Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T23:17:45.630Z Has data issue: false hasContentIssue false

13 - Fine-Needle Aspiration of Lung, Pleura, and Mediastinum

Published online by Cambridge University Press:  05 March 2021

Ji-Weon Park
Affiliation:
Rush University, Chicago
Paolo Gattuso
Affiliation:
Rush University, Chicago
Vijaya B. Reddy
Affiliation:
Rush University, Chicago
Shahla Masood
Affiliation:
University of Florida
Get access

Summary

Epithelioid histiocyte: elongated twisted bland nuclei, small distinct nucleoli, and abundant pale cytoplasm with indistinct border

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Kaneishi, NK, Howell, LP, Russell, LA, et al. Fine needle aspiration cytology of pulmonary Wegener’s granulomatosis with biopsy correlation. A report of three cases. Acta Cytol 1995; 39(6): 10941100.Google ScholarPubMed
Levison, J, Van Asperen, P, Wong, C, et al. The value of a CT-guided fine needle aspirate in infants with lung abscess. J Paediatr Child Health 2004; 40: 474476.Google Scholar
Pena Grinan, N, Munoz Lucena, F, Vargas Romero, J, et al. Yield of percutaneous needle lung aspiration in lung abscess. Chest 1990; 97(1): 6974.Google Scholar
Yang, PC, Luh, KT, Lee, YC, et al. Lung abscesses: US examination and US-guided transthoracic aspiration. Radiology 1991; 180(1): 171175.Google Scholar

Secondary Sources

Carrafiello, G, Lagana, D, Nosari, AM, et al. Utility of computed tomography (CT) and of fine needle aspiration biopsy (FNAB) in early diagnosis of fungal pulmonary infections. Radiol Med (Torino) 2006; 111(1): 3341.Google Scholar
Ferreiros, J, Bustos, A, Merino, S, et al. Transthoracic needle aspiration biopsy: value in the diagnosis of mycobacterial lung opacities. J Thorac Imaging 1999; 14(3): 194200.Google Scholar
Gong, G, Lee, H, Kang, GH, et al. Nested PCR for diagnosis of tuberculous lymphadenitis and PCR-SSCP for identification of rifampicin resistance in fine-needle aspirates. Diagn Cytopathol 2002; 26(4): 228231.Google Scholar
Mukhopadhyay, S, Farver, CF, Vaszar, LT, et al. Causes of pulmonary granulomas: a retrospective study of 500 cases from seven countries. J Clin Pathol. 2012; 65(1): 5157.Google Scholar
Oki, M, Saka, H, Kitagawa, C, et al. Prospective study of endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes versus transbronchial lung biopsy of lung tissue for diagnosis of sarcoidosis. J Thorac Cardiovasc Surg. 2012; 143(6): 13241329.Google Scholar
Kazmierczak, B, Meyer-Bolte, K, Tran, KH, et al. A high frequency of tumors with rearrangements of genes of the HMGI(Y) family in a series of 191 pulmonary chondroid hamartomas. Genes Chrom Cancer 1999; 26(2): 125133.3.0.CO;2-A>CrossRefGoogle Scholar
von Ahsen, I, Rogalla, P, Bullerdiek, J. Expression patterns of the LPP-HMGA2 fusion transcript in pulmonary chondroid hamartomas with t(3; 12)(q27 approximately 28; q14 approximately 15). Cancer Genet Cytogenet 2005; 163(1): 6870.Google Scholar
Wood, B, Swarbrick, N, Frost, F. Diagnosis of pulmonary hamartoma by fine needle biopsy. Acta Cytol 2008; 52(4): 412417.Google Scholar
Zakharov, V, Schinstine, M. Hamartoma of the lung. Diagn Cytopathol. 2008; 36(5): 331332.Google Scholar
Fernandez-Cuesta, L, Peifer, M, Lu, X, et al. Frequent mutations in chromatin-remodeling genes in pulmonary carcinoids. Nat Commun 2014; 5: 3518.CrossRefGoogle ScholarPubMed
Pelosi, G, Fraggetta, F, Sonzogni, A, et al. CD99 immunoreactivity in gastrointestinal and pulmonary neuroendocrine tumours. Virchows Arch 2000; 437(3): 270274.CrossRefGoogle ScholarPubMed
Renshaw, AA, Haja, J, Lozano, RL, Wilbur, DC. Distinguishing carcinoid tumor from small cell carcinoma of the lung: correlating cytologic features and performance in the College of American Pathologists Non-Gynecologic Cytology Program. Arch Pathol Lab Med 2005; 129(5): 614618.CrossRefGoogle ScholarPubMed
Stoll, LM, Johnson, MW, Burroughs, F, Li, QK. Cytologic diagnosis and differential diagnosis of lung carcinoid tumors a retrospective study of 63 Cases with histologic correlation. Cancer Cytopathol. 2010; 118(6): 457467.Google Scholar
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014; 511(7511): 543550.Google Scholar
Fassina, A, Cappellesso, R, Simonato, F, et al. Fine needle aspiration of non-small cell lung cancer: current state and future perspective. Cytopathology 2012; 23(4): 213219.Google Scholar
Hasanovic, A, Rekhtman, N, Sigel, CS, Moreira, AL. Advances in fine needle aspiration cytology for the diagnosis of pulmonary carcinoma. Patholog Res Int 2011; 2011: 897292.Google Scholar
Lankarani, A, Wallace, MB. Endoscopic ultrasonography/fine-needle aspiration and endobronchial ultrasonography/ fine-needle aspiration for lung cancer staging. Gastrointest Endosc Clin N Am 2012; 22(2): 207219.Google Scholar
Lindeman, NI, Cagle, PT, Aisner, DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med 2018; 142(3): 321346.Google Scholar
Noll, B, Wang, WL, Gong, Y, et al. Programmed death ligand 1 testing in non-small cell lung carcinoma cytology cell block and aspirate smear preparations. Cancer Cytopathol 2018; 126(5): 342352Google Scholar
Sethi, S, Geng, L, Shidham, VB, et al. Dual color multiplex TTF-1 + Napsin A and p63 + CK5 immunostaining for subcategorizing of poorly differentiated pulmonary non-small carcinomas into adenocarcinoma and squamous cell carcinoma in fine needle aspiration specimens. Cytojournal 2012; 9: 10.Google Scholar
Travis, WD, Brambilla, E, Burke, AP, et al., eds. Tumors of the Lung in WHO Classification of Tumors of the Lung, Pleura, Thymus and Heart. Lyon: IARC, 2015: 985.Google Scholar
Travis, WD, Brambilla, E, Nicholson, AG, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 2015; 10: 12431260.Google Scholar
Brambilla, C, Laffaire, J, Lantuejoul, S, et al. Lung squamous cell carcinomas with basaloid histology represent a specific molecular entity. Clin Cancer Res 2014; 20(22): 57775786.Google Scholar
Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489(7417): 519525.Google Scholar
Fassina, A, Cappellesso, R, Simonato, F, et al. Fine needle aspiration of non-small cell lung cancer: current state and future perspective. Cytopathology 2012; 23(4): 213219.Google Scholar
Hasanovic, A, Rekhtman, N, Sigel, CS, Moreira, AL. Advances in fine needle aspiration cytology for the diagnosis of pulmonary carcinoma. Patholog Res Int 2011; 2011: 897292Google Scholar
Lankarani, A, Wallace, MB. Endoscopic ultrasonography/fine-needle aspiration and endobronchial ultrasonography/ fine-needle aspiration for lung cancer staging. Gastrointest Endosc Clin N Am. 2012; 22(2): 207219.Google Scholar
Mooney, EE, Dodd, LG, Vollmer, RT, Bossen, EH. Fine-needle aspiration biopsy diagnosis of primary bronchial basaloid-squamous carcinoma. Diagn Cytopathol 1997; 16(2): 187188.Google Scholar
Sethi, S, Geng, L, Shidham, VB, et al. Dual color multiplex TTF-1 + Napsin A and p63 + CK5 immunostaining for subcategorizing of poorly differentiated pulmonary non-small carcinomas into adenocarcinoma and squamous cell carcinoma in fine needle aspiration specimens. Cytojournal 2012; 9: 10Google Scholar
Travis, WD, Brambilla, E, Nicholson, AG, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 2015; 10: 12431260.CrossRefGoogle ScholarPubMed
Clinical Lung Cancer Genome Project (CLCGP); Network Genomic Medicine (NGM). A genomics-based classification of human lung tumors. Sci Transl Med 2013; 5(209): 209ra153.Google Scholar
Craig, ID, Desrosiers, P, Lefcoe, MS. Giant-cell carcinoma of the lung. A cytologic study. Acta Cytol 1983; 27(3): 293298.Google Scholar
Johansson, L. Histopathologic classification of lung cancer: Relevance of cytokeratin and TTF-1 immunophenotyping. Ann Diagn Pathol 2004; 8(5): 259267.Google Scholar
Kodama, T, Shimosato, Y, Koide, T, et al. Large cell carcinoma of the lung–ultrastructural and immunohistochemical studies. Jpn J Clin Oncol 1985; 15(2): 431441.Google Scholar
Travis, WD, Brambilla, E, Nicholson, AG, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 2015; 10: 12431260.Google Scholar
Domagała-Kulawik, J, Górnicka, B, Krenke, R, et al. The value of cytological diagnosis of small cell lung carcinoma. Pneumonol Alergol Pol 2010; 78(3): 203–10.Google Scholar
Peifer, M, Fernández-Cuesta, L, Sos, ML, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 2012; 44(10): 11041110.CrossRefGoogle ScholarPubMed
Renshaw, AA, Voytek, TM, Haja, J, Wilbur, DC. Distinguishing small cell carcinoma from non-small cell carcinoma of the lung: correlating cytologic features and performance in the College of American Pathologists Non-Gynecologic Cytology Program. Arch Pathol Lab Med 2005; 129(5): 619623.Google Scholar
Stoll, LM, Johnson, MW, Burroughs, F, Li, QK. Cytologic diagnosis and differential diagnosis of lung carcinoid tumors a retrospective study of 63 Cases with histologic correlation. Cancer Cytopathol 2010; 118(6): 457467.Google Scholar
Travis, WD. Advances in neuroendocrine lung tumors. Ann Oncol 2010; 21 (Suppl 7): vii6571.Google Scholar
Fernandez-Cuesta, L, Peifer, M, Lu, X, et al. Abstract 1531: Cross-entity mutation analysis of lung neuroendocrine tumors sheds light into their molecular origin and identifies new therapeutic targets. Proceedings: AACR Annual Meeting 2014; April 5–9, 2014; San Diego, CA Cancer Research 2014; 74 (19) SupplementGoogle Scholar
Hoshi, R, Furuta, N, Horai, T, et al. Discriminant model for cytologic distinction of large cell neuroendocrine carcinoma from small cell carcinoma of the lung. J Thorac Oncol 2010; 5(4): 472478.CrossRefGoogle ScholarPubMed
Maleki, Z. Diagnostic issues with cytopathologic interpretation of lung neoplasms displaying high-grade basaloid or neuroendocrine morphology. Diagn Cytopathol 2011; 39(3): 159167Google Scholar
Stoll, LM, Johnson, MW, Burroughs, F, Li, QK. Cytologic diagnosis and differential diagnosis of lung carcinoid tumors a retrospective study of 63 Cases with histologic correlation. Cancer Cytopathol 2010; 118(6): 457467.Google Scholar
Travis, WD. Advances in neuroendocrine lung tumors. Ann Oncol 2010; 21 (Suppl 7): vii6571Google Scholar
Travis, WD, Brambilla, E, Nicholson, AG, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 2015; 10: 12431260.Google Scholar
Aubry, MC, Heinrich, MC, Molina, J, et al. Primary adenoid cystic carcinoma of the Lung: Absence of KIT mutations. Cancer 2007; 110: 25072510.Google Scholar
Chon, SH, Park, YW, Oh, YH, Shinn, SH. Primary peripheral pulmonary adenoid cystic carcinoma: report of a case diagnosed by fine needle aspiration cytology. Diagn Cytopathol 2011; 39(4): 283287.Google Scholar
Higashi, K, Jin, Y, Johansson, M, Heim, S, et al. Rearrangement of 9p13 as the primary chromosomal aberration in adenoid cystic carcinoma of the respiratory tract. Genes Chromosomes Cancer 1991; 3(1): 2123.Google Scholar
Molina, JR, Aubry, MC, Lewis, JE, et al. Primary salivary gland-type lung cancer: spectrum of clinical presentation, histopathologic and prognostic factors. Cancer. 2007; 110(10): 22532259.Google Scholar
Monaco, SE, Khalbuss, WE, Ustinova, E, et al. The cytomorphologic spectrum of salivary gland type tumors in the lung and mediastinum: A report of 16 patients. Diagn Cytopathol 2012; 40(12): 10621070.CrossRefGoogle ScholarPubMed
Achcar Rde, O, Nikiforova, MN, Dacic, S, et al. Mammalian mastermind like 2 11q21 gene rearrangement in bronchopulmonary mucoepidermoid carcinoma. Hum Pathol 2009; 40(6): 854860.Google Scholar
Molina, JR, Aubry, MC, Lewis, JE, et al. Primary salivary gland-type lung cancer: spectrum of clinical presentation, histopathologic and prognostic factors. Cancer 2007; 110(10): 22532259.Google Scholar
Monaco, SE, Khalbuss, WE, Ustinova, E, et al. The cytomorphologic spectrum of salivary gland type tumors in the lung and mediastinum: A report of 16 patients. Diagn Cytopathol 2012; 40(12): 10621070.Google Scholar
Segletes, LA, Steffee, CH, Geisinger, KR.Cytology of primary pulmonary mucoepidermoid and adenoid cystic carcinoma. A report of four cases. Acta Cytol 1999, 43: 10911097.Google Scholar
Kaba, S, Tokoro, Y, Washiya, K, et al. Cytology of pulmonary marginal zone B-cell lymphoma of MALT type: lessons learned for intra-operative diagnosis. Cytopathology 2011; 22(5): 346349.Google Scholar
Kim, JH, Lee, SH, Park, J, et al. Primary pulmonary non-Hodgkin’s lymphoma. Jpn J Clin Oncol 2004; 34(9): 510514.Google Scholar
Wei, S, Li, X, Qiu, X, Zhao, H, et al. Primary lung lymphoma involving the superior vena cava. World J Surg Oncol. 2012; 10(1): 131.Google Scholar
Cessna, MH, Zhou, H, Sanger, WG, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol 2002; 15(9): 931938.Google Scholar
Machicao, CN, Sorensen, K, Abdul-Karim, FW, Somrak, TM. Transthoracic needle aspiration biopsy in inflammatory pseudotumors of the lung. Diagn Cytopathol 1989; 5(4): 400403.Google Scholar
Stoll, LM, Li, QK. Cytology of fine-needle aspiration of inflammatory myofibroblastic tumor. Diagn Cytopathol 2011; 39(9): 663672.Google Scholar
Thunnissen, FB, Arends, JW, Buchholtz, RT, ten Velde, G. Fine needle aspiration cytology of inflammatory pseudotumor of the lung (plasma cell granuloma). Report of four cases. Acta Cytol 1989; 33(6): 917921.Google Scholar
Yousem, SA, Shaw, H, Cieply, K. Involvement of 2p23 in pulmonary inflammatory pseudotumors. Hum Pathol 2001; 32(4): 428433.Google Scholar
Etienne-Mastroianni, B, Falchero, L, Chalabreysse, L, et al. Primary sarcomas of the lung: a clinicopathologic study of 12 cases. Lung Cancer 2002; 38(3): 283289.Google Scholar
Hummel, P, Cangiarella, JF, Cohen, JM, et al. Transthoracic fine-needle aspiration biopsy of pulmonary spindle cell and mesenchymal lesions: a study of 61 cases. Cancer 2001; 93(3): 187198.Google Scholar
Kim, K, Naylor, B, Han, IH. Fine needle aspiration cytology of sarcomas metastatic to the lung. Acta Cytol 1986; 30(6): 688694.Google Scholar
Flint, A, Lloyd, RV. Colon carcinoma metastatic to the lung. Cytologic manifestations and distinction from primary pulmonary adenocarcinoma. Acta Cytol 1992; 36(2): 230235.Google Scholar
Perry, MD, Gore, M, Seigler, HF, Johnston, WW. Fine needle aspiration biopsy of metastatic melanoma. A morphologic analysis of 174 cases. Acta Cytol 1986; 30(4): 385396.Google Scholar
Zaman, MB, Hajdu, SI, Melamed, MR, Watson, RC. Transthoracic aspiration cytology of pulmonary lesions. Semin Diagn Pathol 1986; 3(3): 176187.Google Scholar
Betta, PG, Magnani, C, Bensi, T, et al. Immunohistochemistry and molecular diagnostics of pleural malignant mesothelioma. Arch Pathol Lab Med 2012; 136(3): 253261.Google Scholar
Chapel, DB, Churg, A, Santoni-Rugiu, E, et al. Molecular pathways and diagnosis in malignant mesothelioma: A review of the 14th International Conference of the International Mesothelioma Interest Group. Lung Cancer 2019; 127: 6975.Google Scholar
Husain, AN, Colby, TV, Ordóñez, NG, et al. Guidelines for Pathologic Diagnosis of Malignant Mesothelioma 2017 Update of the Consensus Statement From the International Mesothelioma Interest Group. Arch Pathol Lab Med 2018; 142(1): 89108.Google Scholar
Kato, S, Tomson, BN, Buys, TP, et al. Genomic landscape of malignant mesotheliomas. Mol Cancer Ther 2016; 15(10): 24982507.Google Scholar
Nguyen, GK, Akin, MR, Villanueva, RR, Slatnik, J. Cytopathology of malignant mesothelioma of the pleura in fine-needle aspiration biopsy. Diagn Cytopathol 1999; 21(4): 253259.Google Scholar
Travis, WD, Brambilla, E, Burke, AP, et al., eds. Tumors of the Lung in WHO Classification of Tumors of the Lung, Pleura, Thymus and Heart. Lyon: IARC, 2015: 153171.Google Scholar
van Meerbeeck, JP, Scherpereel, A, Surmont, VF, Baas, P. Malignant pleural mesothelioma: the standard of care and challenges for future management. Crit Rev Oncol Hematol 2011; 78(2): 92111.Google Scholar
Abu Arab, W. Solitary fibrous tumours of the pleura. Eur J Cardiothorac Surg 2012; 41(3): 587597.CrossRefGoogle ScholarPubMed
Clayton, AC, Salomao, DR, Keeney, GL, Nascimento, AG. Solitary fibrous tumor: a study of cytologic features of six cases diagnosed by fine-needle aspiration. Diagn Cytopathol 2001; 25(3): 172176.Google Scholar
Gupta, N, Barwad, A, Katamuthu, K, et al. Solitary fibrous tumour: a diagnostic challenge for the cytopathologist. Cytopathology 2012; 23(4): 250–235.Google Scholar
Robinson, DR, Wu, YM, Kalyana-Sundaram, S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 2013; 45(2): 180185.Google Scholar
Lombardi, G, Zustovich, F, Nicoletto, MO, et al. Diagnosis and treatment of malignant pleural effusion: a systematic literature review and new approaches. Am J Clin Oncol 2010; 33(4): 420423.CrossRefGoogle ScholarPubMed
Panelli, F, Erickson, RA, Prasad, VM. Evaluation of mediastinal masses by endoscopic ultrasound and endoscopic ultrasound-guided fine needle aspiration. Am J Gastroenterol 2001; 96(2): 401408.Google Scholar
Powers, CN, Geisinger, KR. Fine needle aspiration biopsy of the mediastinum: an overview. Pathol Case Rev 2001; 6(2): 4958.CrossRefGoogle Scholar
Wakely, PE, Jr. Thymic cysts: an association with thymic neoplasia. Pathol Case Rev 2001; 6(2): 5963.Google Scholar
Wright, CD. Mediastinal tumors and cysts in the pediatric population. Thoracic Surgery Clinics 2009; 19(1): 4761.Google Scholar
Duwe, BV, Sterman, DH, Musani, AI. Tumors of the mediastinum. Chest 2005; 128(4): 28932909.Google Scholar
Marx, A, Ströbel, P, Badve, SS, et al. ITMIG consensus statement on the use of the WHO histological classification of thymoma and thymic carcinoma: refined definitions, histological criteria, and reporting. J Thorac Oncol 2014; 9(5): 596611.Google Scholar
Mikhail, M, Mekhail, Y, Mekhail, T. Thymic neoplasms: a clinical update. Curr Oncol Rep 2012; 14(4): 350358.Google Scholar
Moonim, MT, Breen, R, Gill-Barman, B, Santis, G. Diagnosis and subclassification of thymoma by minimally invasive fine needle aspiration directed by endobronchial ultrasound: a review and discussion of four cases. Cytopathology 2012; 23(4): 220228.Google Scholar
Pantidou, A, Kiziridou, A, Antoniadis, T, et al. Mediastinum thymoma diagnosed by FNA and ThinPrep technique: a case report. Diagn Cytopathol 2006; 34(1): 3740.Google Scholar
Radovich, M, Pickering, CR, Felau, I, et al. The integrated genomic landscape of thymic epithelial tumors. Cancer Cell. 2018; 33(2): 244258.Google Scholar
Travis, WD, Brambilla, E, Burke, AP, et al., eds. Tumors of the Lung in WHO Classification of Tumors of the Lung, Pleura, Thymus and Heart. Lyon: IARC, 2015: 183211Google Scholar
Wakely, PE Jr. Fine needle aspiration in the diagnosis of thymic epithelial neoplasms. Hematol Oncol Clin North Am. 2008; 22(3): 433442.Google Scholar
Dorfman, DM, Shahsafaei, A, Chan, JK. Thymic carcinomas, but not thymomas and carcinomas of other sites, show CD5 immunoreactivity. Am J Surg Pathol 1997; 21(8): 936940.Google Scholar
Duwe, BV, Sterman, DH, Musani, AI. Tumors of the mediastinum. Chest 2005; 128(4): 28932909.Google Scholar
Radovich, M, Pickering, CR, Felau, I, et al. The integrated genomic landscape of thymic epithelial tumors. Cancer Cell 2018; 33(2): 244258.Google Scholar
Kaw, YT, Esparza, AR. Fine needle aspiration cytology of primary squamous cell carcinoma of the thymus. A case report. Acta Cytol 1993; 37(5): 735739.Google Scholar
Posligua, L, Ylagan, L. Fine-needle aspiration cytology of thymic basaloid carcinoma: case studies and review of the literature. Diagn Cytopathol 2006; 34(5): 358366.Google Scholar
Saito, M, Fujiwara, Y, Asao, T, et al. The genomic and epigenomic landscape in thymic carcinoma. Carcinogenesis 2017; 38(11): 10841091.Google Scholar
Tanaka, T, Morishita, Y, Mori, Y, Shimonaka, E. Fine needle aspiration cytology of mucoepidermoid carcinoma of the thymus. Cytopathology 1990; 1(1): 4953.Google Scholar
Wakely, PE Jr. Fine needle aspiration in the diagnosis of thymic epithelial neoplasms. Hematol Oncol Clin North Am. 2008; 22(3): 433442.Google Scholar
Dinter, H, Bohnenberger, H, Beck, J, et al. Molecular classification of neuroendocrine tumors of the thymus. J Thorac Oncol 2019; 14(8): 14721483.Google Scholar
Duwe, BV, Sterman, DH, Musani, AI. Tumors of the mediastinum. Chest 2005; 128(4): 2893–909.CrossRefGoogle ScholarPubMed
Gherardi, G, Marveggio, C, Placidi, A. Neuroendocrine carcinoma of the thymus: aspiration biopsy, immunocytochemistry, and clinicopathologic correlates. Diagn Cytopathol 1995; 12(2): 158164.Google Scholar
Ruffini, E, Oliaro, A, Novero, D, et al. Neuroendocrine tumors of the thymus. Thorac Surg Clin 2011; 21(1): 1323.Google Scholar
Wakely, PE Jr. Fine needle aspiration in the diagnosis of thymic epithelial neoplasms. Hematol Oncol Clin North Am 2008; 22(3): 433442.Google Scholar
Wang, DY, Kuo, SH, Chang, DB, et al. Fine needle aspiration cytology of thymic carcinoid tumor. Acta Cytol 1995; 39(3): 423427.Google Scholar
Hoda, RS, Picklesimer, L, Green, KM, Self, S. Fine-needle aspiration of a primary mediastinal large B-cell lymphoma: a case report with cytologic, histologic, and flow cytometric considerations. Diagn Cytopathol 2005; 32(6): 370373.Google Scholar
Hutchinson, CB, Wang, E. Primary mediastinal (thymic) large B-cell lymphoma: a short review with brief discussion of mediastinal lymphoma. Arch Pathol Lab Med 2011; 135(3): 394398.Google Scholar
Nedomova, R, Papajik, T, Prochazka, V, et al. Cytogenetics and molecular cytogenetics in diffuse large B-cell lymphoma (DLBCL). Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2013; 157(3): 239247.Google Scholar
Powers, CN, Geisinger, KR. Fine needle aspiration biopsy of the mediastinum: an overview. Pathology Case Rev 2001; 6(2): 4958.Google Scholar
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum: epithelial, lymphoproliferative, and germ cell neoplasms. Ann Diagn Pathol 2002; 6(1): 3043.Google Scholar
Burkhardt, B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010; 149(5): 653668.Google Scholar
Han, X, Bueso-Ramos, CE. Precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma and acute biphenotypic leukemias. Am J Clin Pathol. 2007; 127(4): 528544.Google Scholar
Jacobs, JC, Katz, RL, Shabb, N, et al. Fine needle aspiration of lymphoblastic lymphoma A multiparameter diagnostic approach. Acta Cytol 1992; 36(6): 887–94.Google Scholar
Powers, CN, Geisinger, KR. Fine needle aspiration biopsy of the mediastinum: an overview. Pathology Case Rev 2001; 6(2): 4958.Google Scholar
Szczepanski, T, Pongers-Willemse, MJ, Langerak, AW, et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood 1999; 93(12): 40794085.Google Scholar
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum: epithelial, lymphoproliferative, and germ cell neoplasms. Ann Diagn Pathol 2002; 6(1): 3043.Google Scholar
Dunleavy, K, Grant, C, Eberle, FC, et al. Gray zone lymphoma: better treated like Hodgkin lymphoma or mediastinal large B-cell lymphoma? Curr Hematol Malig Rep 2012; 7(3): 241247.Google Scholar
Kardos, TF, Vinson, JH, Behm, FG, et al. Hodgkin’s disease: diagnosis by fine-needle aspiration biopsy. Analysis of cytologic criteria from a selected series. Am J Clin Pathol 1986; 86(3): 286291.Google Scholar
Küppers, R. New insights in the biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program 2012; 2012: 328334.Google Scholar
Powers, CN, Geisinger, KR. Fine needle aspiration biopsy of the mediastinum: an overview. Pathology Case Rev 2001; 6(2): 4958.Google Scholar
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum: epithelial, lymphoproliferative, and germ cell neoplasms. Ann Diagn Pathol 2002; 6(1): 3043.Google Scholar
Dominguez Malagon, H, Perez Montiel, D. Mediastinal germ cell tumors. Semin Diagn Pathol 2005; 22(3): 230240.Google Scholar
Motoyama, T, Yamamoto, O, Iwamoto, H, Watanabe, H. Fine needle aspiration cytology of primary mediastinal germ cell tumors. Acta Cytol 1995; 39(4): 725732.Google Scholar
Powers, CN, Geisinger, KR. Fine needle aspiration biopsy of the mediastinum: an overview. Pathology Case Rev 2001; 6(2): 4958.CrossRefGoogle Scholar
Chhieng, DC, Lin, O, Moran, CA, et al. Fine-needle aspiration biopsy of nonteratomatous germ cell tumors of the mediastinum. Am J Clin Pathol 2002; 118(3): 418424.Google Scholar
Dominguez Malagon, H, Perez Montiel, D. Mediastinal germ cell tumors. Semin Diagn Pathol 2005; 22(3): 230–40.Google Scholar
Kwon, MS. Aspiration cytology of mediastinal seminoma: report of a case with emphasis on the diagnostic role of aspiration cytology, cell block and immunocytochemistry. Acta Cytol 2005; 49(6): 669–72.CrossRefGoogle ScholarPubMed
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum: epithelial, lymphoproliferative, and germ cell neoplasms. Ann Diagn Pathol 2002; 6(1): 3043.Google Scholar
Weissferdt, A, Suster, S, Moran, CA. Primary mediastinal “thymic” seminomas. Adv Anat Pathol. 2012; 19(2): 7580.Google Scholar
Chhieng, DC, Lin, O, Moran, CA, Eltoum, IA, Jhala, NC, Jhala, DN, Simsir, A. Fine-needle aspiration biopsy of nonteratomatous germ cell tumors of the mediastinum. Am J Clin Pathol 2002; 118(3): 418–24.Google Scholar
Dominguez Malagon, H, Perez Montiel, D. Mediastinal germ cell tumors. Semin Diagn Pathol 2005; 22(3): 230–40.Google Scholar
Powers, CN, Geisinger, KR. Fine needle aspiration biopsy of the mediastinum: an overview. Pathology Case Rev 2001; 6(2): 4958.Google Scholar
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum: epithelial, lymphoproliferative, and germ cell neoplasms. Ann Diagn Pathol 2002; 6(1): 3043.Google Scholar
Duwe, BV, Sterman, DH, Musani, AI. Tumors of the mediastinum. Chest 2005; 128(4): 28932909.Google Scholar
Kehrer-Sawatzki, H, Farschtschi, S, Mautner, VF, Cooper, DN. The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet. 2017; 136(2): 129148.Google Scholar
Mooney, EE, Layfield, LJ, Dodd, LG. Fine-needle aspiration of neural lesions. Diagn Cytopathol 1999; 20(1): 15.Google Scholar
Powers, CN, Geisinger, KR. Fine needle aspiration biopsy of the mediastinum: an overview. Pathol Case Rev 2001; 6(2): 4958.Google Scholar
Rodriguez, FJ, Folpe, AL, Giannini, C, Perry, A. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol 2012; 123(3): 295319.Google Scholar
Serra, E, Puig, S, Otero, D, et al. Confirmation of a double-hit model for the NF1 gene in benign neurofibromas. Am J Hum Genet. 1997; 61(3): 512519.Google Scholar
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum II. Mesenchymal, neural, and neuroendocrine neoplasms. Ann Diagn Pathol 2005; 9(1): 2432.Google Scholar
Duwe, BV, Sterman, DH, Musani, AI. Tumors of the mediastinum. Chest 2005; 128(4): 28932909.Google Scholar
Mooney, EE, Layfield, LJ, Dodd, LG. Fine-needle aspiration of neural lesions. Diagn Cytopathol 1999; 20(1): 15.Google Scholar
Rodriguez, FJ, Folpe, AL, Giannini, C, Perry, A. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol 2012; 123(3): 295319.Google Scholar
Slagel, DD, Powers, CN, Melaragno, MJ, et al. Spindle cell lesions of the mediastinum: diagnosis by fine-needle aspiration biopsy. Diagn Cytopathol 1997; 17(3): 167176.Google Scholar
Thway, K, Fisher, C. Malignant peripheral nerve sheath tumor: pathology and genetics. Ann Diagn Pathol. 2014; 18(2): 109116.Google Scholar
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum II. Mesenchymal, neural, and neuroendocrine neoplasms. Ann Diagn Pathol 2005; 9(1): 2432.Google Scholar
Brown, ML, Zayas, GE, Abel, MD, et al. Mediastinal paragangliomas: the Mayo clinic experience. Ann Thorac Surg. 2008; 86(3): 946951.Google Scholar
Gonzalez-Campora, R, Otal-Salaverri, C, Panea-Flores, P, et al. Fine needle aspiration cytology of paraganglionic tumors. Acta Cytol 1988; 32(3): 386390.Google Scholar
Hsu, YR, Torres-Mora, J, Kipp, BR, et al. Clinicopathological, immunophenotypic and genetic studies of mediastinal paragangliomas. Eur J Cardiothorac Surg 2019; 56(5): 867875.Google Scholar
Rana, RS, Dey, P, Das, A. Fine needle aspiration (FNA) cytology of extra-adrenal paragangliomas. Cytopathology 1997; 8(2): 108113.Google Scholar
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum II. Mesenchymal, neural, and neuroendocrine neoplasms Ann Diagn Pathol 2005; 9(1): 2432.Google Scholar
Domanski, HA. Fine-needle aspiration of ganglioneuroma. Diagn Cytopathol 2005; 32(6): 363366.CrossRefGoogle ScholarPubMed
Powers, CN, Geisinger, KR. Fine needle aspiration biopsy of the mediastinum: an overview. Pathol Case Rev 2001; 6(2): 4958.Google Scholar
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum II. Mesenchymal, neural, and neuroendocrine neoplasms. Ann Diagn Pathol 2005; 9(1): 2432.Google Scholar
Duwe, BV, Sterman, DH, Musani, AI. Tumors of the mediastinum. Chest 2005; 128(4): 28932909.Google Scholar
Frostad, B, Tani, E, Kogner, P, et al. The clinical use of fine needle aspiration cytology for diagnosis and management of children with neuroblastic tumours. Eur J Cancer 1998; 34(4): 529536.Google Scholar
Kamijo, T, Nakagawara, A. Molecular and genetic bases of neuroblastoma. Int J Clin Oncol. 2012; 17(3): 190195.Google Scholar
Powers, CN, Geisinger, KR. Fine needle aspiration biopsy of the mediastinum: an overview. Pathol Case Rev 2001; 6(2): 4958.Google Scholar
Wakely, PE, Jr. Cytopathology-histopathology of the mediastinum II. Mesenchymal, neural, and neuroendocrine neoplasms. Ann Diagn Pathol 2005; 9(1): 2432.Google Scholar
Zage, PE, Louis, CU, Cohn, SL. New aspects of neuroblastoma treatment: ASPHO 2011 symposium review. Pediatr Blood Cancer. 2012; 58(7): 10991105.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×