The diagnostic utility of immunohistochemistry in distinguishing between mesothelioma and renal cell carcinoma: A comparative study. Hum Pathol 2004; 35(6): 697710.Google Scholar
Renshaw, AA, Comiter, CV, Nappi, D, Granter, SR. Effusion cytology of renal cell carcinoma. Cancer 1998 ; 84(3): 148152.Google Scholar
Huang, CC, Attelle, A, Michael, CW. Cytomorphologic features of metastatic urothelial carcinoma in serous effusions. Diagn Cytopathol 2013; 41(7): 569574.Google Scholar
Sears, D, Hadju, SI. The cytologic diagnosis of malignant neoplasms in pleural and peritoneal effusions. Acta Cytol 1987; 31(2): 8597.Google Scholar
Hajdu, SI. Exfoliative cytology of primary and metastatic Wilms tumor. Acta Cytol 1971; 15(4): 339342.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×