Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T18:26:16.762Z Has data issue: false hasContentIssue false

2 - Geometrical tools

Published online by Cambridge University Press:  05 July 2016

C. T. C. Wall
Affiliation:
University of Liverpool
Get access

Summary

We can regard a compact smooth manifold as built up by glueing together smaller pieces, which are easier to analyse. In this chapter we begin the description of this process. After obtaining some basic results on Riemannian metrics, we study geodesics for such metrics. The key result is that any two nearby points are joined by a unique shortest geodesic. This leads us to study the way in which a closed submanifold lies in a manifold: we describe the structure of a neighbourhood of the submanifold as having the form of a tube.

A diffeotopy, or differentiable isotopy, can be considered either as deforming the embedding of one manifold in another or as an embedding of a product with I. If the deformation can be extended to the whole manifold, the two embeddings are equivalent. The diffeotopy extension theorem asserts that under certain conditions, this extension is possible; it may thus be looked on as a uniqueness theorem. We apply this result to obtain a uniqueness theorem for tubular neighbourhoods, which enables us to pass from knowledge of the structure of a compact submanifold M of a manifold N to knowledge of a neighbourhood of M: the only extra piece of information needed is the structure of the normal bundle. This contributes to the general aim of building up global results from merely local ones.

We define inverse procedures for straightening a corner, to yield a manifold with boundary, and for introducing corners: it will be useful in Chapter 5 to be able to effectively ignore corners.

Finally we discuss glueing and the inverse process of cutting: these are simple geometrical constructions which, given some smooth manifolds (perhaps with boundaries and corners) and additional data where necessary, give rise to new manifolds. On account of their perspicuity, these methods are traditional in describing the topology of surfaces, and they remain a very powerful tool in higher dimensions.

Riemannian metrics

We recall that if Mm is a smooth manifold, the bundle over M associated to the tangent bundle and whose fibre over P is the set of all positive definite quadratic forms on TPM is called the Riemann bundle, and any cross-section of it a Riemannian structure on M; in local coordinates this takes the form.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Geometrical tools
  • C. T. C. Wall, University of Liverpool
  • Book: Differential Topology
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316597835.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Geometrical tools
  • C. T. C. Wall, University of Liverpool
  • Book: Differential Topology
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316597835.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Geometrical tools
  • C. T. C. Wall, University of Liverpool
  • Book: Differential Topology
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316597835.003
Available formats
×