Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-18T01:17:04.655Z Has data issue: false hasContentIssue false

19 - Clinical and Pathophysiological Aspects of Sickle Cell Anemia

from SECTION FIVE - SICKLE CELL DISEASE

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Many authors have recounted the history of sickle cell disease in Africa and its first recognition in the United States Sickle-shaped red cells were first described in 1910 in the blood of a sick, anemic student from Grenada. Sickle hemoglobin (HbS) was identified in 1949 and the mechanism of inheritance of sickle cell anemia was established afterward. A single amino acid difference was found to distinguish the sickle β-globin chain from the normal one. The breadth of clinical and laboratory manifestations of sickle cell disease and its multitudinous complications still challenge the pediatrician, internist, general surgeon, obstetrician, orthopedist, ophthalmologist, psychiatrist, and subspecialists in each of these disciplines.

The features of sickle cell anemia change as life advances. Life's first decade, with declining fetal hemoglobin (HbF) levels, is typified by a risk of severe life-threatening infection, dactylitis, acute chest syndrome, splenic sequestration, and stroke; pain is often the torment of adolescence. If the worst of childhood and adolescent problems are survived or escaped, young adulthood can be a time of relative clinical quiescence, but sickle vasculopathy is likely to progress despite producing few symptoms. Chronic organ damage leading to pulmonary hypertension, deteriorating pulmonary function, renal failure, and late affects of previous cerebrovascular disease, including neurocognitive impairment, become paramount as years advance. Sickle cell anemia is noted for its clinical heterogeneity (Chapter 27). Any patient can have nearly all known disease complications; some have almost none, but die with a sudden acute problem.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 437 - 496
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ranney, HM. Historical Milestones. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Lippincott-Raven; 1994:1–5.Google Scholar
Pauling, L. Foreword. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Lippincott-Raven; 1994: xvii–xix.Google Scholar
Conley, CL. Sickle-cell anemia-the first molecular disease. In: Wintrobe, M, ed. Blood, Pure and Eloquent. 1st ed. New York: McGraw-Hill; 1980:319–371.Google Scholar
Herrick, JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch Intern Med. 1910;6:517–521.CrossRefGoogle Scholar
Savitt, TL, Goldberg, MF. Herrick's 1910 case report of sickle cell anemia: the rest of the story. JAMA. 1989;261:266–271.CrossRefGoogle ScholarPubMed
Pauling, L, Itano, H, Singer, SJ, Wells, IC. Sickle cell anemia: a molecular disease. Science. 1949;110:543–548.CrossRefGoogle ScholarPubMed
Beet, EA. The genetics of sickle cell trait in a Bantu tribe. Ann Eugen. 1949;14:279–284.CrossRefGoogle Scholar
Neel, JV. The inheritance of the sickling phenomenon with particular reference to sickle cell disease. Blood. 1951;6:389–412.Google ScholarPubMed
Ingram, VM. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. 1956;178:792–794.CrossRefGoogle ScholarPubMed
Frempong, KO, Steinberg, MH. Clinical aspects of sickle cell anemia in adults and children. In: Steinberg, MH, Forget, BG, Higgs, DR, Nagel, RL, eds. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. 1st ed. Cambridge: Cambridge University Press; 2001:611–710.Google Scholar
Motulsky, AG. Frequency of sickling disorders in US blacks. N Engl J Med. 1973;288:31–33.CrossRefGoogle Scholar
Ballas, SK, Smith, ED. Red blood cell changes during the evolution of the sickle cell painful crisis. Blood. 1992;79:2154–2163.Google ScholarPubMed
West, MS, Wethers, D, Smith, J, Steinberg, MH, Coop Study of Sickle Cell Disease. Laboratory profile of sickle cell disease: a cross-sectional analysis. J Clin Epidemiol. 1992;45:893–909.Google Scholar
Hayes, RJ, Beckford, M, Grandison, Y, Mason, K, Serjeant, BE, Serjeant, GR. The haematology of steady state homozygous sickle cell disease: frequency distributions variation with age and sex, longitudinal observations. Br J Haematol. 1985;59:369–382.CrossRefGoogle Scholar
Kato, GJ, McGowan, V, Machado, RF, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood. 2006;107(6):2279–2285.CrossRefGoogle ScholarPubMed
Ceulaer, K, Serjeant, GR. Acute splenic sequestration in Jamaican adults with homozygous sickle cell disease: a role of alpha thalassaemia. Br J Haematol. 1991;77:563–564.CrossRefGoogle ScholarPubMed
Reiter, CD, Wang, X, Tanus-Santos, JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8(12):1383–1389.CrossRefGoogle ScholarPubMed
Kato, GJ, Gladwin, MT, Steinberg, MH. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood. Rev 2007;21:37–47.CrossRefGoogle ScholarPubMed
Gladwin, MT, Sachdev, V, Jison, ML, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med. 2004;350(9):886–895.CrossRefGoogle ScholarPubMed
Nolan, VG, Wyszynski, DF, Farrer, , Steinberg, MH. Hemolysis-associated priapism in sickle cell disease. Blood. 2005;106(9):3264–3267.CrossRefGoogle ScholarPubMed
Nolan, VG, Adewoye, A, Baldwin, C, et al. Sickle cell leg ulcers: associations with haemolysis and SNPs in Klotho, TEK and genes of the TGF-beta/BMP pathway. Br J Haematol. 2006;133(5):570–578.CrossRefGoogle ScholarPubMed
Ohene-Frempong, K, Weiner, SJ, Sleeper, , et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288–294.Google ScholarPubMed
Adams, RJ, Kutlar, A, McKie, V, et al. Alpha thalassemia and stroke risk in sickle cell anemia. Am J Hematol. 1994;45(4):279–282.CrossRefGoogle ScholarPubMed
Hsu, LL, Miller, ST, Wright, E, et al. Alpha Thalassemia is associated with decreased risk of abnormal TCD ultrasonography in children with sickle cell anemia. J Pediatr Hematol Oncol. 2003;25(8):622–628.CrossRefGoogle ScholarPubMed
Lezcano, NE, Odo, N, Kutlar, A, Brambilla, D, Adams, RJ. Regular transfusion lowers plasma free hemoglobin in children with sickle-cell disease at risk for stroke. Stroke. 2006;37(6):1424–1426.CrossRefGoogle ScholarPubMed
Kato, GJ, Hsieh, M, Machado, R, et al. Cerebrovascular disease associated with sickle cell pulmonary hypertension. Am J Hematol. 2006;81(7):503–510.CrossRefGoogle ScholarPubMed
Taylor, JG, Nolan, VG, Kato, GJ, Gladwin, MT, Steinberg, MH. The hyperhemolysis phenotype in sickle cell anemia: increased risk of leg ulcers, priapism, pulmonary hypertension and death with decreased risk of vasoocclusive events. Blood. 2006;108:236a.Google Scholar
Platt, OS, Thorington, BD, Brambilla, DJ, et al. Pain in sickle cell disease-rates and risk factors. N Engl J Med. 1991;325:11–16.CrossRefGoogle ScholarPubMed
Machado, RF, Kyle, MA, Martyr, S, et al. Severity of pulmonary hypertension during vaso-occlusive pain crisis and exercise in patients with sickle cell disease. Br J Haematol. 2007;136(2):319–325.CrossRefGoogle ScholarPubMed
Burnett, AL, Bivalacqua, TJ, Champion, HC, Musicki, B. Long-term oral phosphodiesterase 5 inhibitor therapy alleviates recurrent priapism. Urology. 2006;67(5):1043–1048.CrossRefGoogle ScholarPubMed
Morris, CR, Morris, SM, Hagar, W, et al. Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease?Am J Respir Crit Care Med. 2003;168(1):63–69.CrossRefGoogle ScholarPubMed
Charache, S, Terrin, ML, Moore, RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N Engl J Med. 1995;332:1317–1322.CrossRefGoogle ScholarPubMed
Steinberg, MH, Barton, F, Castro, O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003;289(13):1645–1651.CrossRefGoogle Scholar
Steinberg, MH. Clinical trials in sickle cell disease: adopting the combination chemotherapy paradigm. Am J Hematol. 2008;83(1):1–3.CrossRefGoogle ScholarPubMed
Stuart, MJ, Setty, BN. Hemostatic alterations in sickle cell disease: relationships to disease pathophysiology. Pediatr Pathol Mol Med. 2001;20(1):27–46.CrossRefGoogle ScholarPubMed
Setty, BN, Rao, AK, Stuart, MJ. Thrombophilia in sickle cell disease: the red cell connection. Blood. 2001;98(12):3228–3233.CrossRefGoogle ScholarPubMed
Villagra, J, Shiva, S, Hunter, , Machado, RF, Gladwin, MT, Kato, GJ. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood. 2007;110(6):2166–2172.CrossRefGoogle ScholarPubMed
Gill, FM, Sleeper, , Weiner, SJ, et al. Clinical events in the first decade in a cohort of infants with sickle cell disease. Blood. 1995;86:776–783.Google Scholar
Gaston, M, Smith, J, Gallagher, D, et al. Recruitment in the Cooperative Study of Sickle Cell Disease (CSSCD). Control Clin Trials. 1987;8:131S–140S.CrossRefGoogle Scholar
Gaston, M, Rosse, WF. The cooperative study of sickle cell disease: review of study design and objectives. Am J Pediatr Hematol Oncol. 1982;4:197–201.Google ScholarPubMed
Bainbridge, R, Higgs, DR, Maude, GH, Serjeant, GR. Clinical presentation of homozygous sickle cell disease. J Pediatr. 1985;106:881–885.CrossRefGoogle ScholarPubMed
Miller, ST, Sleeper, , Pegelow, CH, et al. Prediction of adverse outcomes in children with sickle cell disease. N Engl J Med. 2000;342(2):83–89.CrossRefGoogle ScholarPubMed
Quinn, CT, Lee, NJ, Shull, EP, Ahmad, N, Rogers, ZR, Buchanan, GR. Prediction of adverse outcomes in children with sickle cell anemia: a study of the Dallas Newborn Cohort. Blood. 2008;111(2):544–548.CrossRefGoogle ScholarPubMed
Sebastiani, P, Nolan, VG, Baldwin, CT, et al. Predicting severity of sickle cell disease. Blood. 2007;110:2727–2735.CrossRefGoogle ScholarPubMed
Brown, AK, Sleeper, , Pegelow, CH, et al. The influence of infant and maternal sickle cell disease on birth outcome and neonatal course. Am J Dis Child. 1994;148:1156–1162.Google ScholarPubMed
Brown, AK, Sleeper, , Miller, ST, Pegelow, CH, Gill, FM, Waclawiw, MA. Reference values and hematologic changes from birth to 5 years in patients with sickle cell disease. Am J Dis Child. 1994;148:796–804.Google ScholarPubMed
Hankins, JS, Helton, KJ, McCarville, MB, Li, CS, Wang, WC, Ware, RE. Preservation of spleen and brain function in children with sickle cell anemia treated with hydroxyurea. Pediatr Blood Cancer. 2007;50:293–297.CrossRefGoogle Scholar
Platt, OS, Rosenstock, W, Espeland, M. Influence of S hemoglobinopathies on growth and development. N Engl J Med. 1984;311:7–12.CrossRefGoogle ScholarPubMed
Singhal, A, Thomas, P, Cook, R, Wierenga, K, Serjeant, G. Delayed adolescent growth in homozygous sickle cell disease. Arch Dis Child. 1994;71:404–408.CrossRefGoogle ScholarPubMed
Caruso-Nicoletti, M, Mancuso, M, Spadaro, G, Samperi, P, Consalvo, C, Schiliro, G. Growth and development in white patients with sickle cell diseases. Am J Pediatr Hematol Oncol. 1992;14(4):285–288.CrossRefGoogle ScholarPubMed
Modebe, O, Ifenu, SA. Growth retardation in homozygous sickle cell disease: role of calorie intake and possible gender-related differences. Am J Hematol. 1993;44(3):149–154.CrossRefGoogle ScholarPubMed
Zemel, BS, Kawchak, DA, Ohene-Frempong, K, Schall, JI, Stallings, VA. Effects of delayed pubertal development, nutritional status, and disease severity on longitudinal patterns of growth failure in children with sickle cell disease. Pediatr Res. 2007;61(5 Pt 1):607–613.CrossRefGoogle ScholarPubMed
Soliman, AT, El Banna, N, AlSalmi, I, Silva, V, Craig, A, Asfour, M. Growth hormone secretion and circulating insulin-like growth factor-I (IGF-I) and IGF binding protein-3 concentrations in children with sickle cell disease. Metabolism. 1997;46(11):1241–1245.CrossRefGoogle ScholarPubMed
Nunlee-Bland, G, Rana, SR, Houston-Yu, PE, Odonkor, W. Growth hormone deficiency in patients with sickle cell disease and growth failure. J Pediatr Endocrinol Metab. 2004;17(4):601–606.CrossRefGoogle ScholarPubMed
Badaloo, A, Jackson, AA, Jahoor, F. Whole body protein turnover and resting metabolic rate in homozygous sickle cell disease. Clin Sci (Lond). 1989;77(1):93–97.CrossRefGoogle ScholarPubMed
Singhal, A, Davies, P, Sahota, A, Thomas, PW, Serjeant, GR. Resting metabolic rate in homozygous sickle cell disease. Am J Clin Nutr. 1993;57:32–34.CrossRefGoogle ScholarPubMed
Singhal, A, Davies, P, Wierenga, KJ, Thomas, P, Serjeant, G. Is there an energy deficiency in homozygous sickle cell disease?Am J Clin Nutr. 1997;66(2):386–390.CrossRefGoogle ScholarPubMed
Kopp-Hoolihan, , van L, Mentzer, WC, Heyman, MB. Elevated resting energy expenditure in adolescents with sickle cell anemia. J Am Diet Assoc. 1999;99(2):195–199.CrossRefGoogle ScholarPubMed
Borel, MJ, Buchowski, MS, Turner, EA, Peeler, BB, Goldstein, RE, Flakoll, PJ. Alterations in basal nutrient metabolism increase resting energy expenditure in sickle cell disease. Am J Physiol Endocrinol Metab. 1998;274(2):E357–E364.CrossRefGoogle ScholarPubMed
Salman, EK, Haymond, MW, Bayne, E, et al. Protein and energy metabolism in prepubertal children with sickle cell anemia. Pediatr Res. 1996;40:34–40.CrossRefGoogle ScholarPubMed
Williams, R, Olivi, S, Li, CS, et al. Oral glutamine supplementation decreases resting energy expenditure in children and adolescents with sickle cell anemia. J Pediatr Hematol Oncol. 2004;26(10):619–625.CrossRefGoogle ScholarPubMed
Kawchak, DA, Schall, JI, Zemel, BS, Ohene-Frempong, K, Stallings, VA. Adequacy of dietary intake declines with age in children with sickle cell disease. J Am Diet Assoc. 2007;107(5):843–848.CrossRefGoogle ScholarPubMed
Jacob, E, Miaskowski, C, Savedra, M, Beyer, JE, Treadwell, M, Styles, L. Changes in sleep, food intake, and activity levels during acute painful episodes in children with sickle cell disease. J Pediatr Nurs. 2006;21(1):23–34.CrossRefGoogle ScholarPubMed
Leonard, MB, Zemel, BS, Kawchak, DA, Ohene-Frempong, K, Stallings, VA. Plasma zinc status, growth, and maturation in children with sickle cell disease. J Pediatr. 1998;132(3 Pt 1):467–471.CrossRefGoogle ScholarPubMed
Gupta, VL, Chaubey, BS. Efficacy of zinc therapy in prevention of crisis in sickle cell anemia: a double blind randomized controlled clinical trial. J Assoc Physicians India. 1995;43:467–469.Google ScholarPubMed
Prasad, AS, Beck, FWJ, Kaplan, J, et al. Effect of zinc supplementation on incidence of infections and hospital admissions in sickle cell disease (SCD). Am J Hematol. 1999;61(3):194–202.3.0.CO;2-C>CrossRefGoogle Scholar
Schall, JI, Zemel, BS, Kawchak, DA, Ohene-Frempong, K, Stallings, VA. Vitamin A status, hospitalizations, and other outcomes in young children with sickle cell disease. J Pediatr. 2004;145(1):99–106.CrossRefGoogle ScholarPubMed
Buison, AM, Kawchak, DA, Schall, J, Ohene-Frempong, K, Stallings, VA, Zemel, BS. Low vitamin D status in children with sickle cell disease. J Pediatr. 2004;145(5):622–627.CrossRefGoogle ScholarPubMed
Rodriguez-Cortes, HM, Griener, JC, Hyland, K, et al. Plasma homocysteine levels and folate status in children with sickle cell anemia. J Pediatr Hematol Oncol. 1999;21(3):219–223.CrossRefGoogle ScholarPubMed
Wang, WC. The pathophysiology, prevention, and treatment of stroke in sickle cell disease. Curr Opin Hematol. 2007;14(3):191–197.CrossRefGoogle ScholarPubMed
Wang, WC. Central nervous system complications of sickle cell disease in children: an overview. Child Neuropsychol. 2007;13(2):103–119.CrossRefGoogle ScholarPubMed
Platt, OS. Prevention and management of stroke in sickle cell anemia. Hematology Am Soc Hematol Educ Program. 2006;54–57.Google ScholarPubMed
DeBaun, MR, Derdeyn, CP, McKinstry, RC. Etiology of strokes in children with sickle cell anemia. Ment Retard Dev Disabil Res Rev. 2006;12(3):192–199.CrossRefGoogle ScholarPubMed
Adams, R, McKie, V, Nichols, F, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N Engl J Med. 1992;326:605–610.CrossRefGoogle ScholarPubMed
Adams, RJ. Neurologic complications. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1 ed. New York: Raven Press; 1994:599–621.Google Scholar
Milbauer, LC, Wei, P, Enenstein, J, et al. Genetic endothelial systems biology of sickle stroke risk. Blood. 2008:111:3872–3879.CrossRefGoogle Scholar
Wang, WC, Langston, JW, Steen, RG, et al. Abnormalities of the central nervous system in very young children with sickle cell anemia. J Pediatr. 1998;132(6):994–998.CrossRefGoogle ScholarPubMed
Scothorn, DJ, Price, C, Schwartz, D, et al. Risk of recurrent stroke in children with sickle cell disease receiving blood transfusion therapy for at least five years after initial stroke. J Pediatr. 2002;140(3):348–354.CrossRefGoogle ScholarPubMed
Dobson, SR, Holden, KR, Nietert, PJ, et al. Moyamoya syndrome in childhood sickle cell disease: a predictive factor for recurrent cerebrovascular events. Blood. 2002;99(9):3144–3150.CrossRefGoogle ScholarPubMed
Balkaran, B, Char, G, Morris, JS, Thomas, PW, Serjeant, BE, Serjeant, GR. Stroke in a cohort of patients with homozygous sickle cell disease. J Pediatr. 1992;120:360–366.CrossRefGoogle Scholar
Strouse, JJ, Hulbert, ML, DeBaun, MR, Jordan, LC, Casella, JF. Primary hemorrhagic stroke in children with sickle cell disease is associated with recent transfusion and use of corticosteroids. Pediatrics. 2006;118(5):1916–1924.CrossRefGoogle ScholarPubMed
Kirkham, FJ, Hewes, DKM, Prengler, M, Wade, A, Lane, R, Evans, JPM. Nocturnal hypoxaemia and central-nervous-system events in sickle-cell disease. Lancet. 2001;357(9269):1656–1659.CrossRefGoogle ScholarPubMed
Powars, D, Wilson, B, Imbus, C, et al. The natural history of stroke in sickle cell disease. Am J Med. 1978;65:461–470.CrossRefGoogle ScholarPubMed
Francis, RB, Hebbel, RP. Hemostasis. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Lippincott-Raven; 1994:299–310.Google Scholar
Houston, PE, Rana, S, Sekhsaria, S, Perlin, E, Kim, KS, Castro, OL. Homocysteine in sickle cell disease: relationship to stroke. Am J Med. 1997;103(3):192–196.CrossRefGoogle Scholar
Dijs, FPL, Schnog, JJB, Brouwer, DAJ, et al. Elevated homocysteine levels indicate suboptimal folate status in pediatric sickle cell patients. Am J Hematol. 1998;59(3):192–198.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Pegelow, CH, Colangelo, L, Steinberg, M, et al. Natural history of blood pressure in sickle cell disease: risks for stroke and death associated with relative hypertension in sickle cell anemia. Am J Med. 1997;102:171–177.CrossRefGoogle ScholarPubMed
Bernaudin, F, Verlhac, S, Coic, L, et al. High LDH level, G6PD deficiency and absence of alpha-thalassemia are significant independent risk factors of abnormally high cerebral velocities in patients with sickle cell anemia. Blood. 2008;112:4314–4317.CrossRefGoogle Scholar
O'Driscoll, S, Height, SE, Dick, MC, Rees, DC. Serum lactate dehydrogenase activity as a biomarker in children with sickle cell disease. Br J Haematol. 2008:140(2):206–209.Google ScholarPubMed
Powars, DR, Conti, PS, Wong, WY, et al. Cerebral vasculopathy in sickle cell anemia: diagnostic contribution of positron emission tomography. Blood. 1999;93(1):71–79.Google ScholarPubMed
Reed, W, Jagust, W, Al Mateen, M, Vichinsky, E. Role of positron emission tomography in determining the extent of CNS ischemia in patients with sickle cell disease. Am J Hematol. 1999;60(4):268–272.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Ohene-Frempong, K. Stroke in sickle cell disease: demographic, clinical, and therapeutic considerations. Semin Hematol. 1991;28(3):213–219.Google ScholarPubMed
Berkelhammer, LD, Williamson, AL, Sanford, SD, et al. Neurocognitive sequelae of pediatric sickle cell disease: a review of the literature. Child Neuropsychol. 2007;13(2):120–131.CrossRefGoogle ScholarPubMed
Tarazi, RA, Grant, ML, Ely, E, Barakat, LP. Neuropsychological functioning in preschool-age children with sickle cell disease: the role of illness-related and psychosocial factors. Child Neuropsychol. 2007;13(2):155–172.CrossRefGoogle ScholarPubMed
Switzer, JA, Hess, DC, Nichols, FT, Adams, RJ. Pathophysiology and treatment of stroke in sickle-cell disease: present and future. Lancet Neurol. 2006;5(6):501–512.CrossRefGoogle ScholarPubMed
Hulbert, ML, Scothorn, DJ, Panepinto, JA, et al. Exchange blood transfusion compared with simple transfusion for first overt stroke is associated with a lower risk of subsequent stroke: a retrospective cohort study of 137 children with sickle cell anemia. J Pediatr. 2006;149(5):710–712.CrossRefGoogle ScholarPubMed
Pegelow, CH, Adams, RJ, McKie, V, et al. Risk of recurrent stroke in patients with sickle cell disease treated with erythrocyte transfusions. J Pediatr. 1995;126:896–899.CrossRefGoogle ScholarPubMed
Cohen, AR, Martin, MB, Silber, JH, Kim, HC, Ohene-Frempong, K, Schwartz, E. A modified transfusion program for prevention of stroke in sickle cell disease. Blood. 1992;79:1657–1661.Google ScholarPubMed
Singer, ST, Quirolo, K, Nishi, K, Hackney-Stephens, E, Evans, C, Vichinsky, EP. Erythrocytapheresis for chronically transfused children with sickle cell disease: an effective method for maintaining a low hemoglobin S level and reducing iron overload. J Clin Apher. 1999;14(3):122–125.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Fryer, RH, Anderson, RC, Chiriboga, CA, Feldstein, NA. Sickle cell anemia with moyamoya disease: outcomes after EDAS procedure. Pediatr Neurol. 2003;29(2):124–130.CrossRefGoogle ScholarPubMed
Ware, RE, Zimmerman, SA, Sylvestre, PB, et al. Prevention of secondary stroke and resolution of transfusional iron overload in children with sickle cell anemia using hydroxyurea and phlebotomy. J Pediatr. 2004;145(3):346–352.CrossRefGoogle ScholarPubMed
Adams, RJ. Stroke prevention and treatment in sickle cell disease. Arch Neurol. 2001;58(4):565–568.CrossRefGoogle ScholarPubMed
Adams, RJ, McKie, VC, Brambilla, D, et al. Stroke prevention trial in sickle cell anemia. Control Clin Trials. 1998;19(1):110–129.CrossRefGoogle ScholarPubMed
Adams, RJ, McKie, VC, Hsu, L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography [see comments]. N Engl J Med. 1998;339(1):5–11.CrossRefGoogle Scholar
Sebastiani, P, Ramoni, MF, Nolan, V, Baldwin, CT, Steinberg, MH. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet. 2005;37(4):435–440.CrossRefGoogle ScholarPubMed
Adams, RJ, Brambilla, D. Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med. 2005;353(26):2769–2778.Google ScholarPubMed
Zimmerman, SA, Schultz, WH, Burgett, S, Mortier, NA, Ware, RE. Hydroxyurea therapy lowers transcranial Doppler flow velocities in children with sickle cell anemia. Blood. 2007;110:1043–1047.CrossRefGoogle ScholarPubMed
Gulbis, B, Haberman, D, Dufour, D, et al. Hydroxyurea for sickle cell disease in children and for prevention of cerebrovascular events: the Belgian experience. Blood. 2005;105(7):2685–2690.CrossRefGoogle ScholarPubMed
Kratovil, T, Bulas, D, Driscoll, MC, Speller-Brown, B, McCarter, R, Minniti, CP. Hydroxyurea therapy lowers TCD velocities in children with sickle cell disease. Pediatr Blood Cancer. 2006;47(7):894–900.CrossRefGoogle ScholarPubMed
Kinney, TR, Sleeper, , Wang, WC, et al. Silent cerebral infarcts in sickle cell anemia: a risk factor analysis. Pediatrics. 1999;103(3):640–645.CrossRefGoogle ScholarPubMed
Armstrong, FD, Thompson, RJ, Wang, W, et al. Cognitive functioning and brain magnetic resonance imaging in children with sickle cell disease. Pediatrics. 1996;97:864–870.Google ScholarPubMed
Shields, RW, Harris, JW, Clark, M. Mononeuropathy in sickle cell anemia: anatomical and pathophysiological basis for its rarity. Muscle Nerve. 1991;14:370–374.CrossRefGoogle ScholarPubMed
Imbus, CE, Warner, J, Smith, E, Pegelow, CH, Allen, JP, Powars, DR. Peripheral neuropathy in lead-intoxicated sickle cell patients. Muscle Nerve. 1978;1:168–171.CrossRefGoogle ScholarPubMed
Donegan, JO, Lobel, JS, Gluckman, JL. Otolaryngologic manifestations of sickle cell disease. J Otolaryngol. 1982;3:141–144.CrossRefGoogle ScholarPubMed
Curran, EL, Fleming, JC, Rice, K, Wang, WC. Orbital compression syndrome in sickle cell disease. Ophthalmology. 1997;104(10):1610–1615.CrossRefGoogle ScholarPubMed
Koduri, PR. Acute splenic sequestration crisis in adults with sickle cell anemia. Am J Hematol. 2007;82(2):174–175.CrossRefGoogle ScholarPubMed
Neonato, MG, Guilloud-Bataille, M, Beauvais, P, et al. Acute clinical events in 299 homozygous sickle cell patients living in France. French Study Group on Sickle Cell Disease. Eur J Haematol. 2000;65(3):155–164.CrossRefGoogle Scholar
Tarer, V, Etienne-Julan, M, Diara, JP, et al. Sickle cell anemia in Guadeloupean children: pattern and prevalence of acute clinical events. Eur J Haematol. 2006;76(3):193–199.CrossRefGoogle ScholarPubMed
Wright, JG, Hambleton, IR, Thomas, PW, Duncan, ND, Venugopal, S, Serjeant, GR. Postsplenectomy course in homozygous sickle cell disease. J Pediatr. 1999;134(3):304–309.CrossRefGoogle ScholarPubMed
Manci, EA, Culberson, , Yang, YM, et al. Causes of death in sickle cell disease: an autopsy study. Br J Haematol. 2003;123(2):359–365.CrossRefGoogle ScholarPubMed
Chopra, R, Al-Mulhim, AR, Al-Baharani, AT. Fibrocongestive splenomegaly in sickle cell disease: a distinct clinicopathological entity in the Eastern province of Saudi Arabia. Am J Hematol. 2005;79(3):180–186.CrossRefGoogle ScholarPubMed
Al-Salem, AH. Indications and complications of splenectomy for children with sickle cell disease. J Pediatr Surg. 2006;41(11):1909–1915.CrossRefGoogle ScholarPubMed
Zimmerman, SA, Davis, JS, Schultz, WH, Ware, RE. Subclinical parvovirus B19 infection in children with sickle cell anemia. J Pediatr Hematol Oncol. 2003;25(5):387–389.CrossRefGoogle ScholarPubMed
Krishnamurti, L, Lanford, L, Munoz, R. Life threatening parvovirus B19 and herpes simplex virus associated acute myocardial dysfunction in a child with homozygous sickle cell disease. Pediatr Blood Cancer. 2007;49:1019–1021.CrossRefGoogle Scholar
Bakhshi, S, Sarnaik, SA, Becker, C, Shurney, WW, Nigro, M, Savasan, S. Acute encephalopathy with parvovirus B19 infection in sickle cell disease. Arch Dis Child. 2002;87(6):541–542.CrossRefGoogle ScholarPubMed
Wierenga, KJ, Serjeant, BE, Serjeant, GR. Cerebrovascular complications and parvovirus infection in homozygous sickle cell disease. J Pediatr. 2001;139(3):438–442.CrossRefGoogle ScholarPubMed
Smith-Whitley, K, Zhao, H, Hodinka, RL, et al. Epidemiology of human parvovirus B19 in children with sickle cell disease. Blood. 2004;103(2):422–427.CrossRefGoogle ScholarPubMed
Serjeant, BE, Hambleton, IR, Kerr, S, Kilty, CG, Serjeant, GR. Haematological response to parvovirus B19 infection in homozygous sickle-cell disease. Lancet. 2001;358(9295):1779–1780.CrossRefGoogle ScholarPubMed
Lane, PK, Embury, SH, Toy, PT. Oxygen-induced marrow red cell hypoplasia leading to transfusion in sickle painful crisis. Am J Hematol. 1988;27:67–68.CrossRefGoogle ScholarPubMed
Embury, SH, Garcia, JF, Mohandas, N, Pennathur-Das, R, Clark, MR. Effects of oxygen inhalation on endogenous erythropoietin kinetics erythropoiesis and properties of blood cells in sickle cell anemia. N Engl J Med. 1984;311:291–295.CrossRefGoogle ScholarPubMed
Sherwood, JB, Goldwasser, E, Chilcote, R, Carmichael, LD, Nagel, RL. Sickle cell anemia patients have low erythropoietin levels for their degree of anemia. Blood. 1986;67:46–49.Google ScholarPubMed
Cazzola, M, Guarnone, R, Cerani, P, Centenara, E, Rovati, A, Beguin, Y. Red blood cell precursor mass as an independent determinant of serum erythropoietin level. Blood. 1998;91:2139–2145.Google ScholarPubMed
Little, JA, McGowan, VR, Kato, GJ, et al. Combination erythropoietin-hydroxyurea therapy in sickle cell disease: experience from the National Institutes of Health and a literature review. Haematologica. 2006;91(8):1076–1083.Google Scholar
Mollapour, E, Porter, JB, Kaczmarski, R, Linch, DC, Roberts, PJ. Raised neutrophil phospholipase A2 activity and defective priming of NADPH oxidase and phospholipase A2 in sickle cell disease. Blood. 1998;91(9):3423–3429.Google ScholarPubMed
Wright, J, Thomas, P, Serjeant, GR. Septicemia caused by Salmonella infection: An overlooked complication of sickle cell disease. J Pediatr. 1997;130:394–399.CrossRefGoogle ScholarPubMed
Magnus, SA, Hambleton, IR, Moosdeen, F, Serjeant, GR. Recurrent infections in homozygous sickle cell disease. Arch Dis Child. 1999;80(6):537–541.CrossRefGoogle ScholarPubMed
Overturf, GD. Infections and immunizations of children with sickle cell disease. Adv Pediatr Infect Dis. 1999;14:191–218.Google ScholarPubMed
Bagasra, O, Steiner, RM, Ballas, SK, et al. Viral burden and disease progression in HIV-1-infected patients with sickle cell anemia. Am J Hematol. 1998;59(3):199–207.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Leikin, SL, Gallagher, D, Kinney, TR, Sloane, D, Klug, P, Rida, W. Mortality in children and adolescents with sickle cell disease. Pediatrics. 1989;84:500–508.Google ScholarPubMed
Gaston, MH, Verter, J, Woods, G, et al. Prophylaxsis with oral penicillin in children with sickle cell anemia. N Engl J Med. 1986;314:1593–1599.CrossRefGoogle Scholar
Halasa, NB, Shankar, SM, Talbot, TR, et al. Incidence of invasive pneumococcal disease among individuals with sickle cell disease before and after the introduction of the pneumococcal conjugate vaccine. Clin Infect Dis. 2007;44(11):1428–1433.CrossRefGoogle ScholarPubMed
Davies, EG, Riddington, C, Lottenberg, R, Dower, N. Pneumococcal vaccines for sickle cell disease. Cochrane Database Syst Rev. 2004;(1):CD003885.CrossRefGoogle ScholarPubMed
Falletta, JM, Woods, GM, Verter, JI, et al. Discontinuing penicillin prophylaxis in children with sickle cell anemia. J Pediatr. 1995;127:685–690.CrossRefGoogle ScholarPubMed
Kyaw, MH, Lynfield, R, Schaffner, W, et al. Effect of introduction of the pneumococcal conjugate vaccine on drugresistant Streptococcus pneumoniae. N Engl J Med. 2006;354(14):1455–1463.CrossRefGoogle Scholar
Adamkiewicz, TV, Sarnaik, S, Buchanan, GR, et al. Invasive pneumococcal infections in children with sickle cell disease in the era of penicillin prophylaxis, antibiotic resistance, and 23-valent pneumococcal polysaccharide vaccination. J Pediatr. 2003;143(4):438–444.CrossRefGoogle ScholarPubMed
Hill, PC, Onyeama, CO, Ikumapayi, UN, et al. Bacteraemia in patients admitted to an urban hospital in West Africa. BMC Infect Dis. 2007;7:2.CrossRefGoogle Scholar
Hill, PC, Akisanya, A, Sankareh, K, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian villagers. Clin Infect Dis. 2006;43(6):673–679.CrossRefGoogle ScholarPubMed
Levine, OS, O'Brien, KL, Knoll, M, et al. Pneumococcal vaccination in developing countries. Lancet. 2006;367(9526):1880–1882.CrossRefGoogle ScholarPubMed
Castro, O, Brambilla, DJ, Thorington, B, et al. The acute chest syndrome in sickle cell disease: Incidence and risk factors. Blood. 1994;84:643–649.Google ScholarPubMed
Vichinsky, EP, Neumayr, LD, Earles, AN, et al. Causes and outcomes of the acute chest syndrome in sickle cell disease. N Engl J Med. 2000;342(25):1855–1865.CrossRefGoogle ScholarPubMed
Vichinsky, E, Williams, R, Das, M, et al. Pulmonary fat embolism: a distinct cause of severe acute chest syndrome in sickle cell anemia. Blood. 1994;83:3107–3112.Google ScholarPubMed
Bellet, PS, Kalinyak, KA, Shukla, R, Gelfand, MJ, Rucknagel, DL. Incentive spirometry to prevent acute pulmonary complications in sickle cell diseases. N Engl J Med. 1995;333:699–703.CrossRefGoogle ScholarPubMed
Rackoff, WR, Kunkel, N, Silber, JH, Asakura, T, Ohene-Frempong, K. Pulse oximetry and factors associated with hemoglobin oxygen desaturation in children with sickle cell disease. Blood. 1993;81:3422–3427.Google ScholarPubMed
Styles, , Schalkwijk, CG, Aarsman, AJ, Vichinsky, EP, Lubin, BH, Kuypers, FA. Phospholipase A2 levels in acute chest syndrome of sickle cell disease. Blood. 1996;87:2573–2578.Google ScholarPubMed
Styles, , Aarsman, AJ, Vichinsky, EP, Kuypers, FA. Secretory phospholipase A2 predicts impending acute chest syndrome in sickle cell disease. Blood. 2000;96(9):3276–3278.Google ScholarPubMed
Miller, ST, Wright, E, Abboud, M, et al. Impact of chronic transfusion on incidence of pain and acute chest syndrome during the Stroke Prevention Trial (STOP) in sickle–cell anemia. J Pediatr. 2001;139(6):785–789.CrossRefGoogle Scholar
Styles, , Abboud, M, Larkin, S, Lo, M, Kuypers, FA. Transfusion prevents acute chest syndrome predicted by elevated secretory phospholipase A2. Br J Haematol. 2007;136(2):343–344.CrossRefGoogle ScholarPubMed
Kuypers, FA, Styles, . The role of secretory phospholipase A2 in acute chest syndrome. Cell Mol Biol. 2004;50(1):87–94.Google ScholarPubMed
Naprawa, JT, Bonsu, BK, Goodman, DG, Ranalli, MA. Serum biomarkers for identifying acute chest syndrome among patients who have sickle cell disease and present to the emergency department. Pediatrics. 2005;116(3):e420–e425.CrossRefGoogle ScholarPubMed
Dworkis, DA, Nolan, VG, McMahon, L, Klings, ES, Steinberg, MH. Predicting acute chest syndrome in sickle cell disease patients hospitalized for acute vasoocclusive events. Blood. 2007.Google Scholar
Gladwin, MT, Schechter, AN, Shelhamer, JH, Ognibene, FP. The acute chest syndrome in sickle cell disease – Possible role of nitric oxide in its pathophysiology and treatment. Am J Respir Crit Care Med. 1999;159(5):1368–1376.CrossRefGoogle ScholarPubMed
Kinney, TR, Ware, RE. The adolescent with sickle cell anemia. Hematol Oncol Clin North Am. 1996;10:1255–1264.CrossRefGoogle ScholarPubMed
Kell, RS, Kliewer, W, Erickson, MT, Ohene-Frempong, K. Psychological adjustment of adolescents with sickle cell disease: relations with demographic, medical, and family competence variables. J Pediatr Psychol. 1998;23(5):301–312.CrossRefGoogle ScholarPubMed
Treadwell, MJ, Gil, KM. Psychosocial Aspects. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. New York: Lippincott-Raven; 1994:517–530.Google Scholar
Adewoye, AH, Steinberg, MH. Hemoglobinopathies in pregnancy. In: Bick, RL, Frenkel, EP, Baker, WF, Sarode, R, eds. Hematological Complications in Obstetrics, Pregnancy and Gynecology. Cambridge: Cambridge University Press; 2006:442–468.CrossRefGoogle Scholar
Serjeant, GR, Hambleton, I, Thame, M. Fecundity and pregnancy outcome in a cohort with sickle cell-haemoglobin C disease followed from birth. Br J Obstet Gynaecol. 2005;112(9):1308–1314.CrossRefGoogle Scholar
Anyaegbunam, A, Mikhail, M, Axioitis, C, Morel, MI, Merkatz, IR. Placental histology and placental/fetal weight ratios in pregnant women with sickle cell disease: relationship to pregnancy outcome. J Assoc Acad Minor Phys. 1994;5(3):123–125.Google ScholarPubMed
Decastel, M, Leborgne-Samuel, Y, Alexandre, L, Merault, G, Berchel, C. Morphological features of the human umbilical vein in normal, sickle cell trait, and sickle cell disease pregnancies. Hum Pathol. 1999;30(1):13–20.CrossRefGoogle ScholarPubMed
Granger, JP, Alexander, BT, Llinas, MT, Bennett, WA, Khalil, RA. Pathophysiology of preeclampsia: linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation. 2002;9(3):147–160.CrossRefGoogle ScholarPubMed
Sun, PM, Wilburn, W, Raynor, BD, Jamieson, D. Sickle cell disease in pregnancy: twenty years of experience at Grady Memorial Hospital, Atlanta, Georgia. Am J Obstet Gynecol. 2001;184(6):1127–1130.CrossRefGoogle Scholar
Williams-Murphy, M, Thorneycroft, I, Little, F, Hoff, C. Pregnancy outcome in women with sickle-cell disease in Mobile Alabama. J Invest Med. 1999;47:123A.Google Scholar
Koshy, M, Burd, L. Obstetric and Gynecologic Issues. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Lippincott-Raven; 1994:689–702.Google Scholar
Smith, JA, Espeland, M, Bellevue, R, Bonds, D, Brown, AK, Koshy, M. Pregnancy in sickle cell disease: Experience of the cooperative study of sickle cell disease. Obstet Gynecol. 1996;87:199–204.CrossRefGoogle ScholarPubMed
Serjeant, GR, Loy, LL, Crowther, M, Hambleton, IR, Thame, M. Outcome of pregnancy in homozygous sickle cell disease. Obstet Gynecol. 2004;103(6):1278–1285.CrossRefGoogle ScholarPubMed
Howard, RJ, Tuck, SM, Pearson, TC. Pregnancy in sickle cell disease in the UK: results of a multicentre survey of the effect of prophylactic blood transfusion on maternal and fetal outcome. Br J Obstet Gynaecol. 1995;102:947–951.CrossRefGoogle ScholarPubMed
Powars, DR, Sandhu, M, Nilland-Weiss, J, Johnson, C, Bruce, S, Manning, PR. Pregnancy in sickle cell disease. Obstet Gynecol. 1986;67:217–228.CrossRefGoogle ScholarPubMed
Fairley, CK, Smoleniec, JS, Caul, OE, Miller, E. Observational study of effect of intrauterine transfusions on outcome of fetal hydrops after parvovirus B19 infection. Lancet. 1995;346(8986):1335–1337.CrossRefGoogle ScholarPubMed
Selbing, A, Josefsson, A, Dahle, LO, Lindgren, R. Parvovirus B19 infection during pregnancy treated with high-dose intravenous gammaglobulin. Lancet. 1995;345(8950):660–661.CrossRefGoogle ScholarPubMed
Morris, JS, Dunn, DT, Poddar, D, Serjeant, GR. Haematological risk factors for pregnancy outcome in Jamaican women with homozygous sickle cell disease. Br J Obstet Gynaecol. 1994;101(9):770–773.CrossRefGoogle ScholarPubMed
Koshy, M, Burd, L, Wallace, D, Moawad, A, Baron, J. Prophylactic red-cell transfusions in pregnant patients with sickle cell disease. A randomized cooperative study. N Engl J Med. 1988;319:1447–1452.CrossRefGoogle ScholarPubMed
El-Shafei, AM, Kaur Dhaliwal, J, Kaur Sandhu, A, Rashid Al-Sharqi, M. Indications for blood transfusion in pregnancy in sickle cell disease. Aust NZ J Obstet Gynaecol. 1995;35:405–408.CrossRefGoogle ScholarPubMed
Mahomed, K. Prophylactic versus selective blood transfusion for sickle cell anaemia during pregnancy. Cochrane Database Syst Rev. 2000;CD000040.Google ScholarPubMed
Koshy, M, Burd, L. Mangement of pregnancy in sickle cell syndromes. Hematol Oncol Clin North Am. 1991;5:585–596.CrossRefGoogle Scholar
,ACOG practice bulletin. No. 73: Use of hormonal contraception in women with coexisting medical conditions. Obstet Gynecol. 2006;107(6):1453–1472.CrossRefGoogle Scholar
Halvorson, DJ, McKie, V, McKie, K, Ashmore, PE, Porubsky, ES. Sickle cell disease and tonsillectomy – Preoperative management and postoperative complications. Arch Otolaryngol Head Neck Surg. 1997;123(7):689–692.CrossRefGoogle ScholarPubMed
Scott-Conner, CEH, Brunson, CD. The pathophysiology of the sickle hemoglobinopathies and implications for perioperative management. Am J Surg. 1994;168:268–274.CrossRefGoogle ScholarPubMed
Scott-Conner, CEH, Brunson, CD. Surgery and Anesthesia. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Lippincott-Raven; 1994:809–827.Google Scholar
Firth, PG. Anaesthesia for peculiar cellsa century of sickle cell disease. Br J Anaesth. 2005;95(3):287–299.CrossRefGoogle Scholar
Firth, PG, Head, CA. Sickle cell disease and anesthesia. Anesthesiology. 2004;101(3):766–785.CrossRefGoogle ScholarPubMed
Koshy, M, Weiner, SJ, Miller, ST, et al. Surgery and anesthesia in sickle cell disease. Blood. 1995;86:3676–3684.Google ScholarPubMed
Stein, RE, Urbaniak, J. Use of the tourniquet during surgery in patients with sickle cell hemoglobinpathies. Clin Orthop. 1980;151:231–233.Google Scholar
Vipond, AJ, Caldicott, LD. Major vascular surgery in a patient with sickle cell disease. Anaesthesia. 1998;53(12):1204–1206.CrossRefGoogle Scholar
Vichinsky, EP, Haberkern, CM, Neumayr, L, et al. A comparison of conservative and aggressive transfusion regimens in the perioperative management of sickle cell disease. N Engl J Med. 1995;333:206–213.CrossRefGoogle ScholarPubMed
Crawford, MW, Speakman, M, Carver, ED, Kim, PC. Acute chest syndrome shows a predilection for basal lung regions on the side of upper abdominal surgery. Can J Anaesth. 2004;51(7):707–711.CrossRefGoogle Scholar
Wales, PW, Carver, E, Crawford, MW, Kim, PCW. Acute chest syndrome after abdominal surgery in children with sickle cell disease: is a laparoscopic approach better?J Pediatr Surg. 2001;36(5):718–721.CrossRefGoogle ScholarPubMed
Buck, J, Casbard, A, Llewelyn, C, Johnson, T, Davies, S, Williamson, L. Preoperative transfusion in sickle cell disease: a survey of practice in England. Eur J Haematol. 2005; 75(1):14–21.CrossRefGoogle ScholarPubMed
Fu, T, Corrigan, NJ, Quinn, CT, Rogers, ZR, Buchanan, GR. Minor elective surgical procedures using general anesthesia in children with sickle cell anemia without pre-operative blood transfusion. Pediatr Blood Cancer. 2005;45(1):43–47.CrossRefGoogle ScholarPubMed
Waldron, P, Pegelow, C, Neumayr, L, et al. Tonsillectomy, adenoidectomy, and myringotomy in sickle cell disease: perioperative morbidity. Preoperative Transfusion in Sickle Cell Disease Study Group. J Pediatr Hematol Oncol. 1999;21(2):129–135.CrossRefGoogle ScholarPubMed
Duke, RL, Scott, JP, Panepinto, JA, Flanary, VA. Perioperative management of sickle cell disease children undergoing adenotonsillectomy. Otolaryngol Head Neck Surg. 2006;134(3):370–373.CrossRefGoogle ScholarPubMed
Griffin, TC, Buchanan, GR. Elective surgery in children with sickle cell disease without preoperative blood transfusion. J Pediatr Surg. 1993;28:681–685.CrossRefGoogle ScholarPubMed
Jeng, M, Feusner, J, Vichinksy, EP. Risk factors for central venous catheter infections in sickle cell disease. 23rd Annual Meeting of the National Sickle Cell Disease Program. 1999;106.
Wagner, SC, Eschelman, DJ, Gonsalves, CF, Bonn, J, Sullivan, KL. Infectious complications of implantable venous access devices in patients with sickle cell disease. J Vasc Interv Radiol. 2004;15(4):375–378.CrossRefGoogle ScholarPubMed
Zarrouk, V, Habib, A, Zahar, JR, et al. Blood. stream infection in adults with sickle cell disease: association with venous catheters, Staphylococcus aureus, and bone-joint infections. Medicine (Baltimore). 2006;85(1):43–48.CrossRefGoogle Scholar
Chulamokha, L, Scholand, SJ, Riggio, JM, Ballas, SK, Horn, D, DeSimone, JA. Bloodstream infections in hospitalized adults with sickle cell disease: a retrospective analysis. Am J Hematol. 2006;81(10):723–728.CrossRefGoogle ScholarPubMed
Milner, PF, Kraus, AP, Sebes, JI, et al. Sickle cell disease as a cause of osteonecrosis of the femoral head. N Engl J Med. 1991;325:1476–1481.CrossRefGoogle ScholarPubMed
Milner, PF, Kraus, AP, Sebes, JI, et al. Osteonecrosis of the humeral head in sickle cell disease. Clin Orthop. 1993;289:136–143.Google Scholar
Powars, DR, Chan, LS, Hiti, A, Ramicone, E, Johnson, C. Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine (Baltimore). 2005;84(6):363–376.CrossRefGoogle ScholarPubMed
Hernigou, P, Bachir, D, Galacteros, F. The natural history of symptomatic osteonecrosis in adults with sickle-cell disease. J Bone Joint Surg Am. 2003;85(3):500–504.CrossRefGoogle ScholarPubMed
Hernigou, P, Habib, A, Bachir, D, Galacteros, F. The natural history of asymptomatic osteonecrosis of the femoral head in adults with sickle cell disease. J Bone Joint Surg Am. 2006;88(12):2565–2572.CrossRefGoogle ScholarPubMed
,Osteonecrosis-etiology, diagnosis, and treatment. American Orthopaedic Association;1997.
Ficat, R. Idiopathic bone necrosis of the femoral head. Soc Bone Joint Surg. 1985;67:3–9.CrossRefGoogle ScholarPubMed
Aguilar, CM, Neumayr, LD, Eggleston, BE, et al. Clinical evaluation of avascular necrosis in patients with sickle cell disease: Children's Hospital Oakland Hip Evaluation Scale – a modification of the Harris Hip Score. Arch Phys Med Rehabil. 2005;86(7):1369–1375.CrossRefGoogle ScholarPubMed
Mankin, H. Nontraumatic necrosis of bone (osteonecrosis). N Engl J Med. 1992;326:1473–1479.Google Scholar
Washington, E, Root, L. Conservative treatment of sickle cell avascular necrosis of the femoral head. J Pediatr Orthop. 1985; 5:192–194.Google ScholarPubMed
Dunsmore, K, Ware, R, Frush, D, Kinney, T. Short-term transfusion therapy for avascular necrosis of the hips in children with sickle cell disease. Int J Pediatr Hematol Oncol. 1995;2:79–83.Google Scholar
Hickman, JM, Lachiewicz, PF. Results and complications of total hip arthroplasties in patients with sickle-cell hemoglobinopathies – Role of cementless components. J Arthroplasty. 1997;12:420–425.CrossRefGoogle ScholarPubMed
Jeong, GK, Ruchelsman, , Jazrawi, LM, Jaffe, WL. Total hip arthroplasty in sickle cell hemoglobinopathies. J Am Acad Orthop Surg. 2005;13(3):208–217.CrossRefGoogle ScholarPubMed
Mont, MA, Carbone, JJ, Fairbank, AC. Core decompression versus non-operative management for osteonecrosis of the hip. Clin Orthop Rel Res. 1996;324:169–178.CrossRefGoogle Scholar
Neumayr, LD, Aguilar, C, Earles, AN, et al. Physical therapy alone compared with core decompression and physical therapy for femoral head osteonecrosis in sickle cell disease. Results of a multicenter study at a mean of three years after treatment. J Bone Joint Surg Am. 2006;88(12):2573–2582.CrossRefGoogle Scholar
Hernigou, P, Zilber, S, Filippini, P, Mathieu, G, Poignard, A, Galacteros, F. Total THA in adult osteonecrosis related to sickle cell disease. Clin Orthop Rel Res. 2008;466(2):300–308.CrossRefGoogle Scholar
Dorwart, BB, Gabuzda, T. Symmetric myositis and faciitis: a complication of sickle cell anemia during vasoocclusion. J Rheumatol. 1985;12:590–595.Google Scholar
Malekgoudarzi, B, Feffer, S. Myonecrosis in sickle cell anemia. N Engl J Med. 1999;340(6):483.CrossRefGoogle ScholarPubMed
Kim, SK, Miller, JH. Natural history and distribution of bone and bone marrow infarction in sickle hemoglobinopathies. J Nucl Med. 2002;43(7):896–900.Google ScholarPubMed
Ataga, KI, Orringer, EP. Bone marrow necrosis in sickle cell disease: A description of three cases and a review of the literature. Am J Med Sci. 2000;320(5):342–347.CrossRefGoogle Scholar
Mankad, VN, Williams, JP, Harpen, MD, et al. Magnetic resonance imaging of bone marrow in sickle cell disease: clinical, hematologic, and pathologic correlations. Blood. 1990;75(1):274–283.Google ScholarPubMed
Abbiyesuku, FM, Osotimehin, BO. Anterior pituitary gland assessment in sickle cell anaemia patients with delayed menarche. Afr J Med Med Sci. 1999;28(1–2):65–69.Google ScholarPubMed
Abbasi, AA, Prasad, AS, Ortega, J, Congco, E, Oberleas, D. Gonadal function abnormalities in sickle cell anemia: studies in male patients. Ann Intern Med. 1976;85:601–605.CrossRefGoogle ScholarPubMed
Osegbe, DN, Akinyanju, OO. Testicular dysfunction in men with sickle cell disease. Postgrad Med J. 1987;63(736):95–98.CrossRefGoogle ScholarPubMed
Li, M, Fogarty, J, Whitney, KD, Stone, P. Repeated testicular infarction in a patient with sickle cell disease: a possible mechanism for testicular failure. Urology. 2003;62(3):551.CrossRefGoogle Scholar
Landefeld, CS, Schambelan, M, Kaplan, SL, Embury, SH. Clomiphene-responsive hypogonadism in sickle cell anemia. Ann Intern Med. 1983;99(4):480–483.CrossRefGoogle ScholarPubMed
Miller, RG, Segal, JB, Ashar, BH, et al. High prevalence and correlates of low bone mineral density in young adults with sickle cell disease. Am J Hematol. 2006;81(4):236–241.CrossRefGoogle ScholarPubMed
Voskaridou, E, Stoupa, E, Antoniadou, L, et al. Osteoporosis and osteosclerosis in sickle cell/beta-thalassemia: the role of the RANKL/osteoprotegerin axis. Haematologica. 2006;91(6):813–816.Google ScholarPubMed
Lal, A, Fung, EB, Pakbaz, Z, Hackney-Stephens, E, Vichinsky, EP. Bone mineral density in children with sickle cell anemia. Pediatr Blood Cancer. 2006;47(7):901–906.CrossRefGoogle ScholarPubMed
Dijs, FP, Klis, FR, Muskiet, FD, Muskiet, FA. Serum calcium and vitamin D status of patients with sickle cell disease in Curacao. Ann Clin Biochem. 1997;34(Pt 2):170–172.CrossRefGoogle ScholarPubMed
Almeida, A, Roberts, I. Bone involvement in sickle cell disease. Br J Haematol. 2005;129(4):482–490.CrossRefGoogle ScholarPubMed
Mohammed, S, Addae, S, Suleiman, S, et al. Serum calcium, parathyroid hormone, and vitamin D status in children and young adults with sickle cell disease. Ann Clin Biochem 1993;30(Pt 1):45–51.CrossRefGoogle Scholar
Adewoye, AH, Chen, TC, Ma, Q, et al. Sickle cell bone disease: Response to vitamin D and calcium. Am J Hematol. 2008;83(4):271–274.CrossRefGoogle ScholarPubMed
Saad, STO, Costa, FF. Glucose-6-phosphate dehydrogenase deficiency and sickle cell disease in Brazil. Hum Hered. 1992;42:125–128.CrossRefGoogle Scholar
Phillips, G, Becker, B, Keller, VA, Hartman, J. Hypothyroidism in adults with sickle cell anemia. Am J Med. 1992;92:567–570.CrossRefGoogle ScholarPubMed
Parshad, O, Stevens, MC, Hudson, C, et al. Abnormal thyroid hormone and thyrotropin levels in homozygous sickle cell disease. Clin Lab Haematol. 1989;11(4):309–315.CrossRefGoogle ScholarPubMed
el-Hazmi, MA, Bahakim, HM, Al-Fawaz, I. Endocrine functions in sickle cell anaemia patients. J Trop Pediatr. 1991;38(6):307–313.CrossRefGoogle Scholar
Somjee, SS, Warrier, RP, Thomson, JL, Ory-Ascani, J, Hempe, JM. Advanced glycation end-products in sickle cell anaemia. Br J Haematol. 2005;128(1):112–118.CrossRefGoogle ScholarPubMed
Fung, EB, Harmatz, PR, Lee, PD, et al. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006;135(4):574–582.CrossRefGoogle ScholarPubMed
Collins, FS, Orringer, EP. Pulmonary hypertension and cor pulmonale in the sickle hemoglobinopathies. Am J Med. 1982;73(6):814–821.CrossRefGoogle ScholarPubMed
Taylor, JG, Ackah, D, Cobb, C, et al. Mutations and polymorphisms in hemoglobin genes and the risk of pulmonary hypertension and death in sickle cell disease. Am J Hematol. 2008;83:6–14.CrossRefGoogle ScholarPubMed
Kato, GJ, Onyekwere, OC, Gladwin, MT. Pulmonary hypertension in sickle cell disease: relevance to children. Pediatr Hematol Oncol. 2007;24(3):159–170.CrossRefGoogle Scholar
Castro, O, Hoque, M, Brown, BD. Pulmonary hypertension in sickle cell disease: cardiac catheterization results and survival. Blood. 2003;101(4):1257–1261.CrossRefGoogle Scholar
Castro, O, Gladwin, MT. Pulmonary hypertension in sickle cell disease: mechanisms, diagnosis, and management. Hematol Oncol Clin North Am. 2005;19(5):881–896.CrossRefGoogle ScholarPubMed
Ataga, KI, Moore, CG, Jones, S, et al. Pulmonary hypertension in patients with sickle cell disease: a longitudinal study. Br J Haematol. 2006;134(1):109–115.CrossRefGoogle ScholarPubMed
Darbari, DS, Kple-Faget, P, Kwagyan, J, Rana, S, Gordeuk, VR, Castro, O. Circumstances of death in adult sickle cell disease patients. Am J Hematol. 2006; 80(11):858–863.CrossRefGoogle ScholarPubMed
Sutton, LL, Castro, O, Cross, DJ, Spencer, JE, Lewis, JF. Pulmonary hypertension in sickle cell disease. Am J Cardiol. 1994;74:626–628.CrossRefGoogle ScholarPubMed
Ataga, KI, Sood, N, De, GG, et al. Pulmonary hypertension in sickle cell disease. Am J Med. 2004;117(9):665–669.CrossRefGoogle ScholarPubMed
Castro, LM, Jonassaint, JC, Graham, FL, Ashley-Koch, A, Telen, MJ. Pulmonary hypertension associated with sickle cell disease: clinical and laboratory endpoints and disease outcomes. Am J Hematol. 2008;83(1):19–25.CrossRefGoogle ScholarPubMed
Haque, AK, Gokhale, S, Rampy, BA, Adegboyega, P, Duarte, A, Saldana, MJ. Pulmonary hypertension in sickle cell hemoglobinopathy: a clinicopathologic study of 20 cases. Hum Pathol. 2002;33(10):1037–1043.CrossRefGoogle ScholarPubMed
Beers, EJ, Eck-Smit, BL, Mac Gillavry, MR, et al. Large and medium sized pulmonary artery obstruction does not play a role of primary importance in the, etiology of sickle cell disease associated pulmonary hypertension. Chest. 2008;ePub.Google Scholar
Suell, MN, Bezold, LI, Okcu, MF, Mahoney, DH, Shardonofsky, F, Mueller, BU. Increased pulmonary artery pressures among adolescents with sickle cell disease. J Pediatr Hematol Oncol. 2005;27(12):654–658.CrossRefGoogle ScholarPubMed
Joyce, K, Sable, C, Martin, B, Minniti, CP. Pulmonary artery hypertension in children with sickle cell disease: Is chronic transfusion protective?Blood. 2006;108:356a.Google Scholar
Qureshi, N, Joyce, JJ, Qi, N, Chang, RK. Right ventricular abnormalities in sickle cell anemia: evidence of a progressive increase in pulmonary vascular resistance. J Pediatr. 2006;149(1):23–27.CrossRefGoogle ScholarPubMed
Ambrusko, SJ, Gunawardena, S, Sakara, A, et al. Elevation of tricuspid regurgitant jet velocity, a marker for pulmonary hypertension in children with sickle cell disease. Pediatr Blood Cancer. 2006;47(7):907–913.CrossRefGoogle ScholarPubMed
Liem, RI, Willingham, NM, Young, LT, Thompson, AA. Tricuspid regurgitant jet velocity is significantly associated with hemolysis in the evaluation of pulmonary hypertension in children and young adults with sickle cell disease. Blood. 2006;108:356a.Google Scholar
Liem, RI, Young, LT, Thompson, AA. Tricuspid regurgitant jet velocity is associated with hemolysis in children and young adults with sickle cell disease evaluated for pulmonary hypertension. Haematologica. 2007;92:1549–1552.CrossRefGoogle Scholar
Campbell, AD, Minniti, C, Sable, C, et al. Prospective evaluation of the prevalence of elevated tricuspid regurgitant jet velocity and associated clinical and echocardiographic factors in children and adolescents with sickle cell disease. Blood. 2007;110:993a.Google Scholar
Machado, RF, Gladwin, MT. Chronic sickle cell lung disease: new insights into the diagnosis, pathogenesis and treatment of pulmonary hypertension. Br J Haematol. 2005;129(4):449–464.CrossRefGoogle ScholarPubMed
Mekontso Dessap, A, Leon, R, Habib, A, et al. Pulmonary Hypertension and Cor Pulmonale during Severe Acute Chest Syndrome in Sickle Cell Disease. Am J Respir Crit Care Med. 2008;177(6):646–653.CrossRefGoogle ScholarPubMed
Machado, RF, Anthi, A, Steinberg, MH, et al. N-terminal pro-brain natriuretic peptide levels and risk of death in sickle cell disease. JAMA. 2006;296(3):310–318.CrossRefGoogle ScholarPubMed
Kato, GJ, Martyr, S, Blackwelder, WC, et al. Levels of soluble endothelium-derived adhesion molecules in patients with sickle cell disease are associated with pulmonary hypertension, organ dysfunction, and mortality. Br J Haematol. 2005;130(6):943–953.CrossRefGoogle ScholarPubMed
Ataga, KI, Moore, CG, Hillery, CA, et al. Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension. Haematologica. 2008;93(1):20–26.CrossRefGoogle ScholarPubMed
Gordeuk, VR, Sachdev, V, Taylor, JG, Gladwin, MT, Kato, G, Castro, OL. Relative systemic hypertension in patients with sickle cell disease is associated with risk of pulmonary hypertension and renal insufficiency. Am J Hematol. 2008;83(1):15–18.CrossRefGoogle ScholarPubMed
Morris, CR, Suh, JH, Hagar, W, et al. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood. 2008;111(1):402–410.CrossRefGoogle ScholarPubMed
Ameshima, S, Golpon, H, Cool, CD, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res. 2003;92(10):1162–1169.CrossRefGoogle ScholarPubMed
Nichols, WC, Koller, DL, Slovis, B, et al. Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31–32. Nat Genet. 1997;15(3):277–280.CrossRefGoogle ScholarPubMed
Machado, RD, Pauciulo, MW, Thomson, JR, et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet. 2001;68(1):92–102.CrossRefGoogle ScholarPubMed
Santoli, F, Zerah, F, Vasile, N, Bachir, D, Galacteros, F, Atlan, G. Pulmonary function in sickle cell disease with or without acute chest syndrome. Eur Respir J. 1998;12(5):1124–1129.CrossRefGoogle ScholarPubMed
Powars, D, Weidman, JA, Odom-Maryon, T, Niland, JC, Johnson, C. Sickle cell chronic lung disease: prior morbidity and the risk of pulmonary failure. Medicine (Baltimore). 1988;67(1):66–76.CrossRefGoogle ScholarPubMed
Akgul, F, Yalcin, F, Babayigit, C, Seyfeli, E, Seydaliyeva, T, Gali, E. Right ventricular and pulmonary function in sickle cell disease patients with pulmonary hypertension. Pediatr Cardiol. 2006;27(4):440–446.CrossRefGoogle ScholarPubMed
Zar, HA, Wu, WW. The inability to detect expired carbon dioxide after endotracheal intubation as a result of one-way valve obstruction of the endotracheal tube. Anesth Analg. 2001;93(4):971–972, table.CrossRefGoogle ScholarPubMed
Klings, ES, Wyszynski, DF, Nolan, VG, Steinberg, MH. Abnormal pulmonary function in adults with sickle cell anemia. Am J Respir Crit Care Med. 2006;173:1264–1269.CrossRefGoogle ScholarPubMed
Arteta, M, Campbell, AD, Minniti, C, et al. Pulmonary function tests and their correlation with tricuspid regurgitant jet velocity in pediatric sickle cell disease patients. Blood. 2007;110:670a.Google Scholar
Knight-Madden, JM, Forrester, TS, Lewis, NA, Greenough, A. Asthma in children with sickle cell disease and its association with acute chest syndrome. Thorax. 2005;60(3):206–210.CrossRefGoogle ScholarPubMed
Glassberg, J, Spivey, JF, Strunk, R, Boslaugh, S, DeBaun, MR. Painful episodes in children with sickle cell disease and asthma are temporally associated with respiratory symptoms. J Pediatr Hematol Oncol. 2006;28(8):481–485.CrossRefGoogle ScholarPubMed
Boyd, JH, Macklin, EA, Strunk, RC, DeBaun, MR. Asthma is associated with acute chest syndrome and pain in children with sickle cell anemia. Blood. 2006;108:2923–2927.CrossRefGoogle ScholarPubMed
Boyd, JH, Moinuddin, A, Strunk, RC, DeBaun, MR. Asthma and acute chest in sickle-cell disease. Pediatr Pulmonol. 2004;38(3):229–232.CrossRefGoogle ScholarPubMed
Boyd, JH, Macklin, EA, Strunk, RC, DeBaun, MR. Asthma is associated with increased mortality in individuals with sickle cell anemia. Haematologica. 2007;92(8):1115–1118.CrossRefGoogle ScholarPubMed
Nordness, ME, Lynn, J, Zacharisen, MC, Scott, PJ, Kelly, KJ. Asthma is a risk factor for acute chest syndrome and cerebral vascular accidents in children with sickle cell disease. Clin Mol Allergy. 2005;3(1):2.CrossRefGoogle ScholarPubMed
Phillips, KL, An, P, Boyd, JH, et al. Major gene effect and additive familial pattern of inheritance of asthma exist among families of probands with sickle cell anemia and asthma. Am J Hum Biol. 2007;ePub.Google Scholar
Machado, RF, Martyr, S, Kato, GJ, et al. Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br J Haematol. 2005;130(3):445–453.CrossRefGoogle ScholarPubMed
Koshy, M, Entsuah, R, Koranda, A, et al. Leg ulcers in patients with sickle cell disease [see comments]. Blood. 1989;74:1403–1408.Google Scholar
Clare, A, FitzHenley, M, Harris, J, Hambleton, I, Serjeant, GR. Chronic leg ulceration in homozygous sickle cell disease: the role of venous incompetence. Br J Haematol. 2002;119(2):567–571.CrossRefGoogle ScholarPubMed
Best, PJ, Daoud, MS, Pittelkow, MR, Petitt, RM. Hydroxyurea-induced leg ulceration in 14 patients. Ann Intern Med. 1998;128(1):29–32.CrossRefGoogle ScholarPubMed
Weinlich, G, Schuler, G, Greil, R, Kofler, H, Fritsch, P. Leg ulcers associated with long-term hydroxyurea therapy. J Am Acad Dermatol. 1998;39(2 Pt 2):372–374.CrossRefGoogle ScholarPubMed
Ravandi-Kashani, F, Cortes, J, Cohen, P, et al. Cutaneous ulcers associated with hydroxyurea (HU) therapy in myeloproliferative disorders. Blood. 1998;92:248b.Google Scholar
Chaine, B, Neonato, MG, Girot, R, Aractingi, S. Cutaneous adverse reactions to hydroxyurea in patients with sickle cell disease. Arch Dermatol. 2001;137(4):467–470.Google ScholarPubMed
Giraldi, S, Abbage, KT, Marinoni, LP, et al. Leg ulcer in hereditary spherocytosis. Pediatr Dermatol. 2003;20(5):427–428.CrossRefGoogle ScholarPubMed
Eckman, JR. Leg ulcers in sickle cell disease. Hematol Oncol Clin North Am. 1996;10:1333–1344.CrossRefGoogle ScholarPubMed
Mackenzie, RK, Ludlam, CA, Ruckley, CV, Allan, PL, Burns, P, Bradbury, AW. The prevalence of thrombophilia in patients with chronic venous leg ulceration. J Vasc Surg. 2002;35(4):718–722.CrossRefGoogle ScholarPubMed
Billett, HH, Patel, Y, Rivers, SP. Venous insufficiency is not the cause of leg ulcers in sickle cell disease. Am J Hematol. 1991;37:133–134.CrossRefGoogle Scholar
Chalchal, H, Rodino, W, Hussain, S, et al. Impaired venous hemodynamics in a minority of patients with chronic leg ulcers due to sickle cell anemia. Vasa. 2001;30(4):277–279.CrossRefGoogle Scholar
Mohan, JS, Vigilance, JE, Marshall, JM, Hambleton, IR, Reid, HL, Serjeant, GR. Abnormal venous function in patients with homozygous sickle cell (SS) disease and chronic leg ulcers. Clin Sci (Lond). 2000;98(6):667–672.CrossRefGoogle ScholarPubMed
Ademiluyi, SA, Rotimi, VO, Coker, AO, Banjo, TO, Akinyanju, O. The anaerobic and aerobic bacterial flora of leg ulcers in patients with sickle-cell disease. J Infect. 1988;17:115–120.CrossRefGoogle ScholarPubMed
MacFarlane, , Baum, KF, Serjeant, GR. Bacteriology of sickle cell leg ulcers. Trans R Soc Trop Med Hyg. 1986;80:553–556.CrossRefGoogle ScholarPubMed
Sawhney, H, Weedon, J, Gillette, P, Solomon, W, Braverman, A. Predilection of hemolytic anemia-associated leg ulcers for the medial malleolus. Vasa. 2002;31(3):191–193.CrossRefGoogle ScholarPubMed
Baum, KF, MacFarlane, , Maude, GH, Serjeant, GR. Topical antibiotics in chronic sickle cell leg ulcers. Trans R Soc Trop Med Hyg. 1987;81:847–849.CrossRefGoogle ScholarPubMed
Ramos, CE, Park, JS, Ritchey, ML, Benson, GS. High flow priapism associated with sickle cell disease. J Urol. 1995;153:1619–1621.CrossRefGoogle ScholarPubMed
Sharpsteen, JR, Powars, D, Johnson, C, Rogers, ZR, Williams, WD, Posch, RJ. Multisystem damage associated with tricorporal priapism in sickle cell disease. Am J Med. 1993;94:289–295.CrossRefGoogle ScholarPubMed
Burnett, AL. Role of nitric oxide in the physiology of erection. Biol Reprod. 1995;52(3):485–489.CrossRefGoogle ScholarPubMed
Burnett, AL. Neurophysiology of erectile function: androgenic effects. J Androl. 2003;24(6 Suppl):S2–S5.CrossRefGoogle ScholarPubMed
Burnett, AL. Pathophysiology of priapism: dysregulatory erection physiology thesis. J Urol. 2003;170(1):26–34.CrossRefGoogle ScholarPubMed
Champion, HC, Bivalacqua, TJ, Takimoto, E, Kass, DA, Burnett, AL. Phosphodiesterase-5A dysregulation in penile erectile tissue is a mechanism of priapism. Proc Natl Acad Sci USA. 2005;102(5):1661–1666.CrossRefGoogle ScholarPubMed
Brandow, AM, Rennie, KM, Scott, JP, Hillery, CA, Panepinto, JA. Increased red blood cell adhesion is associated with priapism in sickle cell disease. Blood. 2006;108:363a.Google Scholar
Mantadakis, E, Cavender, JD, Rogers, ZR, Ewalt, DH, Buchanan, GR. Prevalence of priapism in children and adolescents with sickle cell anemia. J Pediatr Hematol Oncol. 1999;21(6):518–522.CrossRefGoogle ScholarPubMed
Fowler, JE, Koshy, M, Strub, M, Chinn, SK. Priapism associated with the sickle cell hemoglobinopathies: Prevalence, natural history and sequelae. J Urol. 1991;145:65–68.CrossRefGoogle ScholarPubMed
Serjeant, GR. Sickle Cell Disease. 2nd ed. Oxford: Oxford Medical Publications; 1992.Google Scholar
Serjeant, GR, Ceulaer, K, Maude, GH. Stilboestrol and stuttering priapism in homozygous sickle cell disease. Lancet. 1985;2:1274–1276.CrossRefGoogle ScholarPubMed
Adeyoju, AB, Olujohungbe, AB, Morris, J, et al. Priapism in sickle-cell disease; incidence, risk factors and complications – an international multicentre study. Br J Urol. Int. 2002;90(9):898–902.CrossRefGoogle ScholarPubMed
Hakim, LS, Hashmat, AI, Macchia, RJ. Priapism. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Lippincott-Raven; 1994:633–643.Google Scholar
Miller, ST, Rao, SP, Dunn, EK, Glassberg, KI. Priapism in children with sickle cell disease. J Urol. 1995;154:844–847.CrossRefGoogle ScholarPubMed
Chakrabarty, A, Upadhyay, J, Dhabuwala, CB, Sarnaik, S, Perlmutter, AD, Connor, JP. Priapism associated with sickle cell hemoglobinopathy in children: Long-term effects on potency. J Urol. 1996;155:1419–1423.CrossRefGoogle ScholarPubMed
Tarry, WF, Duckett, JW, Snyder, HMI. Urological complications of sickle cell disease in a pediatric population. J Urol. 1987;138:592–594.CrossRefGoogle Scholar
Kassim, AA, Umans, H, Nagel, RL, Fabry, ME. Megalophallus as a sequela of priapism in sickle cell anemia: use of blood oxygen level-dependent magnetic resonance imaging. Urology. 2000;56(3):509.CrossRefGoogle ScholarPubMed
Burnett, AL, Allen, RP, Tempany, CM, Dover, GJ, Brendler, CB. Evaluation of erectile function in men with sickle cell disease. Urology. 1995;45:657–663.CrossRefGoogle ScholarPubMed
Chinegwundoh, F, Anie, KA. Treatments for priapism in boys and men with sickle cell disease. Cochrane Database Syst Rev. 2004;(4):CD004198.CrossRefGoogle ScholarPubMed
McCarthy, LJ, Vattuone, J, Weidner, J, et al. Do automated red cell exchanges relieve priapism in patients with sickle cell anemia?Ther Apher. 2000;4(3):256–258.CrossRefGoogle ScholarPubMed
Merritt, AL, Haiman, C, Henderson, SO. Myth: blood transfusion is effective for sickle cell anemia-associated priapism. CJEM. 2006;8(2):119–122.CrossRefGoogle ScholarPubMed
Mantadakis, E, Ewalt, DH, Cavender, JD, Rogers, ZR, Buchanan, GR. Outpatient penile aspiration and epinephrine irrigation for young patients with sickle cell anemia and prolonged priapism. Blood. 2000;95(1):78–82.Google ScholarPubMed
Virag, R, Bachir, D, Lee, K, Galacteros, F. Preventive treatment of priapism in sickle cell disease with oral and self-administered intracavernous injection of etilefrine. Urology. 1996;47:777–781.CrossRefGoogle ScholarPubMed
Virag, R, Bachir, D, Floresco, J, Galacteros, F, Dufour, B. Ambulatory treatment and prevention of priapism using alpha-agonists. Apropos of 172 cases. Chirurgie. 1997;121:648–652.Google ScholarPubMed
Bachir, D, Virag, R, Lee, K, et al. Prevention and treatment of erectile disorders in sickle cell disease [in French]. Rev Med Interne. 1997;18(Supp 1):46S–51S.CrossRefGoogle Scholar
Okpala, I, Westerdale, N, Jegede, T, Cheung, B. Etilefrine for the prevention of priapism in adult sickle cell disease. Br J Haematol. 2002;118(3):918–921.CrossRefGoogle ScholarPubMed
Gbadoe, AD, Atakouma, Y, Kusiaku, K, Assimadi, JK. Management of sickle cell priapism with etilefrine. Arch Dis Child. 2001;85(1):52–53.CrossRefGoogle ScholarPubMed
Dahm, P, Rao, DS, Donatucci, CF. Antiandrogens in the treatment of priapism. Urology. 2002;59(1):138.CrossRefGoogle ScholarPubMed
Saad, ST, Lajolo, C, Gilli, S, et al. Follow-up of sickle cell disease patients with priapism treated by hydroxyurea. Am J Hematol. 2004;77(1):45–49.CrossRefGoogle ScholarPubMed
Burnett, AL, Bivalacqua, TJ, Champion, HC, Musicki, B. Feasibility of the use of phosphodiesterase type 5 inhibitors in a pharmacologic prevention program for recurrent priapism. J Sex Med. 2006;3(6):1077–1084.CrossRefGoogle Scholar
Monga, M, Broderick, GA, Hellstrom, WJG. Priapism in sickle cell disease: the case for early implantation of the penile prosthesis. Eur Urol. 1996;30:54–59.CrossRefGoogle ScholarPubMed
Johnson, CS, Omata, M, Tong, MJ, Simmons, JF, Weiner, J, Tatter, D. Liver involvement in sickle cell disease. Medicine. 1985;69:833–837.Google Scholar
Wright, JG, Cooper, P, Malia, RG, et al. Activated protein C resistance in homozygous sickle cell disease. Br J Haematol. 1997;96:854–856.CrossRefGoogle ScholarPubMed
Gremse, DA, Fillingim, E, Hoff, CJ, Wells, DJ, Boerth, RC. Hepatic function as assessed by lidocaine metabolism in sickle cell disease. J Pediatr. 1998;132(6):989–993.CrossRefGoogle ScholarPubMed
Comer, GM, Ozick, , Sachdev, RK, et al. Transfusion-related chronic liver disease in sickle cell anemia. Am J Gastroenterol. 1991;86:1232–1234.Google ScholarPubMed
Charlotte, F, Bachir, D, Nénert, M, et al. Vascular lesions of the liver in sickle cell disease: a clinicopathological study in 26 living patients. Arch Pathol Lab Med. 1995;119:46–52.Google ScholarPubMed
Achord, JL. Gastroenterologic and hepatobiliary manifestations. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Lippincott-Raven; 1994:663–672.Google Scholar
Richard, S, Billett, HH. Liver function tests in sickle cell disease. Clin Lab Haematol. 2002;24(1):21–27.CrossRefGoogle ScholarPubMed
Ahn, H, Li, CS, Wang, W. Sickle cell hepatopathy: clinical presentation, treatment, and outcome in pediatric and adult patients. Pediatr Blood Cancer. 2005;45(2):184–190.CrossRefGoogle ScholarPubMed
Walker, TM, Hambleton, IR, Serjeant, GR. Gallstones in sickle cell disease: observations from The Jamaican Cohort study. J Pediatr. 2000;136(1):80–85.CrossRefGoogle ScholarPubMed
Haider, MZ, Ashebu, S, Aduh, P, Adekile, AD. Influence of a-thalassemia on cholelithiasis in SS patients with elevated Hb F. Acta Haematol. 1998;100(3):147–150.CrossRefGoogle ScholarPubMed
Chaar, V, Keclard, L, Etienne-Julan, M, et al. UGT1A1 polymorphism outweighs the modest effect of deletional (−3.7 kb) alpha-thalassemia on cholelithogenesis in sickle cell anemia. Am J Hematol. 2006;81(5):377–379.CrossRefGoogle ScholarPubMed
Passon, RG, Howard, TA, Zimmerman, SA, Schultz, WH, Ware, RE. Influence of bilirubin uridine diphosphate-glucuronosyltransferase 1A promoter polymorphisms on serum bilirubin levels and cholelithiasis in children with sickle cell anemia. J Pediatr Hematol Oncol. 2001;23(7):448–451.CrossRefGoogle ScholarPubMed
Chaar, V, Keclard, L, Diara, JP, et al. Association of UGT1A1 polymorphism with prevalence and age at onset of cholelithiasis in sickle cell anemia. Haematologica. 2005;90(2):188–199.Google ScholarPubMed
Heeney, MM, Howard, TA, Zimmerman, SA, Ware, RE. UGT1A promoter polymorphisms influence bilirubin response to hydroxyurea therapy in sickle cell anemia. J Lab Clin Med. 2003;141(4):279–282.CrossRefGoogle ScholarPubMed
Haberkern, CM, Neumayr, LD, Orringer, EP, et al. Cholecystectomy in sickle cell anemia patients: perioperative outcome of 364 cases from the national preoperative transfusion study. Blood. 1997;89:1533–1542.Google ScholarPubMed
Al-Salem, AH, Nourallah, H. Sequential endoscopic/laparoscopic management of cholelithiasis and choledocholithiasis in children who have sickle cell disease. J Pediatr Surg. 1997;32(10):1432–1435.CrossRefGoogle ScholarPubMed
Vichinksy, E, Gold, J, Rule, R, et al. Neuropsychological (NP) dysfunction and neuroimaging abnormalities in neurologically intact adult patients with sickle cell disease (SCD). Blood. 2007;110:132a.Google Scholar
Serjeant, GR, Higgs, DR, Hambleton, IR. Elderly survivors with homozygous sickle cell disease. N Engl J Med. 2007;356(6):642–643.CrossRefGoogle ScholarPubMed
Steinberg, MH, Ballas, SK, Brunson, CY, Bookchin, R. Sickle cell anemia in septuagenarians. Blood. 1995;86:3997–3998.Google ScholarPubMed
Rucknagel, DL, Hanash, SH, Sing, CF, Winter, WP, Whitten, CF, Prasad, AS. Age and sex effects on hemoglobin F in sickle cell anemia. In: Stammatoyannopoulos, JA, Nienhius, AW, eds. Cellular and Molecular Regulation of Hemoglobin Switching. New York: Grune and Stratton; 1979:107–118.Google Scholar
Shurafa, MS, Prasad, AS, Rucknagel, DL, Kan, YW. Long survival in sickle cell anemia. Am J Hematol. 1982;12:357–365.CrossRefGoogle ScholarPubMed
Liem, RI, Calamaras, DM, Chhabra, MS, Files, B, Minniti, CP, Thompson, AA. Sudden onset blindness in sickle cell disease due to retinal artery occlusion. Pediatr Blood Cancer. 2007;50(3):624–627.CrossRefGoogle Scholar
Warth, JA, Prasad, AS, Zwas, F, Franke, U. Abnormal dark adaptation in sickle cell anemia. J Lab Clin Med. 1981;98:189–194.Google ScholarPubMed
Serjeant, GR, Serjeant, BE, Condon, PI. The conjunctival sign in sickle cell anemia. A relationship with irreversibly sickled cells. JAMA. 1972;219:1428–1431.CrossRefGoogle ScholarPubMed
Acar, P, Maunoury, C, de MM, Dulac, Y. Abnormalities of myocardial perfusion in sickle cell disease in childhood: a study of myocardial scintigraphy. Arch Mal Coeur Vaiss. 2003;96(5):507–510.Google ScholarPubMed
Zilberman, MV, Du, W, Das, S, Sarnaik, SA. Evaluation of left ventricular diastolic function in pediatric sickle cell disease patients. Am J Hematol. 2007;82(6):433–438.CrossRefGoogle ScholarPubMed
Leight, L, Snider, TH, Clifford, GO, Hellems, HK. Hemodynamic studies in sickle cell anemia. Circulation. 1954;10:653–662.CrossRefGoogle ScholarPubMed
Covitz, W, Espeland, M, Gallagher, D, Hellenbrand, W, Leff, S, Talner, N. The heart in sickle cell anemia – The cooperative study of sickle cell disease (CSSCD). Chest. 1995;108:1214–1219.CrossRefGoogle Scholar
Braden, DS, Covitz, W, Milner, PF. Cardiovascular function during rest and exercise in patients with sickle-cellanemia and coexisting alpha thalassemia-2. Am J Hematol. 1996;52:96–102.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Sachdev, V, Machado, RF, Shizukuda, Y, et al. Diastolic dysfunction is an independent risk factor for death in patients with sickle cell disease. J Am Coll Cardiol. 2007;49(4):472–479.CrossRefGoogle ScholarPubMed
Covitz, W. Cardiac Disease. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Lippincott-Raven; 1994:725–734.Google Scholar
Martin, CR, Johnson, CS, Cobb, C, Tatter, D, Haywood, LJ. Myocardial infarction in sickle cell disease. J Natl Med Assoc. 1996;88(7):428–432.Google ScholarPubMed
James, TN, Riddick, L, Massing, GK. Sickle cells and sudden death: morphologic abnormalities of the cardiac conduction system. J Lab Clin Med. 1994;124:507–520.Google ScholarPubMed
Romero Mestre, JC, Hernandez, A, Agramonte, O, Hernandez, P. Cardiovascular autonomic dysfunction in sickle cell anemia: a possible risk factor for sudden death?Clin Auton Res. 1997;7(3):121–125.CrossRefGoogle ScholarPubMed
Ataga, KI, Orringer, EP. Renal abnormalities in sickle cell disease. Am J Hematol. 2000;63(4):205–211.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Guasch, A, Cua, M, Mitch, WE. Early detection and the course of glomerular injury in patients with sickle cell anemia. Kidney Int. 1996;49:786–791.CrossRefGoogle ScholarPubMed
Pham, PT, Pham, PC, Wilkinson, AH, Lew, SQ. Renal abnormalities in sickle cell disease. Kidney Int. 2000;57(1):1–8.CrossRefGoogle ScholarPubMed
Platt, OS, Brambilla, DJ, Rosse, WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–1644.CrossRefGoogle ScholarPubMed
Schmitt, F, Martinez, F, Brillet, G, et al. Early glomerular dysfunction in patients with sickle cell anemia. Am J Kidney Dis. 1998;32(2):208–214.CrossRefGoogle ScholarPubMed
Wong, WY, Elliott-Mills, D, Powars, D. Renal failure in sickle cell anemia. Hematol Oncol Clin North Am. 1996;10:1321–1331.CrossRefGoogle ScholarPubMed
Scheinman, JI. Sickle cell disease and the kidney. Semin Nephrol. 2003;23(1):66–76.CrossRefGoogle ScholarPubMed
Thompson, J, Reid, M, Hambleton, I, Serjeant, GR. Albuminuria and renal function in homozygous sickle cell disease: observations from a cohort study. Arch Intern Med. 2007;167(7):701–708.CrossRefGoogle ScholarPubMed
Powers, JS, Krantz, SB, Collins, JC, et al. Erythropoietin response to anemia as a function of age. J Am Geriatr Soc. 1991;39:30–32.CrossRefGoogle ScholarPubMed
Powars, DR, Elliott Mills, DD, Chan, L. Chronic renal failure in sickle cell disease: Risk factors, clinical course, and mortality. Ann Intern Med. 1991;115:614–620.CrossRefGoogle ScholarPubMed
McKie, KT, Hanevold, CD, Hernandez, C, Waller, JL, Ortiz, L, McKie, KM. Prevalence, prevention, and treatment of microalbuminuria and proteinuria in children with sickle cell disease. J Pediatr Hematol Oncol. 2007;29(3):140–144.CrossRefGoogle ScholarPubMed
Guasch, A, Zayas, CF, Eckman, JR, Muralidharan, K, Zhang, W, Elsas, LJ. Evidence that microdeletions in the a globin gene protect against the development of sickle cell glomerulopathy in humans. J Am Soc Nephrol. 1999;10(5):1014–1019.Google ScholarPubMed
Falk, RJ, Scheinman, J, Phillips, G, Orringer, E, Johnson, A, Jennette, JC. Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme. N Engl J Med. 1992;326:910–915.CrossRefGoogle ScholarPubMed
Falk, RJ, Jennette, JC. Renal disease. In: Embury, SH, Hebbel, RP, Mohandas, N, Steinberg, MH, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. 1st ed. New York: Raven-Lippincott; 1994:673–680.Google Scholar
Guasch, A, Cua, M, You, W, Mitch, WE. Sickle cell anemia causes a distinct pattern of glomerular dysfunction. Kidney Int. 1997;51:826–833.CrossRefGoogle ScholarPubMed
Guasch, A, Navarrete, J, Nass, K, Zayas, CF. Glomerular involvement in adults with sickle cell hemoglobinopathies: prevalence and clinical correlates of progressive renal failure. J Am Soc Nephrol. 2006;17(8):2228–2235.CrossRefGoogle ScholarPubMed
Bergmann, S, Zheng, D, Barredo, J, Abboud, MR, Jaffa, AA. Renal kallikrein: a risk marker for nephropathy in children with sickle cell disease. J Pediatr Hematol Oncol. 2006;28(3):147–153.CrossRefGoogle ScholarPubMed
Barros, FB, Lima, CS, Santos, AO, et al. 51Cr-EDTA measurements of the glomerular filtration rate in patients with sickle cell anaemia and minor renal damage. Nucl Med Commun. 2006;27(12):959–962.CrossRefGoogle ScholarPubMed
Tharaux, PL, Hagege, I, Placier, S, et al. Urinary endothelin-1 as a marker of renal damage in sickle cell disease. Nephrol Dial Transplant. 2005;20(11):2408–2413.CrossRefGoogle ScholarPubMed
Bank, N, Aynedjian, HS, Qiu, JH, et al. Renal nitric oxide synthases in transgenic sickle cell mice. Kidney Int. 1996;50:184–189.CrossRefGoogle ScholarPubMed
Montgomery, R, Zibari, G, Hill, GS, Ratner, . Renal transplantation in patients with sickle cell nephropathy. Transplantation. 1994;58:618–620.CrossRefGoogle ScholarPubMed
Steinberg, MH. Erythropoietin in anemia of renal failure in sickle cell disease. N Engl J Med. 1991;324:1369–1370.Google ScholarPubMed
Ojo, AO, Govaerts, TC, Schmouder, RL, et al. Renal transplantation in end-stage sickle cell nephropathy. Transplantation. 1999;67(2):291–295.CrossRefGoogle ScholarPubMed
Aoki, RY, Saad, STO. Enalapril reduces the albuminuria of patients with sickle cell disease. Am J Med. 1995;98:432–435.CrossRefGoogle ScholarPubMed
Foucan, L, Bourhis, V, Bangou, J, Mérault, L, Etienne-Julan, M, Salmi, RL. A randomized trial of captopril for microalbuminuria in normotensive adults with sickle cell anemia. Am J Med. 1998;104(4):339–342.CrossRefGoogle ScholarPubMed
Rabala, A, Guasch, A. Effects of angiotensin blockade with losartan on glomerular function in patients with sickle cell glomerulopathy. J Am Soc Nephrol. 2002;13:265A.Google Scholar
Wierenga, KJ, Hambleton, IR, Lewis, NA. Survival estimates for patients with homozygous sickle-cell disease in Jamaica: a clinic-based population study. Lancet. 2001;357(9257):680–683.CrossRefGoogle ScholarPubMed
Vichinsky, EP, Styles, , Colangelo, LH, et al. Acute chest syndrome in sickle cell disease: clinical presentation and course. Blood. 1997;89:1787–1792.Google ScholarPubMed
Upadhya, B, Ntim, W, Dworkin, J, et al. Prolongation of QTc intervals and risk of sudden death among patients with sickle cell diseases. Blood. 2007;110:667a.Google Scholar
Zipursky, A, Robieux, IC, Brown, EJ, et al. Oxygen therapy in sickle cell disease. Am J Pediatr Hematol Oncol. 1992;14(3):222–228.CrossRefGoogle ScholarPubMed
Hargrave, DR, Wade, A, Evans, JP, Hewes, DK, Kirkham, FJ. Nocturnal oxygen saturation and painful sickle cell crises in children. Blood. 2003;101(3):846–848.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×