Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T11:42:33.932Z Has data issue: false hasContentIssue false

28 - Laboratory Methods for Diagnosis and Evaluation of Hemoglobin Disorders

from SECTION SEVEN - SPECIAL TOPICS IN HEMOGLOBINOPATHIES

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Hemoglobinopathy detection is often a part of the evaluation of anemia, hemolysis, microcytosis, cyanosis, or erythrocytosis. For this purpose, protein (hemoglobin)-, cellular-, and DNA-based approaches to the detection of variant hemoglobins and thalassemias are available. Diagnostic details can be found in each disease-specific chapter, whereas in the following pages we focus on the available methods and their strengths and weaknesses.

Characterization of mutant hemoglobins and thalassemias described throughout this book takes place in different contexts: large newborn screening laboratories that need to identify positively the most common mutants; general hematology laboratories that most often encounter common hemoglobinopathies and thalassemias; and reference or research laboratories that can detect rare mutant globin genes. Approaches that are necessary in one setting might not be practical in others.

Normal adult blood contains predominantly HbA (α2β2) and small amounts of HbF (α2γ2) and HbA22δ2). After synthesis, monomeric globin chains form α/non-α dimers that do not dissociate under physiological conditions. In the presence of oxygen, hemoglobin tetramers rapidly dissociate into very low concentrations of dimers that can then form new tetramers. This implies that when more than one α- or non-α-chain is present, the predominant form in the red cell will be the heterotetramer (for example, in red cells of HbSC disease, the dominant species will be α2βSβC, and α2βSγ heterotetramers form when HbS is present with high levels of HbF (Fig. 28.1).

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 658 - 686
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Park, CM. The dimerization of deoxyhemoglobin and of oxyhemoglobin. Evidence for cleavage along the same plane. J Biol Chem. 1970;245:5390–5394.Google ScholarPubMed
Shaeffer, JR, McDonald, MJ, Turci, SM, Dinda, DM, Bunn, HF. Dimer-monomer dissociation of human hemoglobin A. J Biol Chem. 1984;259(23):14544–14547.Google ScholarPubMed
Dacie, JV, Lewis, SM. Practical Hematology. 8th ed. Edinburgh: Churchill Livingstone; 1995.Google Scholar
Winter, WP, Yodh, J.Interaction of human hemoglobin and its variants with agar. Science. 1983;221(4606):175–178.CrossRefGoogle ScholarPubMed
Ueda, S, Schneider, RG. Rapid differentiation of polypeptide chains of hemoglobin by cellulose acetate electrophoresis of hemolysates. Blood. 1969;34(2):230–235.Google Scholar
Schneider, RG, Hosty, TS, Tomlin, G, Atkins, R. Identification of hemoglobins and hemoglobinopathies by electrophoresis on cellulose acetate plates impregnated with citrate agar. Clin Chem. 1974;20(1):74–77.Google ScholarPubMed
Schneider, RG. Differentiation of electrophoretically similar hemoglobins – such as S, D, G, and P, or A2, C, E, and O – by electrophoresis of the globin chains. Clin Chem. 1974;20(9):1111–1115.Google Scholar
Whitney, JB. Simplified typing of mouse hemoglobin (Hbb) phenotypes using cystamine. Biochem Genet. 1978;16:667–672.CrossRefGoogle ScholarPubMed
Righetti, PG, Gianazza, E, Bjellqvist, B. Modern aspects of isoelectric focusing: two-dimensional maps and immobilized pH gradients. [Review]. J Biochem Biophys Methods. 1983;8(2):89–108.CrossRefGoogle Scholar
Righetti, PG, Gelfi, C, Chiari, M. Isoelectric focusing in immobilized pH gradients. Methods Enzymol. 1996;270:235–255.CrossRefGoogle ScholarPubMed
Righetti, PG, Bossi, A. Isoelectric focusing in immobilized pH gradients: recent analytical and preparative developments. Anal Biochem. 1997;247(1):1–10.CrossRefGoogle ScholarPubMed
Jenkins, MA, Ratnaike, S. Capillary isoelectric focusing of haemoglobin variants in the clinical laboratory. Clin Chim Acta. 1999;289(1–2):121–132.CrossRefGoogle ScholarPubMed
Gulbis, B, Fontaine, B, Vertongen, F, Cotton, F. The place of capillary electrophoresis techniques in screening for haemoglobinopathies. Ann Clin Biochem. 2003;40(Pt 6):659–662.CrossRefGoogle ScholarPubMed
Hofstadler, SA, Swanek, FD, Gale, DC, Ewing, AG, Smith, RD. Capillary electrophoresis-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for direct analysis of cellular proteins. Anal Chem. 1995;67(8):1477–1480.CrossRefGoogle ScholarPubMed
Cao, P, Moini, M. Separation and detection of the alpha- and beta-chains of hemoglobin of a single intact red blood cell using capillary electrophoresis/electrospray ionization time-of-flight mass spectrometry. J Am Soc Mass Spect. 1999;10(2):184–186.CrossRefGoogle ScholarPubMed
Mario, N, Baudin, B, Aussel, C, Giboudeau, J.Capillary isoelectric focusing and high-performance cation-exchange chromatography compared for qualitative and quantitative analysis of hemoglobin variants. Clin Chem. 1997;43(11):2137–2142.Google ScholarPubMed
Wu, J, Pawliszyn, J. Application of capillary isoelectric focusing with absorption imaging detection to the quantitative determination of human hemoglobin variants. Electrophoresis. 1995;16(4):670–673.CrossRefGoogle ScholarPubMed
Banks, JF. Recent advances in capillary electrophoresis/electrospray/mass spectrometry. Electrophoresis. 1997;18(12–13):2255–2266.CrossRefGoogle ScholarPubMed
Joutovsky, A, Hadzi-Nesic, J, Nardi, MA. HPLC Retention time as a diagnostic tool for hemoglobin variants and hemoglobinopathies: a study of 60000 samples in a clinical diagnostic laboratory. Clin Chem. 2004;50(10):1736–1747.CrossRefGoogle Scholar
Zurbriggen, K, Schmugge, M, Schmid, M, et al. Analysis of minor hemoglobins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem. 2005;51(6):989–996.CrossRefGoogle ScholarPubMed
Shackleton, CH, Witkowska, HE. Characterizing abnormal hemoglobin by MS. Anal Chem. 1996;68(1):29A–33A.CrossRefGoogle ScholarPubMed
Yamashita, M, Fenn, JB. Electrospray ion source. Another viriation on the free-jet theme. J Phys Chem. 1984;88:4451–4459.CrossRefGoogle Scholar
Motos, GA, Hernandez, JA, Hernandez, JM, Rovira, JM, Fluvia, L, Bosch, A, et al. Identification and characterization by high-performance liquid chromatography/electrospray ionization mass spectrometry of a new variant hemoglobin, Mataro [beta134(H12) Val > Ala. J Mass Spectrom. 2001;36(8):943–949.CrossRefGoogle Scholar
Motos, A, Hernandez, JM, Fluvia, L, Hernandez, JA, Pastor, MC. Direct peptide mapping of real samples containing sickle-cell and fetal hemoglobin by electrospray mass spectrometry. Rapid Commun Mass Spectrom. 2000;14(23):2328–2329.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Rai, DK, Alvelius, G, Landin, B, Griffiths, WJ. Electrospray tandem mass spectrometry in the rapid identification of alpha-chain haemoglobin variants. Rapid Commun Mass Spectrom. 2000;14(14):1184–1194.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Daniel, YA, Turner, C, Haynes, RM, Hunt, BJ, Dalton, RN. Quantification of hemoglobin A2 by tandem mass spectrometry. Clin Chem. 2007;53(8):1448–1454.CrossRefGoogle ScholarPubMed
Caruso, D, Crestani, M, Mitro, N, Da Riva, L, Mozzi, R, Sarpau, S, et al. High pressure liquid chromatography and electrospray ionization mass spectrometry are advantageously integrated into a two-levels approach to detection and identification of haemoglobin variants. Clin Lab Haematol. 2005;27(2):111–119.CrossRefGoogle ScholarPubMed
Basilico, F, Di Silvestre, D, Sedini, S, et al. New approach for rapid detection of known hemoglobin variants using LC-MS/MS combined with a peptide database. J Mass Spectrom. 2007;42(3):288–292.CrossRefGoogle ScholarPubMed
Betke, K, Marti, HQ, Schlicht, I. Estimation of small percentages of foetal haemoglobin. Nature. 1959;184:877.CrossRefGoogle ScholarPubMed
Jonxis, JHP, Visser, HKA. Determination of low percentages of fetal hemoglobin in blood of normal children. Am J Dis Child. 92;588. 1956.Google ScholarPubMed
Papassotiriou, I, Ducrocq, R, Prehu, C, Bardakdjian-Michau, J, Wajcman, H. Gamma chain heterogeneity: determination of Hb F composition by perfusion chromatography. Hemoglobin. 1998;22(5–6):469–481.CrossRefGoogle ScholarPubMed
Prehu, C, Ducrocq, R, Godart, C, Riou, J, Galacteros, F. Determination of Hb F levels: the routine methods. Hemoglobin. 1998;22(5–6):459–467.CrossRefGoogle ScholarPubMed
Garver, FA, Jones, CS, Baker, MM, et al. Specific radioimmunochemical identification and quantitation of hemoglobins A2 and F. Am J Hematol. 1976;1(4):459–469.CrossRefGoogle ScholarPubMed
Rutland, PC, Pembrey, ME, Davies, T. The estimation of fetal haemoglobin in healthy adults by radioimmunoassay. Br J Haematol. 1983;53(4):673–682.CrossRefGoogle ScholarPubMed
Epstein, N, Epstein, M, Boulet, A, Fibach, E, Rodgers, GP. Monoclonal antibody-based methods for quantitation of hemoglobins: application to evaluating patients with sickle cell anemia treated with hydroxyurea. Eur J Haematol. 1996;57(1):17–24.CrossRefGoogle ScholarPubMed
Steinberg, MH. Determinants of fetal hemoglobin response to hydroxyurea. Semin Hematol. 1997;34(3:Suppl 3):Suppl-14.Google ScholarPubMed
Steinberg, MH, Adams, JG. Hemoglobin A2: origin, evolution, and aftermath. Blood. 1991;78(9):2165–2177.Google ScholarPubMed
Garver, FA, Singh, H, Moscoso, H, Kestler, DP, McGuire, BSJ. Identification and quantification of hemoglobins A2 and Barts with an enzyme-labeled immunosorbent assay. Clin Chem. 1984;30(7):1205–1208.Google ScholarPubMed
Jenkins, MA, Hendy, J, Smith, IL. Evaluation of hemoglobin A2 quantitation assay and hemoglobin variant screening by capillary electrophoresis. J Capillary Electrophoresis. 1997;4(3):137–143.Google ScholarPubMed
Cotton, F, Lin, C, Fontaine, B, Gulbis, B, Janssens, J, Vertongen, F. Evaluation of a capillary electrophoresis method for routine determination of hemoglobins A2 and F. Clin Chem. 1999;45(2):237–243.Google ScholarPubMed
Benesch, RE, Edalji, R, Kwong, S, Benesch, R. Oxygen affinity as an index of hemoglobin S polymerization: a new micromethod. Anal Biochem. 1978;89(1):162–173.CrossRefGoogle ScholarPubMed
Eaton, WA, Hofrichter, J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279.CrossRefGoogle ScholarPubMed
Magdoff-Fairchild, B, Poillon, WN, Li, T, Bertles, JF. Thermodynamic studies of polymerization of deoxygenated sickle cell hemoglobin. Proc Natl Acad Sci USA. 1976;73(4):990–994.CrossRefGoogle ScholarPubMed
Adachi, K, Asakura, T. The solubility of sickle and non-sickle hemoglobins in concentrated phosphate buffer. J Biol Chem. 1979;254:4079–4084.Google ScholarPubMed
Bookchin, RM, Balazs, T, Wang, Z, Josephs, R, Lew, VL. Polymer structure and solubility of deoxyhemoglobin S in the presence of high concentrations of volume-excluding 70-kDa dextran. J Biol Chem. 1999;274:6689–6697.CrossRefGoogle ScholarPubMed
Fabry, ME, Acharya, SA, Suzuka, SM, Nagel, RL. Solubility measurement of the sickle polymer. Methods Mol Med. 2003;82:271–287.Google ScholarPubMed
Fabry, ME, Desrosiers, L, Suzuka, SM. Direct intracellular measurement of deoxygenated hemoglobin S solubility. Blood. 2001;98(3):883–884.CrossRefGoogle ScholarPubMed
Adachi, K, Asakura, T. Gelation of deoxyhemoglobin A in concentrated phosphate buffer. Exhibition of delay time prior to aggregation and crystallization of deoxyhemoglobin A. J Biol Chem. 1979;254:12273–12276.Google ScholarPubMed
Reiter, CD, Wang, X, Tanus-Santos, JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8(12):1383–1389.CrossRefGoogle ScholarPubMed
Rother, RP, Bell, L, Hillmen, P, Gladwin, MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005;293(13):1653–1662.CrossRefGoogle ScholarPubMed
Lijana, RC, Williams, MC. Tetramethylbenzidine – a substitute for benzidine in hemoglobin analysis. J Lab Clin Med. 1979;94(2):266–276.Google ScholarPubMed
Kato, GJ, McGowan, VR, Machado, RF, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension and death in patients with sickle cell disease. Blood. 2006;107: 2279–2285.CrossRefGoogle ScholarPubMed
Bentley, SA, Johnson, A, Bishop, CA. A parallel evaluation of four automated hematology analyzers. Am J Clin Pathol. 1993;100(6):626–632.CrossRefGoogle ScholarPubMed
Ward, PC. The CBC at the turn of the millennium: an overview. Clin Chem. 2000;46(8 Pt 2):1215–1220.Google ScholarPubMed
Gulati, GL, Hyun, BH, Ashton, JK. Advances of the past decade in automated hematology. Am J Clin Pathol. 1992;98(4 Suppl 1):Suppl-6.Google ScholarPubMed
Jones, RG, Faust, AM, Matthews, RA. Quality team approach in evaluating three automated hematology analyzers with five-part differential capability. Am J Clin Pathol. 1995;103(2):159–166.CrossRefGoogle ScholarPubMed
Buttarello, M. Quality specification in haematology: the automated blood cell count. Clin Chim Acta. 2004;346(1):45–54.CrossRefGoogle ScholarPubMed
Frazier, JL, Caskey, JH, Yoffe, M, Seligman, PA. Studies of the transferrin receptor on both human reticulocytes and nucleated human cells in culture: comparison of factors regulating receptor density. J Clin Invest. 1982;69:853–865.CrossRefGoogle ScholarPubMed
Brugnara, C, Zelmanovic, D, Sorette, M, Ballas, SK, Platt, O. Reticulocyte hemoglobin: an integrated parameter for evaluation of erythropoietic activity. Am J Clin Pathol. 1997;108(2):133–142.CrossRefGoogle ScholarPubMed
Brugnara, C. Use of reticulocyte cellular indices in the diagnosis and treatment of hematological disorders. Int J Clin Lab Res. 1998;28(1):1–11.CrossRefGoogle ScholarPubMed
Lawrence, C, Fabry, ME, Nagel, RL. Red cell distribution width parallels dense red cell disappearance during painful crises in sickle cell anemia. J Lab Clin Med. 1985;105(6):706–710.Google ScholarPubMed
Ponder, E. Hemolysis and Related Phenomena. New York: Grune & Stratton; 1948.Google Scholar
Fabry, ME, Nagel, RL. The effect of deoxygenation on red cell density: significance for the pathophysiology of sickle cell anemia. Blood. 1982;60:1370–1377.Google ScholarPubMed
Nagel, RL, Raventos Suarez, C, Fabry, ME, Tanowitz, H, Sicard, D, Labie, D. Impairment of the growth of Plasmodium falciparum in HbEE erythrocytes. J Clin Invest. 1981;68:303–305.CrossRefGoogle ScholarPubMed
Marikovsky, Y, Lotan, R, Lis, H, Sharon, N, Danon, D. Agglutination and labeling density of soybean agglutinin on young and old human red blood cells. Exp Cell Res. 1976;99(2):453–456.CrossRefGoogle Scholar
Clark, MR, Morrison, CE, Shohet, SB. Monovalent cation transport in irreversibly sickled cells. J Clin Invest. 1978;62:329–337.CrossRefGoogle ScholarPubMed
Vettore, L, Zanella, A, Molaro, GL, Matteis, MC, Pavesi, M, Mariani, M. A new test for the laboratory diagnosis of spherocytosis. Acta Haematol. 1984;72(4):258–263.CrossRefGoogle Scholar
Fabry, ME, Nagel, RL. Heterogeneity of red cells in the sickler: a characteristic with practical clinical and pathophysiological implications. Blood Cells. 1982;8:9–15.Google ScholarPubMed
Corry, WD, Meiselman, HJ. Modification of erythrocyte physiochemical properties by millimolar concentrations of glutaraldehyde. Blood Cells. 1978;4:465–480.Google Scholar
Thein, SL, Reittie, JE. F cells by immunofluorescent staining of erythrocyte smears. Hemoglobin. 1998;22(5–6):415–417.CrossRefGoogle ScholarPubMed
Amoyal, I, Fibach, E. Flow cytometric analysis of fetal hemoglobin in erythroid precursors of beta-thalassemia. Clin Lab Haematol. 2004;26(3):187–193.CrossRefGoogle ScholarPubMed
Porra, V, Bernaud, J, Gueret, P, et al. Identification and quantification of fetal red blood cells in maternal blood by a dual-color flow cytometric method: evaluation of the Fetal Cell Count kit. Transfusion. 2007;47(7):1281–1289.CrossRefGoogle ScholarPubMed
Galanello, R, Satta, S, Pirroni, MG, Travi, M, Maccioni, L. Globin chain synthesis of high performance liquid chromatography in the screening of thalassemia syndromes. Hemoglobin. 1998;22(5&6):501–508.CrossRefGoogle ScholarPubMed
Weinberg, RS, Ji, X, Sutton, M, Perrine, S, Galperin, Y, Li, Q, et al. Butyrate increases the efficiency of translation of gamma-globin mRNA. Blood. 2005;105(4):1807–1809.CrossRefGoogle ScholarPubMed
Fathallah, H, Weinberg, RS, Galperin, Y, Sutton, M, Atweh, GF. Role of epigenetic modifications in normal globin gene regulation and butyrate-mediated induction of fetal hemoglobin. Blood. 2007;110(9):3391–3397.CrossRefGoogle ScholarPubMed
Eaton, WA, Hofrichter, J. Hemoglobin S gelation and sickle cell disease. Blood. 1987;70:1245–1266.Google ScholarPubMed
Cao, Z, Ferrone, FA. A 50th order reaction predicted and observed for sickle hemoglobin nucleation. J Mol Biol. 1996;256(2):219–222.CrossRefGoogle ScholarPubMed
Galkin, O, Vekilov, PG. Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state. J Mol Biol. 2004;336(1):43–59.CrossRefGoogle ScholarPubMed
Christoph, GW, Hofrichter, J, Eaton, WA. Understanding the shape of sickled red cells. Biophys J. 2005;88(2):1371–1376.CrossRefGoogle ScholarPubMed
Old, JM. Fetal DNA analysis. In: Davies, KE, ed. Human Genetic Disease Analysis: A Practical Approach. 2nd ed. Oxford: IRL Press; 1993;1–19.Google Scholar
Liu, YT, Old, JM, Fisher, CA, Weatherall, DJ, Clegg, JB. Rapid detection of α-thalassaemia deletions and α-globin gene triplication by multiplex PCRs. Br J Haematol. 2000;108:295–299.CrossRefGoogle Scholar
Rosatelli, MC, Tuveri, T, Scalas, MT, et al. Molecular screening and fetal diagnosis of β-thalassaemia in the Italian population. Hum Genet. 1992;89:585.Google ScholarPubMed
Decorte, R, Cuppens, H, Marynen, P, Cassiman, JJ. Rapid detection of hypervariable regions by the polymerase chain reaction technique. DNA Cell Biol. 1990;9:461–469.CrossRefGoogle ScholarPubMed
Stojikovic-Mikic, T, Mann, K, Docherty, Z, Ogilvie, CM. Maternal cell contamination of prenatal samples assessed by QF-PCR genotyping. Prenatal Diag. 2005;25:79–83.CrossRefGoogle Scholar
Cariolou, MA, Kokkofitou, A, Manoli, P, Ioannou, P. Prenatal diagnosis for beta-thalassemia by PCR from single chorionic villus. Biotechniques. 1993;15:32–34.Google ScholarPubMed
Camaschella, C, Alfarano, A, Gottardi, E, et al. Prenatal diagnosis of fetal hemoglobin Lepore-Boston disease on maternal peripheral blood. Blood. 1990;75:2102–2106.Google ScholarPubMed
Sekizawa, A, Watanabe, A, Kimwa, T, et al. Prenatal diagnosis of the fetal RhD type using a single fetal nucleated erythrocyte from maternal blood. Obstet Gynaecol. 1996;87:501–505.CrossRefGoogle ScholarPubMed
Cheung, Ms C, Goldberg, JD, Kan, YW. Prenatal diagnosis of sickle cell anemia and thalassemia by analysis of fetal cells in maternal blood. Nat Genet. 1996;14:264–268.CrossRefGoogle ScholarPubMed
Lo, YM. Fetal DNA in maternal plasma. Ann NY Acad Sci. 2000;906:141–147.CrossRefGoogle ScholarPubMed
Chiu, RW, Lui, WB, El-Sheikah, A, et al. Comparison of protocols for extracting circulating DNA and RNA from maternal plasma. Clin Chem. 2005;51:2209–2210.CrossRefGoogle ScholarPubMed
Lo, YM, Zhang, J, Leung, TN, et al. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64:18–24.CrossRefGoogle ScholarPubMed
Chiu, RW, Lau, TK, Leung, TN Chow KC, Chui, DH, Lo, YM. Prenatal exclusion of β-thalassaemia major by examination of maternal plasma. Lancet. 2002;360:998–1000.CrossRefGoogle ScholarPubMed
Tungwiwat, W, Fucharoen, S, Fucharoen, G, Ratanasiri, T, Sanchaisuriya, K. Development and application of a real-time quantitative PCR for prenatal detection of fetal alpha(0)-thalassemia from maternal plasma. Ann NY Acad Sci. 2006;1075:103–107.CrossRefGoogle Scholar
Lo, YM. Recent developments in fetal nucleic acids in maternal plasma: implications to noninvasive prenatal fetal blood group genotyping. Transfusion Clin Biol. 2006;13:50–52.CrossRefGoogle ScholarPubMed
Kanavakis, E, Traeger-Synodinos, J. Preimplantation genetic diagnosis in clinical practice. J Med Genet. 2002;39:6–11.CrossRefGoogle ScholarPubMed
Chan, V, Ng, EH, Yam, I, Yeung, WS, Ho, PC, Chan, TK. Experience in preimplantation genetic diagnosis for exclusion of homozygous α0 thalassemia. Prenatal Diag. 2006;26:1029–1036.CrossRefGoogle Scholar
Deng, J, Peng, WL, Li, J, et al. Successful preimplantation genetic diagnosis for alpha- and beta-thalassemia in China. Prenatal Diag. 2006;26:1021–1028.Google Scholar
Monni, G, Cau, G, Usai, V, et al. Preimplantation genetic diagnosis for beta-thalassaemia: the Sardinian experience. Prenatal Diag. 2004;24:949–954.CrossRefGoogle ScholarPubMed
Kuliev, A, Rechitsky, S, Verlinsky, O, et al. Preimplantation diagnosis and HLA typing for haemoglobin disorders. Reprod Biomed Online. 2005;11:362–370.CrossRefGoogle ScholarPubMed
Vrettou, C, Traegaer-Synodinos, J, Tzetis, M, Palmer, G, Sofocleous, C, Kanavakis, E. Real-time PCR for single-cell genotyping in sickle cell and thalassemia syndromes as a rapid, accurate, reliable, and widely applicable protocol for preimplantation genetic diagnosis. Hum Mutat. 2004;23:513–521.CrossRefGoogle ScholarPubMed
Old, J. DNA-based diagnosis of the hemoglobin disorders. In: Steinberg, MH, Forget, BG, Higgs, DR, Nagel, RL, eds. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge: Cambridge University Press; 2001:941–957.Google Scholar
Harteveld, Cl, Voskamp, A, Phylipsen, M, et al. Nine unknown rearrangements in 16p13.3 and 11p15.4 causing alpha- and beta-thalassaemia characterised by high resolution multiplex ligation-dependent probe amplification. J Med Genet. 2005;42:922–931.CrossRefGoogle ScholarPubMed
Bowden, DK, Vickers, MA, Higgs, DR. A PCR-based strategy to detect the common severe determinants of α-thalassaemia. Br J Haematol. 1992;81:104–108.CrossRefGoogle ScholarPubMed
Dode, C, Krishnamoorthy, R, Lamb, J, Rochette, J. Rapid analysis of –α3.7 thalassaemia and ααα anti 3.7 triplication by enzymatic amplification analysis. Br J Haematol. 1992;82:105–111.Google Scholar
Baysal, E, Huisman, THJ. Detection of common deletional α-thalassaemia-2 determinants by PCR. Am J Hematol. 1994;46:208–213.CrossRefGoogle Scholar
Ko, TM, Li, F.Molecular characterization of the –FIL determinant of alpha-thalassaemia (corrigendum for Ko et al 1998). Am J Hematol. 1999;60:173.3.0.CO;2-A>CrossRefGoogle Scholar
Ko, T-M, Tseng, L-H, Hsu, P-M, et al. Molecular characterization of β-thalassemia in Taiwan and the identification of two new mutations. Hemoglobin. 1997;21:131–142.CrossRefGoogle ScholarPubMed
Chong, SS, Boehm, CD, Higgs, DR, Cutting, GR. Single-tube multiplex-PCR screen for common deletional determinants of α-thalassemia. Blood. 2000;95:360–362.Google ScholarPubMed
Sun, CF, Lee, CH, Cheng, SW, et al. Real-time quantitative PCR analysis for alpha-thalassemia-1 of Southeast Asian type deletion in Taiwan. Clin Genet. 2001;60:305–309.CrossRefGoogle ScholarPubMed
Ou-Yang, H, Hua, L, Mo, HQ, Xu, Xm. Rapid, accurate genotyping of the common alpha (4.2) deletion based on the use of denaturing HPLC. J Clin Pathol. 2004;57:159–163.CrossRefGoogle ScholarPubMed
Zesong, L, Ruijun, G, Wen, Z. Rapid detection of deletional alpha-thalassemia by an oligonucleotide microarray. Am J Hematol. 2005;80:306–308.CrossRefGoogle ScholarPubMed
Bang-Ce, Y, Hongqiong, L, Zhuanfong, Z, Zhensong, L, Jiangling, G. Simultaneous detection of alpha-thalassemia and beta-thalassemia by oligonucleotide microarray. Haematologica. 2004;89:1010–1012.Google ScholarPubMed
Molchanova, TP, Pobedimskaya, DD, Postnikov, YV. A simplified procedure for sequencing amplified DNA containing the α-2 or α-1 globin gene. Hemoglobin. 1994;18:251–255.CrossRefGoogle ScholarPubMed
Ko, TM, Tseng, LH, Hsieh, FJ, Lee, TY. Prenatal diagnosis of HbH disease due to compound heterozygosity for south-east Asian deletion and Hb Constant Spring by polymerase chain reaction. Prenatal Diag. 1993;13:143–146.CrossRefGoogle Scholar
Harteveld, CL, Heister, AJGAM, Giordano, PC, Losekoot, M, Bernini, LF. Rapid detection of point mutations and polymorphisms of the α-globin genes by DGGE and SSCA. Hum Mutat. 1996;7:114–122.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Huisman, THJ. Frequencies of common β-thalassaemia alleles among different populations: variability in clinical severity. Br J Haematol. 1990;75:454–457.CrossRefGoogle ScholarPubMed
,Distribution and population genetics of the thalassaemias. In: Weatherall, DJ, Clegg, JB, eds. The Thalassaemia Syndromes. 4th ed. Oxford: Blackwell Scientific; 2001:237–286.CrossRefGoogle Scholar
Ristaldi, MS, Pirastu, M, Rosatelli, C, Cao, A. Prenatal diagnosis of β-thalassaemia in Mediterranean populations by dot blot analysis with DNA amplification and allele specific oligonucleotide probes. Prenatal Diag. 1989;9:629–638.CrossRefGoogle ScholarPubMed
Saiki, RK, Walsh, PS, Levenson, CH, Erlich, HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA. 1989;86:6230–6234.CrossRefGoogle ScholarPubMed
Maggio, A, Giambona, A, Cai, SP, Wall, J, Kan, YW, Chehab, FF. Rapid and simultaneous typing of hemoglobin S, hemoglobin C and seven Mediterranean β-thalassaemia mutations by covalent reverse dot-blot analysis: application to prenatal diagnosis in Sicily. Blood. 1993;81:239–242.Google ScholarPubMed
Sutcharitchan, P, Saiki, R, Huisman, THJ, Kutlar, A, McKie, V, Embury, SH. Reverse dot-blot detection of the African-American β-thalassaemia mutations. Blood. 1995;86:1580–1585.Google Scholar
Sutcharitchan, P, Saiki, R, Fucharoen, S, Winchagoon, P, Erlich, H, Embury, SH. Reverse dot-blot detection of Thai beta-thalassaemia mutations. Br J Haematol. 1995;90:809–816.CrossRefGoogle ScholarPubMed
Gemignani, F, Perra, C, Landi, S, et al. Reliable detection of beta-thalassemia and G6PD mutations by a DNA microarray. Clin Chem. 2002;48:2051–2054.Google ScholarPubMed
Moorsel, CH, Wijngaraarden, EE, Fokkema, IF, et al. β-Globin mutation detection by tagged single-base extension and hybridization to universal glass and flow-through microarrays. Eur J Hum Genet. 2004;12:567–573.CrossRefGoogle ScholarPubMed
Lu, Y, Kham, SK, Tan, PL, Quah, TC, Heng, CK, Yeoh, AE. Arrayed primer extension: a robust and reliable genotyping platform for the diagnosis of single gene disorders: beta-thalassemia and thiopurine methyltransferase deficiency. Genet Test. 2005;9:212–219.CrossRefGoogle Scholar
Newton, CR, Graham, A, Heptinstall, . Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl Acids Res. 1989;17:2503–2516.CrossRefGoogle Scholar
Old, JM, Varawalla, NY, Weatherall, DJ. The rapid detection and prenatal diagnosis of β thalassaemia in the Asian Indian and Cypriot populations in the UK. Lancet. 1990;336:834–837.CrossRefGoogle Scholar
Old, J. Haemoglobinopathies. Prenatal Diag. 1996;16:1181–1186.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Saxena, R, Jain, PK, Thomas, E, Verma, IC. Prenatal diagnosis of β-thalassaemia: experience in a developing country. Prenatal Diag. 1998;18:1–7.3.0.CO;2-Y>CrossRefGoogle Scholar
Tan, JA, Tay, JS, Lin, LI, et al. The amplification refractory mutation system (ARMS): a rapid and direct prenatal diagnostic technique for β-thalassaemia in Singapore. Prenatal Diag. 1994;14:1077–1082.CrossRefGoogle ScholarPubMed
Zschocke, J, Graham, CA. A fluorescent multiplex ARMS method for rapid mutation analysis. Mol Cell Probes. 1995;9:447–451.CrossRefGoogle ScholarPubMed
Chehab, FF, Kan, YW. Detection of specific DNA sequence by fluorescence amplification: a colour complementation assay. Proc Natl Acad Sci USA. 1989;86:9178–9178.CrossRefGoogle ScholarPubMed
Chang, JG, Lu, JM, Huang, JM, Chen, JT, Liu, HJ, Chang, CP. Rapid diagnosis of β-thalassaemia by mutagenically separated polymerase chain reaction (MS-PCR) and its application to prenatal diagnosis. Br J Haematol. 1995;91:602–607.CrossRefGoogle ScholarPubMed
Linderman, R, Hu, SP, Volpato, F, Trent, RJ. (1991) Polymerase chain reaction (PCR) mutagenesis enabling rapid non-radioactive detection of common β thalassaemia mutations in Mediterraneans. Br J Haematol. 1991;78:100–104.CrossRefGoogle Scholar
Webster, MT, Wells, RS, Clegg, JB. Analysis of variation in the human beta-globin gene cluster using a novel DHPLC technique. Mutat Res. 2002;501:99–103.CrossRefGoogle ScholarPubMed
Yip, SP, Pun, SF, Leung, KH, Lee, SY. Rapid, simultaneous genotyping of five common Southeast Asian beta-thalassemia mutations by multiplex minisequencing and denaturing HPLC. Clin Chem. 2003;49:1656–1659.CrossRefGoogle ScholarPubMed
Su, YN, Lee, CN, Hung, CC, et al. Rapid detection of beta-globin gene (HBB) mutations coupling heteroduplex and primer-extension analysis by DHPLC. Hum Mutat. 2003;22:326–336.CrossRefGoogle ScholarPubMed
Wu, G, Hua, L, Zhu, J, Mo, QH, Xu, XM. Rapid, accurate genotyping of beta-thalassaemia mutations using a novel multiplex primer extension/denaturing high-performance liquid chromatography assay. Br J Haematol. 2003;122:311–316.CrossRefGoogle ScholarPubMed
Bournazos, SN, Tserga, A, Patrinos, GP, Papadakis, MN. A versatile denaturing HPLC approach for human beta-globin gene mutation screening. Am J Hematol. 2007;82:168–170.CrossRefGoogle ScholarPubMed
Naja, RP, Kaspar, H, Shabakio, H, Chakar, N, Makhoul, Nj, Zalloua, PA. Accurate and rapid prenatal diagnosis of the most frequent East Mediterranean beta-thalassemia mutations. Am J Hematol. 2004;75:220–224.CrossRefGoogle ScholarPubMed
Pang, L, Li, J, Jiang, J, Shen, G, Yu, R. DNA point mutation detection based on DNA ligase reaction and nano-Au amplification: a piezoelectric approach. Anal Biochem. 2006;358:99–103.CrossRefGoogle ScholarPubMed
Craig, JE, Kelly, SJ, Barnetson, R, Thein, SL. Molecular characterisation of a novel 10.3 kb deletion causing β-thalassaemia with unusually high Hb A2. Br J Haematol. 1992;82:735–744.CrossRefGoogle Scholar
Dimovski, AJ, Efremove, DG, Jankovic, L, Plaseska, D, Juricic, D, Efremov, GD. A β0 thalassaemia due to a 1605 bp deletion of the 5′ β-globin gene region. Br J Haematol. 1993;85:143–147.CrossRefGoogle Scholar
Faa, V, Rosatelli, MC, Sardu, R, Meloni, A, Toffoli, C, Cao, A. A simple electrophoretic procedure for fetal diagnosis of β-thalassaemia due to short deletions. Prenatal Diag. 1992;12:903–908.CrossRefGoogle ScholarPubMed
Waye, JS, Cai, S-P, Eng, B, et al. High hemoglobin A2 β0 thalassaemia due to a 532 bp deletion of the 5′ β-globin gene region. Blood. 1991;77:1100–1103.Google Scholar
Waye, JS, Eng, B, Hunt, JA, et al. Filipino β-thalassaemia due to a large deletion: identification of the deletion endpoints and polymerase chain reaction (PCR)-based diagnosis. Hum Genet. 1994;94:530–532.CrossRefGoogle ScholarPubMed
Old, JM, Petrou, M, Modell, B, Weatherall, D. J.Prenatal DiagFeasibility of antenatal diagnosis of β-thalassaemia by DNA polymorphisms in Asian Indians and Cypriot populations. Br J Haematol. 1984;57:255–263.CrossRefGoogle Scholar
Thein, SL, Hesketh, C, Brown, KM, Anstey, AV, Weatherall, DJ. Molecular characterisation of a high A2 β thalassemia by direct sequencing of single strand enriched amplified genomic DNA. Blood. 1989;73:924–930.Google Scholar
Lynch, JR, Brown, JM, Best, S, Jennings, MW, Weatherall, DJ. Characterisation of the breakpoint of a 3.5 kb deletion of the β-globin gene. Genomics. 1991;10:509–511.CrossRefGoogle Scholar
Losekoot, M, Fodde, R, Harteveld, CL, Heeren, H, Giordano, PC, Bernini, LF. Denaturing gradient gel electrophoresis and direct sequencing of PCR amplified genomic DNA: a rapid and reliable diagnostic approach to beta thalassaemia. Br J Haematol. 1991;76:269–274.CrossRefGoogle Scholar
Gorakshaker, AC, Lulla, CP, Nadkarni, AH, et al. Prenatal diagnosis of β-thalassemia using denaturing gradient gel electrophoresis among Indians. Hemoglobin. 1997;21:421–435.CrossRefGoogle Scholar
Gottardi, E, Losekoot, M, Fodde, R, Saglio, G, Camaschella, C, Bernini, LF. Rapid identification of denaturing gradient gel electrophoresis of mutations in the γ-globin gene promoters in non-deletion type HPFH. Br J Haematol. 1992;80:533–538.CrossRefGoogle ScholarPubMed
Papadakis, M, Papapanagiotou E, Loutradi-Anagnostou A. Scanning methods to identify the molecular heterogeneity of δ-globin gene especially in δ-thalassemias: detection of three novel substitutions in the promoter region of the gene. Hum Mutat. 1997;9:465–472.3.0.CO;2-0>CrossRefGoogle Scholar
Savage, DA, Wood, NAP, Bidwell, JL, Fitches, A, Old, JM, Hui, KM. Detection of β-thalassaemia mutations using DNA heteroduplex generator molecules. Br J Haematol. 1995;90:564–571.CrossRefGoogle ScholarPubMed
Old, JM, Khan, SH, Verma, I, et al. A multi-center study in order to further define the molecular basis of beta-thalassemia in Thailand, Pakistan, Sri Lanka, Mauritius, Syria, and India, and to develop a simple molecular diagnostic strategy by amplification refractory mutation system-polymerase chain reaction. Hemoglobin. 2001;25:397–407.CrossRefGoogle Scholar
Kazazian, HH, Boehm, CD. Molecular basis and prenatal diagnosis of β-thalassemia. Blood. 1988;72:1107–1116.Google ScholarPubMed
Antonarakis, SE, Boehm, CD, Diardina, PJV, Kazazian, HH. Non-random association of polymorphic restriction sites in the β-globin gene cluster. Proc Natl Acad Sci USA. 1982;79:137–141.CrossRefGoogle Scholar
Chakravarti, A, Buetow, KH, Antonarakis, SE, Waber, PG, Boehm, CD, Kazazian, HH. Non-uniform recombination within the human β-globin gene cluster. Am J Hum Genet. 1984;36:1239–1258.Google Scholar
Varawalla, NY, Fitches, AC, Old, JM. Analysis of beta-globin gene haplotypes in Asian Indians: origin and spread of beta-thalassaemia on the Indian subcontinent. Hum Genet. 1992;90:443–449.CrossRefGoogle ScholarPubMed
Semenza, GL, Dowling, CE, Kazazian, HH. Hinf I polymorphisms 3′ to the human β globin gene detected by the polymerase chain reaction (PCR). Nucl Acids Res. 1989;17:2376.CrossRefGoogle Scholar
Craig, JE, Barnetson, RA, Prior, J, Raven, JL, Thein, SL. Rapid detection of deletions causing δ β thalassemia and hereditary persistence of fetal hemoglobin by enzymatic amplification. Blood. 1994;83:1673–1682.Google ScholarPubMed
Abraham, R, Thomas, M, Britt, R, Fisher, C, Old, J. Hb Q-India; an uncommon variant diagnosed in three Punjabi patients with diabetes is identified by a novel DNA analysis test. J Clin Pathol. 2003;56:296–299.CrossRefGoogle ScholarPubMed
Old, JM. Screening and genetic diagnosis of haemoglobinopathies. Scand J Clin Lab Invest. 2006;66:1–16.Google Scholar
,The Globin Gene Disorder Working Party of the BCSH General Haematology Task Force. Guidelines for the fetal diagnosis of globin gene disorders. J Clin Pathol. 1994;47:199–204.CrossRefGoogle Scholar
Old, JM. Best practice recommendations. In: Prevention of Thalassaemias and Other Haemoglobin Disorders. Vol 2. Nicosia, Cyprus: Thalassaemia International Federation; 2005:1–16.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×