Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T14:42:07.898Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2013

Lesley J. Rogers
Affiliation:
University of New England, Australia
Giorgio Vallortigara
Affiliation:
Università degli Studi di Trento, Italy
Richard J. Andrew
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Divided Brains
The Biology and Behaviour of Brain Asymmetries
, pp. 172 - 217
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K. & Watanabe, D. (2011). Songbirds possess the spontaneous ability to discriminate syntactic rules. Nature Neuroscience, 14: 1067–1074.CrossRefGoogle ScholarPubMed
Adamec, R. E. & Morgan, H. D. (1994). The effect of kindling of different nuclei in the left and right amygdala in the rat. Physiology and Behavior, 55: 1–12.CrossRefGoogle ScholarPubMed
Adamec, R. E., Blundell, J. & Burton, P. (2003). Phosphorylated cyclic AMP response element binding protein expression induced in the periaqueductal gray by predator stress: Its relationship to the stress experience, behavior and limbic neural plasticity. Progress in Neuro-psychophysiology, 27: 1243–1267.CrossRefGoogle ScholarPubMed
Adamec, R. E., Blundell, J. & Burton, P. (2005). Neural circuit changes mediating lasting brain and behavioural response to predator stress. Neuroscience and Biobehavioral Reviews, 29: 1225–1241.CrossRefGoogle ScholarPubMed
Adelstein, A. & Crowne, D. P. (1991). Visuospatial asymmetries and interocular transfer in the split-brain rat. Behavioral Neuroscience, 105: 459–469.CrossRefGoogle ScholarPubMed
Ades, C. & Ramirez, E. N. (2002). Asymmetry of leg use during prey handling in the spider Scytodes globulosa (Scytodidae). Journal of Insect Behaviour, 15: 563–570.CrossRefGoogle Scholar
Adret, P. & Rogers, L. J. (1989). Sex difference in the visual projections of young chicks: A quantitative study of the thalamofugal pathway. Brain Research, 478: 59–73.CrossRefGoogle ScholarPubMed
Agetsuma, M., Aizawa, H., Aoki, T. et al. (2010). The habenula is crucial for experience-dependent modification of fear responses in zebrafish. Nature Neuroscience, 13: 1354–1356.CrossRefGoogle ScholarPubMed
Aizawa, H., Bianco, I. H., Hamaoka, T. et al. (2005). Laterotopic representation of left–right information onto the dorsoventral axis of a zebrafish midbrain target nucleus. Current Biology, 15: 238–243.CrossRefGoogle Scholar
Aizawa, H., Goto, M., Sato, T. et al. (2007). Temporally regulated asymmetric neurogenesis causes left–right difference in the zebrafish habenular structures. Developmental Cell, 12: 87–98.CrossRefGoogle ScholarPubMed
Albert, M. (1973) A simple test of visual neglect. Neurology, 23: 658–664.CrossRefGoogle ScholarPubMed
Aljuhanay, A., Milne, E., Burl, E. et al. (2010). Asymmetry in face processing during childhood measured with chimeric faces. Laterality, 15: 439–450.CrossRefGoogle ScholarPubMed
Alkonyi, B., Juhász, C. A., Muzik, O. et al. (2011). Thalamocortical connectivity in healthy children: Symmetries and robust developmental changes between 8 and 17 years. American Journal of Neuroradiology, 32: 962–969.CrossRefGoogle Scholar
Allan, S. E. & Suthers, R. A. (1994). Lateralisation and motor stereotypy of song production in the brown headed cowbird. Journal of Neurobiology, 25: 1154–1166.CrossRefGoogle Scholar
Allman, J. M., Tetreault, N. A., Hakeem, A. & Park, S. (2011). The von Economo neurons in apes and humans. American Journal of Human Biology, 23: 5–21.CrossRefGoogle ScholarPubMed
Almécija, S., Moyà-Solà, S. & Alba, D. M. (2010). Early origin of human-like precision grasping: A comparative study of pollical distal phalanges in fossil hominins. PLoS One, 5(7): e1727.CrossRefGoogle ScholarPubMed
Alonso, Y. (1988). Lateralization of visual guided behavior during feeding in zebra finches (Taeniopygia guttata). Behavioural Processes, 43: 257–263.CrossRefGoogle Scholar
Alonso, J., Castellano, A. & Rodriguez, M (1991). Behavioral lateralization in rats: Prenatal stress effects on sex differences. Brain Research, 539: 45–50.CrossRefGoogle ScholarPubMed
Alvararez, E. O. & Banzan, A. M. (2011). Functional lateralisation of the baso-lateral amygdala neural circuits modulating the motivated exploratory behaviour in rats: Role of histamine. Behavioral Brain Research, 218: 158–164.CrossRefGoogle Scholar
Alves, C., Chichery, R., Boal, J. G. & Dickel, L. (2007). Orientation in the cuttlefish Sepia officinalis: Response versus place learning. Animal Cognition, 10: 29–36.CrossRefGoogle ScholarPubMed
Alves, C., Guibé, M., Romagny, S. & Dickel, L. (2009). Behavioral lateralization and brain asymmetry in cuttlefish: An ontogenetic study. Poster at XXXI International Ethological Conference, Rennes, France.
Anderson, M. J., Williams, S. A. & Bono, A. (2010). Preferred neck-resting position predicts aggression in Caribbean flamingos (Phoenicopterus rubber). Laterality, 15: 629–638.CrossRefGoogle Scholar
Andrew, R. J. (1963). The origin and evolution of the calls and facial expressions of the primates. Behaviour, 20: 1–109.CrossRefGoogle Scholar
Andrew, R. J. (1972). Changes in search behaviour in male and female chicks, following different doses of testosterone. Animal Behaviour, 20: 741–750.CrossRefGoogle ScholarPubMed
Andrew, R. J. (1976). Use of formants in the grunts of baboons and other non-human primates. Annals of the New York Academy of Science, 280: 673–693.CrossRefGoogle Scholar
Andrew, R. J. (1983). Lateralisation of emotional and cognitive function in higher vertebrates, with special reference to the domestic chick. In: Ewert, J. P., Capranica, R. R. & Ingle, D. J. (eds.), Advances in Vertebrate Neuroethology, Oxford: Oxford University Press, pp. 477–510.CrossRefGoogle Scholar
Andrew, R. J. (1991a). The nature of behavioural lateralization in the chick. In: Andrew, R. J. (ed.), Neural and Behavioural Plasticity. The Use of the Chick as a Model, Oxford: Oxford University Press, pp. 536–554.CrossRefGoogle Scholar
Andrew, R. J. (1991b). Cyclicity in memory formation. In: Andrew, R. J. (ed.), Neural Plasticity. The Use of the Domestic Chick as a Model. Oxford: Oxford University Press,pp. 476–506.CrossRefGoogle Scholar
Andrew, R. J. (1997). Left and right hemisphere memory traces: Their formation and fate. Laterality, 2: 179–198.CrossRefGoogle ScholarPubMed
Andrew, R. J. (1999). The differential roles of right and left sides of the brain in memory formation. Behavioral Brain Research, 98: 289–295.CrossRefGoogle ScholarPubMed
Andrew, R. J. (2002a). Memory formation and lateralisation. In: Rogers, L. J. & Andrew, R. J. (eds.), Comparative Vertebrate Lateralisation, Cambridge: Cambridge University Press, pp. 582–633.Google Scholar
Andrew, R. J. (2002b). The earliest origins and subsequent evolution of lateralisation. In: Rogers, L. J. & Andrew, R. J. (eds.), Comparative Vertebrate Lateralisation, Cambridge: Cambridge University Press, pp. 70–93.CrossRefGoogle Scholar
Andrew, R. J. & Dharmaretnam, M. (1991). A timetable of development. In: Andrew, R. J. (ed.), Neural and Behavioural Plasticity: The Use of the Domestic Chicken as a Model, Oxford: Oxford University Press, pp. 166–176.CrossRefGoogle Scholar
Andrew, R. J. & Rogers, L. J. (1972). Testosterone, search behaviour and persistence. Nature, 237: 343–356.CrossRefGoogle ScholarPubMed
Andrew, R. J. & Rogers, L. J. (2002). The nature of lateralisation in tetrapods. In: Rogers, L. J. & Andrew, R. J. (eds.), Comparative Vertebrate Lateralization, Cambridge: Cambridge University Press, pp. 94–125.CrossRefGoogle Scholar
Andrew, R. J. & Watkins, J. A. S. (2002). Evidence for cerebral lateralisation from senses other than vision. In: Rogers, L. J. & Andrew, R. J. (eds.), Comparative Vertebrate Lateralization, Cambridge: Cambridge University Press, pp. 365–382.CrossRefGoogle Scholar
Andrew, R. J., Dharmaretnam, M., Györi, B. et al. (2009a). Precise endogenous control of right and left visual structures in assessment by zebrafish. Behavioural Brain Research, 196: 99–105.CrossRefGoogle ScholarPubMed
Andrew, R. J., Mench, J. & Rainey, C. (1982). Right–left asymmetry of response to visual stimuli in the domestic chick. In: Ingle, D. J., Goodale, M. A. & Mansfield, R. J. (eds.), Analysis of Visual Behavior, Cambridge, MA: MIT Press, pp. 225–236.Google Scholar
Andrew, R. J., Osorio, D. & Budaev, S. (2009b). Light during embryonic development modulates patterns of lateralisation strongly and similarly in both zebrafish and chick. Philosophical Transactions of the Royal Society of London B, 364: 983–989.CrossRefGoogle Scholar
Andrew, R. J., Tommasi, L. & Ford, N. (2000). Motor control by vision and the evolution of cerebral lateralisation. Brain and Language, 73: 220–235.CrossRefGoogle Scholar
Anfora, G., Frasnelli, E., Maccagnani, B. et al. (2010). Behavioural and electrophysiological lateralisation in a social (Apis mellifera) but not a non-social (Osmia cornuta) species of bee. Behavioural Brain Research, 206: 236–239.CrossRefGoogle Scholar
Anfora, G., Rigosi, E., Frasnelli, E. et al. (2011). Lateralization in the invertebrate brain: Left–right asymmetry of olfaction in bumble bee, Bombus terrestris. PLoS One, 6: e18903.CrossRefGoogle ScholarPubMed
Annett, M. (2002). Handedness and Brain Asymmetry: The Right Shift Theory. Hove, UK: Psychology Press.Google Scholar
Annett, M. (2006). The distribution of handedness in chimpanzees: Estimating right shift in Hopkins’ sample. Laterality, 11: 101–109.CrossRefGoogle ScholarPubMed
Anokhin, K. V., Tiunova, A. A. & Rose, S. P. R. (2002). Reminder effects – reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibition following reminder for a passive-avoidance task in young chicks. European Journal of Neuroscience, 15: 1759–1765.CrossRefGoogle ScholarPubMed
Artelle, K. A., Dumoulin, L. K. & Reimchen, T. E. (2010). Behavioural responses of dogs to asymmetrical tail wagging of a robotic dog replica. Laterality, 16: 129–135.CrossRefGoogle ScholarPubMed
Asami, T., Gitternberger, E. & Falkner, G. (2008). Whole-body enantiomorphy and maternal inheritance of chiral reversal in the pond snail Lymnaea stagnalis. Journal of Heredity, 99: 552–557.CrossRefGoogle ScholarPubMed
Austin, N. P. & Rogers, L. J. (2007). Asymmetry of flight and escape turning responses in horses. Laterality, 12: 464–474.CrossRefGoogle ScholarPubMed
Austin, N. A. & Rogers, L. J. (2012). Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses (Equus caballus). Animal Behaviour, 83: 239–247.CrossRefGoogle Scholar
Babcock, L. E. & Robison, R. A. (1989). Preferences of Palaeozoic predators. Nature, 337: 695–696.CrossRefGoogle Scholar
Baguňà, J., Martinez, P., Paps, J. et al. (2008). Back in time: A new systematic proposal for the Bilateria. Philosophical Transactions of the Royal Society of London B, 363: 1481–1491.CrossRefGoogle Scholar
Baltin, S. (1969). Zur Biologie und Ethologie des Talegalla-Huhns (Alectura lathami Gray) unter besonderer Berücksichtigung des Verhaltens wärrend der Brutperiode. Zeitschrift für Tierpsychologie, 6: 524–572.Google Scholar
Balzeau, A. & Gilissen, E. (2010). Endocranial shape asymmetries in Pan paniscus, Pan troglodytes and Gorilla gorilla, assessed via skull based landmark analysis. Journal of Human Evolution, 59: 54–69.CrossRefGoogle Scholar
Bambach, R. K., Bush, A. M. & Erwin, D. H. (2007). Autecology and the filling of ecospace: Key metazoan radiations. Palaeontology, 50: 1–22.CrossRefGoogle Scholar
Barbalet, G., Chambers, V., Domenich, J. D. P. et al. (2011). Impaired hierarchical control within the lateral prefrontal cortex in schizophrenia. Biological Psychiatry, 70: 73–80.CrossRefGoogle Scholar
Barca, L., Cornelissen, P., Simpson, M. et al. (2011). The neural basis of the right visual field advantage in reading: An MEG analysis using virtual electrodes. Brain and Language, 118: 53–71.CrossRefGoogle ScholarPubMed
Baron-Cohen, S. (2004). The Essential Difference. London: Penguin Books.Google Scholar
Baron-Cohen, S., Richler, J., Bisarya, D. et al. (2003). The systemizing quotient: An investigation of adults with Asperger syndrome or high-functioning autism with normal sex differences. Philosophical Transactions of the Royal Society of London B, 358: 361–374.CrossRefGoogle ScholarPubMed
Bateson, M. & Matheson, S. M. (2007). Performance on a categorisation task suggests that removal of environmental enrichment induces ‘pessimism’ in captive European starlings (Sturnus vulgaris). Animal Welfare, 16: 33–36.Google Scholar
Bateson, P. & Gluckman, P. (2011). Plasticity, Robustness, Development and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Beaumont, J. G. (ed.) (1982). Divided Visual Field Studies of Cerebral Organization. London: Academic Press.
Bekoff, A. & Kauer, J. A. (1884). Neural control of hatching: Fate of the pattern generator for the leg movements of hatching in post-hatching chicks. Journal of Neuroscience, 4: 2659–2666.CrossRefGoogle Scholar
Berezinskaja, T. L. & Malakhov, W. (1995). The fine structure of the eye of Serratosagitta pseudoserratodentata. Zoologichesky Zhurnal, 74: 129–133.Google Scholar
Berlim, M. T., Mattevi, B. S., Belmonte-de-Abreu, P. & Crow, T. J. (2003). The etiology of schizophrenia and the origin of language: Overview of a theory. Comprehensive Psychiatry, 44: 7–14.CrossRefGoogle ScholarPubMed
Berrebi, A. S., Fitch, R. H., Ralphe, D. L. et al. (1988). Corpus callosum: Region-specific effects of sex, early experience, and age. Brain Research, 438: 216–224.CrossRefGoogle Scholar
Bertram, B. (1970). The vocal behaviour of the Indian Hill Mynah Gracula religiosa. Animal Behaviour Monographs, 3: 79–192.CrossRefGoogle Scholar
Bianco, I. H. & Wilson, S. W. (2009). The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philosophical Transactions of the Royal Society of London B, 364: 1005–1020.CrossRefGoogle ScholarPubMed
Bickart, K. C., Wright, C. I., Dantoff, R. J. et al. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14: 163–164.CrossRefGoogle ScholarPubMed
Billiard, S., Faurie, C. & Raymond, M. (2005). Maintenance of handedness polymorphism in humans: A frequency-dependent selection model. Journal of Theoretical Biology, 235: 85–93.CrossRefGoogle ScholarPubMed
Binkofski, F. & Buccino, G. (2004). Motor functions of the Broca’s region. Brain and Language, 89: 362–369.CrossRefGoogle ScholarPubMed
Bisazza, A., Cantalupo, C., Robins, A., Rogers, L. J. & Vallortigara, G. (1996a). Pawedness in toads. Nature, 379: 408.CrossRefGoogle Scholar
Bisazza, A., De Santi, A., Bonso, S. & Sovrano, V. A. (2002). Frogs and toads in front of a mirror: Lateralisation of response to social stimuli in tadpoles of five anuran species. Behavioural Brain Research, 134: 417–424.CrossRefGoogle ScholarPubMed
Bisazza, A., De Santi, A. & Vallortigara, G. (1999). Laterality and cooperation: Mosquitofish move closer to a predator when the companion is on their left side. Animal Behaviour, 57: 1145–1149.CrossRefGoogle ScholarPubMed
Bisazza, A., Facchin, L. & Vallortigara, G. (2000). Heritability of lateralization in fish: Concordance of right–left asymmetry between parents and offspring. Neuropsychologia, 38: 907–912.CrossRefGoogle ScholarPubMed
Bisazza, A., Lippolis, G. & Vallortigara, G. (2001). Lateralization of ventral fins use during object exploration in the blue gourami (Trichogaster trichopterus). Physiology and Behavior, 72: 575–578.CrossRefGoogle Scholar
Bisazza, A., Pignatti, R. & Vallortigara, G. (1997a). Detour tasks reveal task- and stimulus-specific neural lateralisation in mosquitofish (Gambusia holbrooki). Behavioural Brain Research, 89: 237–242.CrossRefGoogle Scholar
Bisazza, A., Pignatti, R. & Vallortigara, G. (1997b). Laterality in detour behaviour: Interspecific variation in poeciliid fish. Animal Behaviour, 54: 1273–1281.CrossRefGoogle ScholarPubMed
Bisazza, A., Rogers, L. J. & Vallortigara, G. (1998). The origins of cerebral asymmetry: A review of evidence of behavioural and brain lateralization in fishes, amphibians, and reptiles. Neuroscience and Biobehavioral Reviews, 22: 411–426.CrossRefGoogle Scholar
Bitan, T., Lifshitz, A., Breznitz, Z. et al. (2010). Bidirectional connectivity between hemispheres occurs at multiple levels in language processing but depends on sex. Journal of Neuroscience, 30: 11576–11585.CrossRefGoogle ScholarPubMed
Blanchard, B. A., Riley, E. P. & Hannigan, J. H. (1987). Deficits on a spatial navigation task following prenatal exposure to ethanol. Neurotoxicology and Teratology, 9: 253–258.CrossRefGoogle ScholarPubMed
Blanke, O., Ionta, S. & Fornari, E. (2010). Mental imagery for full and upper human bodies: Common right hemisphere activation and distinct extrastriate activations. Brain Topography, 23: 321–332.CrossRefGoogle Scholar
Boleda, R. M., Chincilla, M., Valls, R. & Pastor, J. (1975). El dextrismo en el chimpancé. Zoo, 23: 18–20.Google Scholar
Boles, D. B., Barth, J. M. & Merrill, E. C. (2008). Asymmetry and performance: Toward a neurodevelopmental theory. Brain and Cognition, 66: 124–139.CrossRefGoogle Scholar
Bonati, B. & Csermely, D. (2011). Complementary lateralisation in the exploratory and predatory behaviour of the common wall lizard (Podarcis muralis). Laterality, 16: 462–470.CrossRefGoogle Scholar
Bonati, B., Csermely, D. & Romani, R. (2008). Lateralisation in the predatory behaviour of the common wall lizard (Podarcis muralis). Behavioural Processes, 79: 171–174.CrossRefGoogle Scholar
Bone, Q. (1972). The Origin of Chordates. Oxford: Oxford University Press, pp. 6–10.Google Scholar
Bonetti, C. & Surace, E. M. (2010). Mouse embryonic retina delivers on formation controlling cortical neurogenesis. PloS One, 5(12): e15211.CrossRefGoogle Scholar
Booker, R. & Quinn, W. G. (1981). Conditioning of leg position in normal and mutant Drosophila. Proceedings of the National Academy of Sciences USA, 78: 3940–3944.CrossRefGoogle ScholarPubMed
Boorman, C. J. & Shimeld, S. M. (2002). The evolution of left–right asymmetry in chordates. BioEssays, 24: 1004–1011.CrossRefGoogle ScholarPubMed
Booth, R., Charlton, R., Hughes, C. et al. (2003). Disentangling weak coherence and executive dysfunction: Planning drawing in autism and attention-deficit disorder. Philosophical Transactions of the Royal Society of London B, 358: 387–392.CrossRefGoogle Scholar
Borod, J. C., Koff, E., Perlman, P., Lorch, M. & Nicholas, M. (1986). The expression and perception of facial emotion in brain-damaged patients. Neuropsychologia, 24: 169–180.CrossRefGoogle ScholarPubMed
Boughman, J. W. (1998). Vocal learning by greater spear-nosed bats. Proceedings of the Royal Society of London B, 265: 227–233.CrossRefGoogle ScholarPubMed
Boycott, A. E. & Diver, C. (1923). On the inheritance of sinistrality in Lymnaea peregra. Proceedings of the Royal Society of London B, 95: 207–213.CrossRefGoogle Scholar
Braccini, S. & Caine, N. G. (2009). Hand preference predicts reactions to novel foods and predators in marmosets (Callithrix geoffroyi). Journal of Comparative Psychology, 123: 18–25.CrossRefGoogle Scholar
Bradshaw, J. L. (1989). Hemispheric Specialization and Psychological Function. Chichester: John Wiley and Sons.Google Scholar
Bradshaw, J. L. (1991). Methods for studying human laterality. Neuromethods, 17: 225–280.Google Scholar
Bradshaw, J. L. & Nettleton, N. C. (1982). Language lateralization to the dominant hemisphere: Tool use, gesture and language in hominid evolution. Current Psychology, 2: 171–192.CrossRefGoogle Scholar
Bradshaw, J. L. & Rogers, L. J. (1993). The Evolution of Lateral Asymmetries, Language, Tool Use and Intellect. San Diego, CA: Academic Press.Google Scholar
Brain, W. R. (1941). Visual disorientation with special reference to lesions of the right hemisphere. Brain, 64: 224–272.CrossRefGoogle Scholar
Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. Cambridge, MA: MIT Press.Google Scholar
Braitenberg, V. & Kemali, M. (1970). Exceptions to bilateral symmetry in the epithalamus of lower vertebrates. Journal of Comparative Neurology, 138: 137–146.CrossRefGoogle ScholarPubMed
Branson, N. J. & Rogers, L. J. (2006). Relationship between paw preference strength and noise phobia in Canis familiaris. Journal of Comparative Psychology, 120: 176–183.CrossRefGoogle ScholarPubMed
Breedlove, S. M., Watson, N. V. & Rosenzweig, M. R. (2010). Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience. 6th edn. Sunderland, MA: Sinauer Associates, Inc.Google Scholar
Broad, K. D., Mimmack, M. L. & Kendrick, K. M. (2000). Is right hemisphere specialization for face discrimination specific to humans? European Journal of Neuroscience, 12: 731–741.CrossRefGoogle Scholar
Broca, P. (1865). Sur le siège de la faculté du langage articulé. Bulletin de la Société d’Anthropologie de Paris, 6: 377–393.CrossRefGoogle Scholar
Brooks, R., Bussière, L. F., Jennions, M. D. & Hunt, J. (2004). Sinister strategies succeed at the cricket World Cup. Proceedings of the Royal Society of London B, Biology Letters, 271: S64–S66.CrossRefGoogle ScholarPubMed
Brown, C., Gardner, C. & Braithwaite, V. R. (2004). Population variation in lateralized eye use in the poeciliid Brachyraphis episcopi. Proceedings of the Royal Society of London B, 271: S455–S457.CrossRefGoogle ScholarPubMed
Brown, C., Western, J. A. C. & Braithwaite, V. R. (2007). The influence of early experience on, and inheritance of, cerebral lateralization. Animal Behaviour, 74: 231–238.CrossRefGoogle Scholar
Brownell, H. H., Michel, D., Powelson, J. et al. (1983). Surprise but not coherence; sensitivity to verbal humour in right-hemisphere patients. Brain and Language, 18: 20–27.CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. (2008). The brain’s default network – anatomy, function and relevance to disease. Annals of the New York Academy of Science, 1124: 1–39.CrossRefGoogle ScholarPubMed
Budaev, S. & Andrew, R. J. (2009a). Shyness and behavioural asymmetries in larval zebrafish (Brachydanio rerio) incubated in the dark. Behavior, 146: 1037–1052.CrossRefGoogle Scholar
Budaev, S. & Andrew, R. J. (2009b). Patterns of early embryonic light exposure determine behavioural asymmetries in zebrafish: A habenular hypothesis. Behavioural Brain Research, 200: 91–94.CrossRefGoogle ScholarPubMed
Budil, P., Thomas, A. T. & Harbinger, F. (2008). Exoskeletal architecture, hypostomal morphology and mode of life of Silurian and Lower Devonian dalmantid trilobites. Bulletin of the Geosciences, 83: 1–10.CrossRefGoogle Scholar
Burgdorf, J., Knutson, B., Panksepp, J. et al. (2001). Nucleus accumbens amphetamine microinjections unconditionally elicit 50 kHz vocalisations in rats. Behavioral Neuroscience, 115: 940–944.CrossRefGoogle Scholar
Burghardt, G. M., Ward, B. & Rosscoe, R. (1996). Problem of reptile play: Environmental enrichment and play behaviour in a captive Nile soft-shelled turtle, Trionyx triunguis. Zoo Biology, 15: 223–238.3.0.CO;2-D>CrossRefGoogle Scholar
Byers, J. A. (1999). The distribution of play among Australian marsupials. Journal of Zoology London, 247: 349–356.CrossRefGoogle Scholar
Byrne, R. W. & Byrne, J. M. E. (1991). Hand preferences in the skilled gathering task of mountain gorillas (Gorilla g. berengei). Cortex, 27: 521–546.CrossRefGoogle Scholar
Byrne, R. A., Kuba, M. J. & Griebel, U. (2002). Lateral asymmetry of eye use in Octopus vulgaris. Animal Behaviour, 64: 461–468.CrossRefGoogle Scholar
Byrne, R. A., Kuba, M. J. & Meisel, D. V. (2004). Lateralised eye use in Octopus vulgaris shows antisymmetric distribution. Animal Behaviour, 68: 1107–1114.CrossRefGoogle Scholar
Cabeza, R., Ciaramelli, E., Olson, I. R. et al. (2008). The parietal cortex and episodic cortex: An attentional account. Nature Reviews Neuroscience, 9: 613–625.CrossRefGoogle Scholar
Cabeza, R., Dolcos, F., Graham, R. et al. (2002). Similarities and differences in the neural correlates of episodic memory, retrieval and working memory. NeuroImage, 16: 317–330.CrossRefGoogle ScholarPubMed
Callaert, D. V., Vercantrien, K., Peters, R. et al. (2011). Hemispheric asymmetries of motor versus nonmotor processes during (visuo)motor control. Human Brain Mapping, 32: 1311–1329.CrossRefGoogle ScholarPubMed
Cameron, R. & Rogers, L. J. (1999). Hand preference of the common marmoset, problem solving and responses in a novel setting. Journal of Comparative Psychology, 113: 149–157.CrossRefGoogle Scholar
Cammarota, M., Bevilaqua, L. R., Rossato, J. I. et al. (2008). Parallel memory processing by the CA1 region of the dorsal hippocampus and the basolateral amygdala. Proceedings of the National Academy of Sciences USA, 105: 10279–10284.CrossRefGoogle ScholarPubMed
Canli, T., Desmond, J. E., Zhao, Z. et al. (2002). Sex differences in the neural basis of emotional memories. Proceedings of the National Academy of Sciences USA, 105: 5532–5536.Google Scholar
Cantalupo, C. & Hopkins, W. D. (2010). The cerebellum and its contribution to complex tasks in higher primates: A comparative perspective. Cortex, 46: 821–830.CrossRefGoogle ScholarPubMed
Cantalupo, C., Bisazza, A. & Vallortigara, G. (1995). Lateralization of predator-evasion response in a teleost fish. Neuropsychologia, 33: 1637–1646.CrossRefGoogle Scholar
Cantalupo, C., Freeman, H., Rodes, W. & Hopkins, W. D. (2008). Handedness for tool use correlates with cerebellar asymmetries in chimpanzees (Pan troglodytes). Behavioral Neuroscience, 122: 191–198.CrossRefGoogle Scholar
Cantalupo, C., Pilcher, D. L. & Hopkins, W. D. (2003). Are planum temporale and sylvian fissure asymmetries directly correlated? A MRI study in great apes. Neuropsychologia, 41: 1975–1981.CrossRefGoogle Scholar
Carlson, K. J., Stout, D., Jashashvili, T. et al. (2011). The endocasts of MH1, Australopithecus sediba. Science, 333: 1402.CrossRefGoogle ScholarPubMed
Caron, J.-B., Morris, S. C. & Shu, D. (2010). Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive Deuterostomes. PLoS One, 5, e9586–A201.CrossRefGoogle ScholarPubMed
Carrasquillo, Y. & GereauIV, R. W. (2008). Hemispheric lateralization of a molecular signal for pain modulation in the amygdala. Molecular Pain, 4: 24.CrossRefGoogle ScholarPubMed
Casey, M. B. (2005). Asymmetrical hatching behaviors: The development of postnatal motor laterality in three precocial bird species. Developmental Psychobiology, 47: 123–135.CrossRefGoogle ScholarPubMed
Casey, B. J., Getz, S. & Galvan, A. (2008). The adolescent brain. Developmental Review, 28: 62–77.CrossRefGoogle ScholarPubMed
Casperd, J. M. & Dunbar, R. I. M. (1996). Asymmetries in the visual processing of emotional cues during agonistic interactions in gelada baboons. Behavioral Processses, 37: 57–65.CrossRefGoogle ScholarPubMed
Castelli, F., Frith, C., Happé, F. et al. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125: 1839–1849.CrossRefGoogle ScholarPubMed
Chapman, J. P. & Chapman, L. J. (1987). Handedness of hypothetically psychosis-prone subjects. Journal of Abnormal Psychology, 96: 89–93.CrossRefGoogle ScholarPubMed
Charron, S. & Koechlin, E. (2010). Divided representation of concurrent goals in the human frontal lobes. Science, 328: 360–363.CrossRefGoogle ScholarPubMed
Chen-To, Cheng, Heng, Chang & Pang-Ta, Hsu (1957). Sung Dynasty Album Paintings. Peking: Chinese Classic Art Publishing House.Google Scholar
Cherkin, A. (1969). Kinetics of memory consolidation: Role of amnesic treatment parameters. Proceedings of the National Academy of Sciences USA, 63: 1094–1101.CrossRefGoogle ScholarPubMed
Chi, R. P. & Snyder, A. W. (2011). Facilitate insight by non-invasive brain stimulation. PLoS One, 6: e16655.CrossRefGoogle ScholarPubMed
Chiandetti, C. & Vallortigara, G. (2009). Effects of embryonic light stimulation on the ability to discriminate left from right in the domestic chick. Behavioural Brain Research, 198: 204–246.CrossRefGoogle ScholarPubMed
Chiandetti, C., Regolin, L., Rogers, L. J. & Vallortigara, G. (2005). Effects of light stimulation in embryo on the use of position-specific and object-specific cues in binocular and monocular chicks (Gallus gallus). Behavioural Brain Research, 163: 10–17. Erratum to this paper published in 2007, Behavioural Brain Research, 177: 175.CrossRefGoogle Scholar
Chura, L. R., Lombardo, M. V., Ashwin, E. et al. (2010). Organizational effects of fetal testosterone on human corpus callosum size and asymmetry. Psychoneuroendocrinology, 35: 122–132.CrossRefGoogle ScholarPubMed
Cipolla-Neto, J., Horn, G. & McCabe, B. J. (1982). Hemispheric asymmetry and imprinting: The effect of sequential lesions of the hyperstriatum ventrale. Experimental Brain Research, 48: 22–27.CrossRefGoogle ScholarPubMed
Clark, B. J. & Taube, J. S. (2009). Deficits in landmark navigation and path integration after lesions of the interpeduncular nucleus. Behavioral Neuroscience, 123: 490–503.CrossRefGoogle ScholarPubMed
Clark, B. J., Sarma, A. & Taube, J. S. (2009). Head direction cell instability in the anterior dorsal thalamus after lesions of the interpeduncular nucleus. Journal of Neuroscience, 29: 493–507.CrossRefGoogle ScholarPubMed
Clark, M. M., Robertson, R. K. & Galef, B. G. (1993). Intrauterine position effects on sexually dimorphic asymmetries of Mongolian gerbils: Testosterone, eye-opening, and paw preference. Developmental Psychobiology, 26: 185–194.CrossRefGoogle ScholarPubMed
Clayton, N. S. (1993). Lateralization and unilateral transfer of spatial memory in marsh tits. Journal of Comparative Physiology A, 171: 799–806.CrossRefGoogle Scholar
Clayton, N. S. & Krebs, J. R. (1994a). Hippocampal growth and attrition in birds affected by experience. Proceedings of the National Academy of Sciences USA, 91: 7410–7414.CrossRefGoogle ScholarPubMed
Clayton, N. S. & Krebs, J. R. (1994b). Memory for spatial and object-specific cues in food-storing and non-storing birds. Journal of Comparative Psychology A, 174: 371–379.Google Scholar
Collins, D. W. & Kimura, D. (1997). A large sex difference on a two-dimensional mental rotation task. Behavioral Neuroscience, 111: 845–849.CrossRefGoogle ScholarPubMed
Collins, R. L. (1985). On the inheritance of the direction and the degree of asymmetry. In: Glick, S. D. (ed.), Cerebral Lateralization in Nonhuman Species, New York: Academic Press, pp. 41–71.CrossRefGoogle Scholar
Collins, R. L. (1991). Reimpressed selective breeding for lateralization of handedness in mice. Brain Research, 564: 194–202.CrossRefGoogle ScholarPubMed
Collins, R. L., Sargent, E. E. & Neumann, P. E. (1993). Genetic and behavioral tests of the McManus hypothesis relating response to selection for lateralization of handedness in mice to degree of heterozygosity. Behavioral Genetics, 23: 413–421.CrossRefGoogle Scholar
Colonnese, M. T., Kaminska, A., Minlebaev, M. et al. (2010). A conserved switch in sensory processing prepares developing neocortex for vision. Neuron, 67: 480–498.CrossRefGoogle ScholarPubMed
Concha, M. L. & Wilson, S. W. (2001). Asymmetry in the epithalamus of vertebrates. Journal of Anatomy, 199: 63–84.CrossRefGoogle ScholarPubMed
Concha, M. L., Signore, I. A. & Colombo, A. (2009). Mechanisms of directional asymmetry in the zebrafish epithalamus. Seminars in Cell and Developmental Biology, 20: 498–509.CrossRefGoogle ScholarPubMed
Cooper, R., Nudo, N., González, J. et al. (2011). Side-dominance of Periplaneta americana persists through antenna amputation. Journal of Insect Behavior, 24: 175–185.CrossRefGoogle Scholar
Corballis, M. C. (2002). From Hand to Mouth: The Origins of Language. Princeton, NJ: Princeton University Press.Google Scholar
Corballis, M. C. (2003). From mouth to hand: Gesture, speech, and the evolution of right-handedness. Behavioral Brain Sciences, 26: 199–260.CrossRefGoogle ScholarPubMed
Corballis, M. C. (2006). Cerebral asymmetry: A question of balance. Cortex, 42: 117–118.CrossRefGoogle Scholar
Corballis, M. C., Badzakova-Trajkov, G. & Häberling, I. S. (2012). Right hand, left brain: Genetic and evolutionary bases of cerebral asymmetries for language and manual action. WIREs Cognitive Science, 3: 1–17.CrossRefGoogle ScholarPubMed
Corballis, P. M., Fendrich, R., Shapley, R. M. & Gazzaniga, M. S. (1999). Illusory contour perception and amodal boundary completion: Evidence of a dissociation following callosotomy. Journal of Cognitive Neuroscience, 11: 459–466.Google ScholarPubMed
Corbetta, M., Patel, G. & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58: 306–324.CrossRefGoogle ScholarPubMed
Cowell, P. E. & Denenberg, V. H. (2002). Development of laterality and the role of the corpus callosum in rodents and humans. In: Rogers, L. J. and Andrew, R. J. (eds.), Comparative Vertebrate Lateralization, Cambridge: Cambridge University Press, pp. 274–305.CrossRefGoogle Scholar
Cowell, P. E., Waters, N. S. & Denenberg, V. H. (1997). The effects of early environment on the development of functional laterality in Morris maze performance. Laterality, 2: 221–232.CrossRefGoogle ScholarPubMed
Craig, A. D. (2005). Forebrain emotional asymmetry: A neuroanatomical basis? Trends in Cognitive Sciences, 912: 566–571.CrossRefGoogle Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10: 59–70.CrossRefGoogle ScholarPubMed
Crockford, C., Herbinger, I., Vigilant, L. et al. (2004). Wild chimpanzees produce group-specific calls: A case for vocal learning?Ethology, 110: 221–243.CrossRefGoogle Scholar
Crow, T. J. (1997). Schizophrenia as a failure of hemispheric dominance for language. Trends in Neurosciences, 20: 339–343.Google ScholarPubMed
Da Costa, A. P., Leigh, A. E., Man, M. & Kendrick, K. M. (2004). Face pictures reduce behavioural, autonomic, endocrine and neural indices of stress and fear in sheep. Proceedings of the Royal Society of London B: Biological Sciences, 271: 2077–2084.CrossRefGoogle Scholar
da Guardia, S. N. F., Cohen, L. G., da Cunha Pinho, M. et al. (2010). Interhemispheric asymmetry of corticomotor excitability after chronic cerebellar infarcts. Cerebellum, 9: 398–404.CrossRefGoogle Scholar
Dadda, M. & Bisazza, A. (2006). Does brain asymmetry allow efficient performance of simultaneous tasks? Animal Behaviour, 72: 523–529.CrossRefGoogle Scholar
Dadda, M., Koolhaas, W. H. & Domenici, P. (2010). Behavioural asymmetry affects escape performance in a teleost fish. Biology Letters, 6: 414–417.CrossRefGoogle Scholar
Daisley, J. N., Rosa Salva, O., Regolin, L. & Vallortigara, G. (2011). Social cognition and learning mechanisms: Experimental evidence in domestic chicks. Interaction Studies, 12: 208–232.Google Scholar
Daisley, J. N., Vallortigara, G. & Regolin, L. (2010). Logic in an asymmetrical (social) brain: Transitive inference in the young domestic chick. Social Neuroscience, 5: 309–319.CrossRefGoogle Scholar
Davatzikos, C. & Resnick, S. M. (1998). Sex differences in anatomic measures of interhemispheric connectivity: Correlations with cognition in women but not men. Cerebral Cortex, 8: 635–664.CrossRefGoogle Scholar
Davidoff, J., Goldstein, J. & Roberson, D. (2009). Nature versus nurture: The simple contrast. Journal of Experimental Child Psychology, 102: 246–250.CrossRefGoogle Scholar
Davidson, R. J. (1995). Cerebral asymmetry, emotion and affective style. In: Davidson, R. J. & Hugdahl, K. (eds.), Brain Asymmetry, Cambridge, MA: MIT Press, pp. 361–387.Google Scholar
Davison, A., Frend, H. T., Moray, C. et al. (2009). Mating behaviour in pond snails Lymnaea stagnalis is a maternally inherited, lateralized trait. Biology Letters, 5: 20–22.CrossRefGoogle ScholarPubMed
de Boyer des Roches, A., Durier, V., Richard-Yris, M. A. et al. (2011). Differential outcomes of unilateral interferences at birth. Biology Letters, 7: 177–180.CrossRefGoogle ScholarPubMed
de Gelder, B., Portois, G. & Weiskrantz, L. (2002). Fear recognition in the voice is modulated by unconsciously recognised affective pictures. Proceedings of the National Academy of Sciences USA, 99: 4121–4126.CrossRefGoogle Scholar
de Gennaro, L., Bertini, M., Pauri, F. et al. (2004). Callosal effects of transcranial stimulation (TMS): The influences of gender and stimulus parameters. Neuroscience Research, 48: 129–137.CrossRefGoogle Scholar
de Latude, M., Demange, M., Bec, P. et al. (2009). Visual laterality responses to different emotive stimuli by red-capped mangabeys Cercocebus torquatus torquatus. Animal Cognition, 12: 31–42.CrossRefGoogle ScholarPubMed
De Santi, A., Sovrano, V. A., Bisazza, A. & Vallortigara, G. (2001). Mosquitofish display differential left- and right-eye use during mirror image scrutiny and predator inspection responses. Animal Behaviour, 61: 305–310.CrossRefGoogle Scholar
Deckel, A. W. (1995). Laterality of aggressive responses in Anolis. Journal of Experimental Zoology, 272: 194–200.CrossRefGoogle Scholar
Deckel, A. W. (1997). Effects of alcohol consumption on lateralized aggression in Anolis carolinensis. Brain Research, 756: 96–105.CrossRefGoogle ScholarPubMed
Deckel, A. W. (1998). Hemispheric control of territorial aggression in Anolis carolinensis: Effects of mild stress. Brain, Behavior and Evolution, 51: 33–39.CrossRefGoogle ScholarPubMed
Deckel, A. W. & Fugua, L. (1998). Effects of serotonergic drugs on lateralized aggression and aggressive displays in Anolis carolinensis. Behavioural Brain Research, 95: 227–232.CrossRefGoogle ScholarPubMed
Deckel, A. W., Lillaney, R., Ronan, P. J. & Summers, C. H. (1998). Lateralized effects of ethanol on aggression and serotonergic systems in Anolis carolinensis. Brain Research, 807: 38–46.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Hertz-Pannier, L. & Dubois, J. (2006). Nature and nurture in language acquisition: Anatomical and functional brain-imaging studies in infants. Trends in Neurosciences, 29: 367–381.CrossRefGoogle ScholarPubMed
Denenberg, V. H. (1981). Hemispheric laterality in animals and the effects of early experience. Behavioral and Brain Sciences, 4: 1–49.CrossRefGoogle Scholar
Denenberg, V. H. (1984). Behavioural asymmetry. In: Geschwind, N. & Galaburda, A. M. (eds.), Cerebral Dominance: The Biological Foundations, Cambridge MA: Harvard University Press, pp. 114–133.Google Scholar
Denenberg, V. H. (2005). Behavioral asymmetry and reverse asymmetry in the chick and rat. Behavioral Brain Sciences, 28: 597.CrossRefGoogle Scholar
Denenberg, V. H., Cowell, P. E., Fitch, R. H., Kertesz, A. & Kenner, G. H. (1991). Corpus callosum: Multiple parameter measurements in rodents and humans. Physiology and Behavior, 49: 433–437.CrossRefGoogle ScholarPubMed
Deng, C. & Rogers, L. J. (2002a). Factors affecting the development of lateralisation in chicks. In: Rogers, L. J. & Andrew, R. J. (eds.), Comparative Vertebrate Lateralization, Cambridge: Cambridge University Press, pp. 206–246.CrossRefGoogle Scholar
Deng, C. & Rogers, L. J. (2002b). Social recognition and approach in the chick: Lateralization and effect of visual experience. Animal Behaviour, 63: 697–706.CrossRefGoogle Scholar
Denny, K. (2009). Handedness and depression: Evidence from a large population survey. Laterality, 14: 246–255.CrossRefGoogle ScholarPubMed
Deruelle, C. & Fagot, J. (1997). Hemispheric lateralisation and global precedence effects in the processing of visual stimuli by humans and baboons (Papio papio). Laterlity, 2: 233–246.Google Scholar
DeYoung, C. G., Hirsh, J. B., Shane, M. S. et al. (2010). Testing predictions from personality neuroscience: Brain structure and the Big Five. Psychological Science, 21: 820–828.CrossRefGoogle ScholarPubMed
Diamond, M. C. (1991). Hormonal effects on the development of cerebral lateralisation. Psychoneuroendocrinology, 16: 121–128.CrossRefGoogle Scholar
Diba, K. & Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience, 10: 1241–1242.CrossRefGoogle ScholarPubMed
Diekamp, B., Prior, H. & Güntürkün, O. (1999). Functional lateralization, interhemispheric transfer and position bias in serial reversal learning in pigeons (Columba livia). Animal Cognition, 2: 187–196.CrossRefGoogle Scholar
Diekamp, B., Regolin, L., Gunturkun, O. & Vallortigara, G. (2005). A left-sided visuospatial bias in birds. Current Biology, 15: R372–R373.CrossRefGoogle ScholarPubMed
Dien, J. (2008). Looking both ways through time: The Janus model of lateralised cognition. Brain and Cognition, 67: 292–323.CrossRefGoogle Scholar
Dimond, S. & Harries, R. (1984). Face touching in monkeys, apes and man: Evolutionary origins and cerebral asymmetry. Neuropsychologia, 22: 227–233.CrossRefGoogle ScholarPubMed
Dimond, S. J., Farrington, L. & Johnson, P. (1976). Differing emotional response from right and left hemispheres. Nature, 261: 690–692.CrossRefGoogle ScholarPubMed
Dong, X.-P, Donoghue, P. C. J. & Repetski, J. E. (2005). Basal tissue structure in the earliest euconodonts: Testing hypotheses of developmental plasticity in euconodont phylogeny. Palaeontology, 48: 411–421.CrossRefGoogle Scholar
Donoghue, P. C. J., Forey, P. L. & Andridge, R. J. (2000). Conodont affinity and chordate phylogeny. Biological Review, 75: 191–251.CrossRefGoogle ScholarPubMed
Doupe, A. J. & Kuhl, P. K. (2008). Birdsong and human speech: Common themes and mechanisms. In: Zeigler, H. P. & Marler, P. (eds.), Neuroscience of Birdsong, Cambridge: Cambridge University Press, pp. 5–31.Google Scholar
Downs, A. & Smith, T. (2004). Emotional understanding, cooperation and social behaviour in high-functioning children with autism. Journal of Autism and Developmental Disorders, 34: 625–635.CrossRefGoogle ScholarPubMed
Drach, P. (1948). Embranchement des Céphalochordés. In: Grassé, P.-P. (ed.), Traité de Zoologie, Paris: Masson et Cie, pp. 931–1037.Google Scholar
Drews, C. (1996). Contexts and patterns of injuries in free-ranging male baboons (Papio cynocephalus). Behaviour, 133: 443–474.CrossRefGoogle Scholar
Duguid, W. P. (2010). The enigma of reversed asymmetry in lithodid crabs: Absence of evidence for heritability or induction of morphological handedness in Lopholithodes foraminatus. Evolution and Development, 12: 74–83.CrossRefGoogle ScholarPubMed
Duistermars, B. J., Chow, D. M. & Frye, M. A. (2009). Flies require bilateral sensory input to track odour gradients in flight. Current Biology 19: 1301–1307.CrossRefGoogle ScholarPubMed
Eaton, R. C. & Emberley, D. S. (1991). How stimulus direction determines the trajectory of the Mauthner-initiated escape response in a teleost fish. Journal of Experimental Biology, 161: 469–487.Google Scholar
Ehret, G. (1987). Left hemisphere advantage in the mouse brain for recognising ultrasonic communication calls. Nature, 325: 249–251.CrossRefGoogle Scholar
Ehrlichman, H. (1986). Hemispheric asymmetry and positive-negative affect. In: Ottoson, D. (ed.), Duality and Unity of the Brain, Dordrecht: The Netherlands, pp. 194–206.Google Scholar
Engbretson, G. A., Reiner, A. & Brecha, N. (1981). Habenular asymmetry and the central connections of the parietal eye of the lizard. Journal of Comparative Neurology, 198: 155–165.CrossRefGoogle ScholarPubMed
Enggist-Dueblin, P. & Pfister, U. (2002). Cultural transmission of vocalisations in ravens Corvus corax. Animal Behaviour, 64: 831–841.CrossRefGoogle Scholar
Erwin, C. W. & Linnoila, M. (1981). Effect of ethyl alcohol on visual evoked potentials. Alcoholism: Clinical and Experimental Research, 5: 49–55.CrossRefGoogle ScholarPubMed
Esslinger, C., Kirsch, P. & Haddad, L. et al. (2011). Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. NeuroImage, 54: 2514–2523.CrossRefGoogle ScholarPubMed
Everhart, D. E., Suchard, J. L., Quatrin, T. et al. (2001). Sex-related difference in event-related potentials, face recognition and facial affect processing in prepubertal children. Neuropsychology, 15: 329–341.CrossRefGoogle Scholar
Fagot, J. & Vauclair, J. (1991). Manual laterality in nonhuman primates: A distinction between handedness and manual specialization. Psychological Bulletin, 109: 76–89.CrossRefGoogle ScholarPubMed
Fagot, J., Lacreuse, A. & Vauclair, J. (1997). Role of sensory and post-sensory factors on hemispheric asymmetries in tactual perception. In: Christman, S. (ed.), Cerebral Asymmetries in Sensory and Perceptual Processing, New York: Elsevier, pp. 469–494.CrossRefGoogle Scholar
Fan, J., Gu, X., Guise, K. G. et al. (2011). Involvement of the anterior cingulate and frontoinsular cortices in rapid processing of salient emotional information. NeuroImage, 54: 2539–2546.CrossRefGoogle ScholarPubMed
Fan, L., Tang, Y., Sun, B. et al. (2010). Sexual dimorphism and asymmetry in human cerebellum: An MRI-based morphometric study. Brain Research, 1353: 60–73.CrossRefGoogle ScholarPubMed
Faurie, C. & Raymond, M. (2004). Handedness, homicide and negative frequency-dependent selection. Proceedings of the Royal Society of London B, 272: 25–28.CrossRefGoogle Scholar
Faurie, C. & Raymond, M. (2005). Handedness frequency over more than 10,000 years. Proceedings of the Royal Society of London B, 271: S43–S45.CrossRefGoogle Scholar
Ferbinteanu, J. & Shapiro, M. L. (2003). Prospective and retrospective memory coding in the hippocampus. Neuron, 40: 1227–1239.CrossRefGoogle ScholarPubMed
Fernandez-Carriba, S., Loches, A. & Hopkins, W. D. (2002). Asymmetry of facial expression of emotions by chimpanzees. Neuropsychologia, 40: 1523–1533.CrossRefGoogle ScholarPubMed
Ferrari, P. F., Paukner, A., Ruggiero, A. et al. (2009). Inter-individual differences in neonatal imitation and the development of action chains in rhesus macaques. Child Development, 80: 1057–1068.CrossRefGoogle Scholar
Ficken, M. S. (1977). Avian play. The Auk, 94: 573–582.Google Scholar
Finch, G. (1941). Chimpanzee handedness. Science, 94: 117–118.CrossRefGoogle ScholarPubMed
Fitch, R. H., Berrebi, A. S., Cowell, P. E., Schrott, L. M. & Denenberg, V. H. (1990). Corpus callosum: Effects of neonatal hormones on sexual dimorphism in the rat. Brain Research, 515: 111–116.CrossRefGoogle ScholarPubMed
Fitch, R. H., Cowell, P. E., Schrott, L. M. & Denenberg, V. H. (1991). Corpus callosum: Demasculinization via perinatal anti-androgen. International Journal of Developmental Neuroscience, 1: 35–38.CrossRefGoogle Scholar
Foa, A., Basaglia, G., Carnacina, M. et al. (2009). Orientation of lizards in a Morris water-maze: Roles of the sun compass and the parietal eye. Journal of Experimental Biology, 212: 1918–2924.CrossRefGoogle Scholar
Folta, K., Diekamp, B. & Güntürkün, O. (2004). Asymmetrical modes of visual bottom-up and top-down integration in the thalamic nucleus rotundus of pigeons. Journal of Neuroscience, 24: 9475–9485.CrossRefGoogle ScholarPubMed
Forrester, G. S., Quaresmini, C., Leavens, D. A., Spiezio, C. & Vallortigara, G. (2012). Target animacy influences chimpanzee handedness. Animal Cognition, advance online publication at .CrossRef
Forrester, G. S., Quaresmini, C., Leavens, D. A. & Vallortigara, G. (2011). Target animacy influences gorilla handedness. Animal Cognition, 14: 903–907.CrossRefGoogle ScholarPubMed
Foster, W. A. & Treherne, J. E. (1981). Evidence for the dilution effect in the selfish herd from fish predation of a marine insect. Nature, 293: 508–510.CrossRefGoogle Scholar
Foundas, A. L., Leonard, C. M. & Hanna-Pladdy, B. (2002). Variability in the anatomy of the planum temporale and posterior ascending ramus: Do right and left handers differ?Brain and Language, 83: 403–424.CrossRefGoogle ScholarPubMed
Fox, M. D., Corbetta, M., Snyder, A. Z. et al. (2006). Spontaneous neural activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences USA, 103: 10046–10051.CrossRefGoogle Scholar
Franklin, A. (2009). Pre-linguistic categorical perception of colour cannot be explained by colour preference: Response to Roberson and Hanley. Trends in Cognitive Sciences, 13: 501–502.CrossRefGoogle ScholarPubMed
Franklin, A., Drivonikou, G. V., Bevis, L. et al. (2008a). Categorical perception of colour is lateralised to the right hemisphere in infants, but to the left hemisphere in adults. Proceedings of the National Academy of Sciences USA, 105: 3221–3225.CrossRefGoogle Scholar
Franklin, A., Drivonikou, G. V., Clifford, A. et al. (2008b). Lateralisation of categorical perception colour changes with colour term acquisition. Proceedings of the National Academy of Sciences USA, 105: 18221–18225.CrossRefGoogle Scholar
Frasnelli, E., Anfora, G., Trona, F., Tessarolo, F. & Vallortigara, G. (2010). Morpho-functional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behavioural Brain Research, 209: 221–225.CrossRefGoogle Scholar
Frasnelli, E., Iakovlev, I. & Reznikova, Z. (2012). Asymmetry in antennal contacts during trophallaxis in ants. Behavioural Brain Research, 32: 7–12.CrossRefGoogle Scholar
Frasnelli, E., Vallortigara, G. & Rogers, L. J. (2011). Origins of brain asymmetry: Lateralization of odour memory recall in primitive Australian stingless bees. Behavioural Brain Research, 224: 121–127.CrossRefGoogle ScholarPubMed
Frasnelli, E., Vallortigara, G., Rogers, L. J. (2012). Left–right asymmetries of behaviour and nervous system in invertebrates. Neuroscience and Biobehavioral Reviews, 36: 1273–1291.CrossRef
Freake, M. J. (1999). Evidence for orientation using the e-vector of polarised light in the sleepy lizard Tiliqua rugosa. Journal of Experimental Biology, 202: 1159–1166.Google ScholarPubMed
Freake, M. J. (2001). Homing behaviour in the sleepy lizard Tiliqua rugosa: The role of visual cues and the parietal eye. Behavioral Ecology and Sociobiology, 50: 563–569.Google Scholar
Fredes, F., Tapia, S., Letelier, J. C. et al. (2010). Topographical arrangement of the rotundo-entopallial projection in the pigeon (Columba livia). Journal of Comparative Neurology, 518: 4342–4361.CrossRefGoogle Scholar
Freire, R. & Rogers, L. J. (2005). Experience-induced modulation of the use of spatial information in the domestic chick. Animal Behaviour, 69: 1093–1100.CrossRefGoogle Scholar
Freire, R. & Rogers, L. J. (2007). Experience during a period of right hemispheric dominance alters attention to spatial; information in the domestic chick. Animal Behaviour, 74: 413–418.CrossRefGoogle Scholar
Freire, R., Cheng, H.-W. & Nicol, C. J. (2004). Development of spatial memory in occlusion-experienced domestic chicks. Animal Behaviour, 67: 141–150.CrossRefGoogle Scholar
Freire, R., van Dort, S. & Rogers, L. J. (2006). Pre- and post- hatching effects of corticosterone treatment on behavior of the domestic chick. Hormones and Behavior, 49: 157–165.CrossRefGoogle ScholarPubMed
Freund, N., Güntürkün, O. & Manns, M. (2008). A morphological study of the nucleus subpretectalis of the pigeon. Brain Research Bulletin, 75: 491–493.CrossRefGoogle ScholarPubMed
Friedrich, A. & Teyke, T. (1998). Identification of stimuli and input pathways mediating food-attraction conditioning in the snail Helix. Journal of Comparative Physiology A, 183: 247–254.CrossRefGoogle Scholar
Frith, E. L. & Frith, U. (2003). Understanding autism: Insights from mind and brain. Philosophical Transactions of the Royal Society of London B, 358: 281–289.Google Scholar
Fu, C. H., Vythelingum, G. N., Brammer, M. J. et al. (2006). An fMRI study of verbal self-monitoring: Neural correlates of auditory verbal feedback. Cerebral Cortex, 16: 969–977.CrossRefGoogle ScholarPubMed
Gainotti, G. (1972). Emotional behaviour and hemispheric side of the lesion. Cortex, 8: 41–55.CrossRefGoogle ScholarPubMed
Gainotti, G. (1989). Disorders of emotions and affect in patients with unilateral brain damage. In: Boller, F. & Grafman, J. (eds.), Handbook of Neuropsychology, Vol. 3, Amsterdam: Elsevier, pp. 161–179.Google Scholar
Gallate, J., Wong, C., Ellwood, S., Chi, R. & Snyder, A. (2011). Noninvasive brain stimulation reduces prejudice scores on an implicit association test. Neuropsychology, 25: 185–192.CrossRefGoogle ScholarPubMed
Gardner, R. A., Vancante, T. E. & Gardner, B. T. (1992). Categorical replies to categorical questions by cross-fostered chimpanzees. American Journal of Psychology, 105: 27–57.CrossRefGoogle ScholarPubMed
Gazzaniga, M. (1967). The split-brain in man. Scientific American, 217: 24.CrossRefGoogle Scholar
Gazzaniga, M. S. (2000). Cerebral specialisation and interhemispheric communication. Brain, 123: 1293–1326.CrossRefGoogle ScholarPubMed
Geissler, D. B. & Ehret, G. (2004). Auditory perception vs. recognition: Representation of complex communication in the mouse auditory fields. European Journal of Neuroscience, 19: 1027–1040.CrossRefGoogle Scholar
Geng, J. J. & Mangun, C. R. (2011). Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination. NeuroImage, 54: 594–601.CrossRefGoogle ScholarPubMed
Gentilucci, M., Benuzzi, F., Gangitano, M. & Grimaldi, S. (2001). Grasp with hand and mouth: A kinematic study on healthy subjects. Journal of Neurophysiology, 86: 1685–1699.CrossRefGoogle ScholarPubMed
George, I., Vernier, B., Richard, J.-P., Hausbeger, M. & Cousillas, H. (2004). Hemispheric specialization in the primary auditory area of awake and anesthetized starlings (Sturnus vulgaris). Behavioral Neuroscience, 118: 597–610.CrossRefGoogle Scholar
Geschwind, N. & Galaburda, A. M. (1987). Cerebral Lateralization: Biological Mechanisms, Associations, and Pathology. Cambridge, MA: MIT Press.Google Scholar
Ghirlanda, S. & Vallortigara, G. (2004). The evolution of brain lateralization: A game theoretical analysis of population structure. Proceedings of the Royal Society of London B, 271: 853–857.CrossRefGoogle ScholarPubMed
Ghirlanda, S., Frasnelli, E. & Vallortigara, G. (2009). Intraspecific competition and coordination in the evolution of lateralization. Philosophical Transactions of the Royal Society of London B, 364: 861–866.CrossRefGoogle ScholarPubMed
Gianotti, L. R. R., Knoch, D., Faba, P. L. et al. (2009). Tonic activity level in right prefrontal predicts individuals’ risk taking. Psychological Science, 20: 33–38.CrossRefGoogle ScholarPubMed
Gibbs, M. E., Andrew, R. J. & Ng, K. T. (2003). Hemispheric lateralisation of memory stages for discriminated avoidance learning in the chick. Behavioural Brain Research, 139: 157–165.CrossRefGoogle Scholar
Gilbert, A. L., Regier, T., Kay, P. et al. (2006). Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences USA, 103: 489–494.CrossRefGoogle Scholar
Gilby, I. C. (2006). Meat sharing amongst the Gombe chimpanzees: Harassment and reciprocal exchange. Animal Behaviour, 71: 953–963.CrossRefGoogle Scholar
Giljov, A., Karenina, K. & Malashichev, Y. (2012). Limb preferences in a marsupial, Macropus rufogriseus: Evidence for postural effect. Animal Behaviour, 83, 525–534.CrossRefGoogle Scholar
Giljov, A. N., Karenina, K. A. & Malashichev, Y. B. (2009). An eye for a worm: Lateralisation of feeding behaviour in aquatic anamniotes. Laterality, 14: 273–286.CrossRefGoogle ScholarPubMed
Goldstein, K. (1939/1963). The Organism: A Holistic Approach to Biology. New York: The American Book Co.Google Scholar
Gomez, M., Angucyra, J. M. & Nasi, E. (2009). Light-transduction in melanopsin-expressing photoreceptors of Amphioxus. Proceedings of the National Academy of Sciences USA, 106: 9081–9086.CrossRefGoogle Scholar
Gordon, D. J. & Rogers, L. J. (2010). Differences in social and vocal behavior between left- and right-handed common marmosets. Journal of Comparative Psychology, 124: 402–411.CrossRefGoogle ScholarPubMed
Gorrie, C. A., Waite, P. M. & Rogers, L. J. (2008). Correlations between hand preference and cortical thickness in the secondary somatosensory (SII) cortex of the common marmoset, Callithrix jacchus. Behavioral Neuroscience, 122: 1343–1351.CrossRefGoogle ScholarPubMed
Goto, K., Kurashima, R., Gokan, H. et al. (2010). Left–right asymmetry defect in the hippocampal circuitry impairs spatial dexterity and working memory in iv mice. PLoS One, 5(11): e15468. .CrossRef
Gottlieb, G. (2002). On the epigenetic evolution of species-specific perception: The developmental manifold concept. Cognitive Development, 17: 1287–1300.CrossRefGoogle Scholar
Govind, C. K. (1992). Claw asymmetry in lobsters: Case study in developmental neuroethology. Journal of Neuroethology, 23: 1423–1445.Google ScholarPubMed
Grace, J. K. & Craig, D. P. (2008). The development of lateralization of prey delivery in a bill load holding bird. Animal Behaviour, 75: 2005–2011.CrossRefGoogle Scholar
Grande, C. & Patel, N. H. (2009). Nodal signalling is involved in left–right asymmetry in snails. Nature, 457: 1007–1011.CrossRefGoogle ScholarPubMed
Greicius, M. D., Krasnow, B., Reiss, A. L. et al. (2003). Functional connectivity in the resting brain: A network analysis of the default network hypothesis. Proceedings of the National Academy of Sciences USA, 100: 253–258.CrossRefGoogle Scholar
Greicius, M. D., Srivastava, G., Reiss, A. L. et al. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences USA, 101: 4637–4642.CrossRefGoogle ScholarPubMed
Grimm, S., Beck, J., Schuepbach, D. et al. (2008). Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: An fMRI study in severe major depressive disorder. Biological Psychiatry, 63: 369–376.CrossRefGoogle ScholarPubMed
Groothuis, T. G. & Schwabl, H. (2002). Determinants of within- and among-clutch variation in levels of maternal hormones in Black-Headed Gull eggs. Functional Ecology, 16: 281–289.Google Scholar
Guenther, F. H. (2006). Cortical interactions underlying the production of speech sounds. Journal of Communicative Disorders, 39: 350 –365.CrossRefGoogle ScholarPubMed
Guglielmotti, V. & Cristino, L. (2006). The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Research Bulletin, 69: 475–488.CrossRefGoogle ScholarPubMed
Guiard, Y., Diaz, G. & Beaubaton, D. (1983). Left hand advantage in right handers for spatial constant error: Preliminary evidence in a unimanual ballistic aimed movement. Neuropsychologia, 21: 111–115.CrossRefGoogle Scholar
Guioli, S. & Lovell-Badge, R. (2007). PITX2 controls asymmetric gonadal development in both sexes of the chick and can rescue the degeneration of the right ovary. Development, 134: 4199–4208.CrossRefGoogle ScholarPubMed
Güntürkün, O. (1993). The ontogeny of visual lateralization in pigeons. German Journal of Psychology, 17: 276–287.Google Scholar
Güntürkün, O. (2002). Ontogeny of visual asymmetry in pigeons. In: Rogers, L. J. & Andrew, R. J. (eds.), Comparative Vertebrate Lateralization, Cambridge: Cambridge University Press, pp. 247–273.CrossRefGoogle Scholar
Güntürkün, O. (2003). Adult persistence of head-turning asymmetry. Nature, 421: 711.CrossRefGoogle ScholarPubMed
Güntürkün, O. & Kesh, S. (1987). Visual lateralization during feeding in pigeons. Behavioural Neuroscience, 101: 433–435.CrossRefGoogle ScholarPubMed
Güntürkün, O., Diekamp, B., Manns, M. et al. (2000). Asymmetry pays: Visual lateralization improves discrimination success in pigeons. Current Biology, 10: 1079–1081.CrossRefGoogle ScholarPubMed
Guo, K., Meints, K., Hall, C., Hall, S. & Mills, D. (2009). Left gaze bias in humans, rhesus monkeys and domestic dogs. Animal Cognition, 12: 409–418.CrossRefGoogle ScholarPubMed
Gutiérrez-Ibáñez, C., Reddon, A. R., Kreuzer, M. B., Wylie, D. R. & Hurd, P. L. (2011). Variation in asymmetry of the habenular nucleus correlates with behavioural asymmetry in a cichlid fish. Behavioural Brain Research, 221: 189–196.CrossRefGoogle Scholar
Gutnick, T., Byrne, R. A., Hochner, B. et al. (2011). Octopus vulgaris uses visual information to determine location of its arms. Current Biology, 21: 460–462.CrossRefGoogle Scholar
Güven, M., Elalmis, D. D., Binokay, S. & Tan, U. (2003). Population-level right-paw preference in rats assessed by a new computerized food-reaching test. International Journal of Neuroscience, 113: 1675–1689.CrossRefGoogle ScholarPubMed
Haakonsson, J. E. & Semple, S. (2009). Lateralisation of trunk movements in captive Asian elephants (Elephas maximus). Laterality,14: 413–422.CrossRefGoogle Scholar
Haase, A., Rigosi, E., Trona, F. et al. (2011a). In-vivo two-photon imaging of the honeybee antennal lobe. Biomedical Optics Express, 2: 131–138.CrossRefGoogle Scholar
Haase, A., Rigosi, E., Trona, F. et al. (2011b). A multimodal approach for tracing lateralisation along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies. European Biophysics Journal with Biophysics Letters, 40: 1247–1258.CrossRefGoogle ScholarPubMed
Habas, C., Kamdar, N., Nguyen, D. et al. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. Journal of Neuroscience, 29: 8586–8594.CrossRefGoogle ScholarPubMed
Häberling, I. S., Badzakova-Trajko, G. & Corballis, M. C. (2011). Callosal tracts and patterns of hemispheric dominance: A combined fMRI and DTI study. NeuroImage, 54: 779–786.CrossRefGoogle ScholarPubMed
Hall, J. (2008). The Sinister Side: How Left–Right Symbolism Shapted Western Art. Oxford: Oxford University Press.Google Scholar
Halpern, M. E., Güntürkün, O., Hopkins, W. D. & Rogers, L. J. (2005). Lateralization of the vertebrate brain: Taking the side of model systems. Journal of Neuroscience, 9: 10351–10357.CrossRefGoogle Scholar
Halpern, M. E., Liang, J. O. & Gamse, J. T. (2003). Leaning to the left: Laterality in the zebrafish forebrain. Trends in Neurosciences, 26: 308–313.CrossRefGoogle ScholarPubMed
Hamilton, C. R. (1988). Hemispheric specialization in monkeys. In: Trevarthen, C. (ed.), Brain Circuits and Functions of the Mind, Cambridge: Cambridge University Press, pp. 181–195.Google Scholar
Hamilton, C. R. & Vermeire, B. A. (1988). Complementary hemispheric specialization in monkeys. Science, 242: 1691–1694.CrossRefGoogle ScholarPubMed
Hampson, E. (1990). Estrogen-related variation in human spatial and articulatory motor skills. Psychoneuroendocrinology, 15: 97–111.CrossRefGoogle Scholar
Hardyck, C., Goldman, R. & Petrinovich, L. (1975). Handedness and sex, race, and age. Human Biology, 47: 369–375.Google Scholar
Harmon-Jones, E., Gable, P. A. & Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychiatry, 84: 451–462.CrossRefGoogle ScholarPubMed
Harris, L. J. (1989). Footedness in parrots: Three centuries of research, theory, and mere surmise. Canadian Journal of Psychology, 43: 369–396.CrossRefGoogle ScholarPubMed
Harvey, C. (2011). Humanity’s first word? Duh! New Scientist, 26 November, p. 10.CrossRef
Hazlerigg, D. & Loudon, A. (2008). New insights into ancient seasonal times. Current Biology, 18: R795–R804.CrossRefGoogle Scholar
Hecht, D. (2011). An inter-hemispheric imbalance in the psychopath’s brain. Personality and Individual Differences, 51: 3–10.CrossRefGoogle Scholar
Hellige, J. B. (1993a). Hemispheric Asymmetry: What’s Right and What’s Left. Cambridge, MA: Harvard University Press.Google Scholar
Hellige, J. B. (1993b). Unity of thought and action: Varieties of interaction between the left and right hemispheres. Current Directions in Psychological Sciences, 2: 21–25.CrossRefGoogle Scholar
Herlitz, A., Nilsson, L.-G. & Backman, L. (1997). Gender differences in episodic memory. Memory and Cognition, 25: 801–811.CrossRefGoogle ScholarPubMed
Heuts, B. A. (1999). Lateralization of trunk muscle volume, and lateralization of swimming turns of fish responding to external stimuli. Behavioral Processes, 47: 113–124.CrossRefGoogle ScholarPubMed
Heuts, B. A. & Brunt, T. (2005). Behavioural left–right asymmetry extends to arthropods. Behavioural Brain Science, 28: 601–602.CrossRefGoogle Scholar
Heuts, B. A., Cornelissen, P. & Lambrechts, D. Y. M. (2003). Different attack modes of Formica species in interspecific one-on-one combats with other ants (Hymenoptera: Formicidae). Annals Zoology (Wars), 53: 205–216.Google Scholar
Hewes, G. W. (1976). Current status of gestural theory of language origin. Annals of the New York Academy of Science, 280: 482–504.CrossRefGoogle Scholar
Hews, D. K. & Worthington, R. A. (2001). Fighting from the right side of the brain: Left visual field preference during aggression in free-ranging male tree lizards (Urosaurus ornatus). Brain Behavior and Evolution, 58: 356–361.CrossRefGoogle Scholar
Hews, D. K., Castellano, M. & Hara, E. (2004). Aggression in females is also lateralized: Left-eye bias during aggressive courtship rejection in lizards. Animal Behaviour, 68: 1201–1207.CrossRefGoogle Scholar
Hickok, G., Costanzo, M., Capasso, R. et al. (2011). The role of Broca’s area in speech perception: Evidence from aphasia revisited. Brain and Language, 119: 214–220.CrossRefGoogle ScholarPubMed
Higuchia, S., Chaminade, T., Imanizu, H. et al. (2009). Shared neural correlates for language and tool use in Broca’s area. NeuroReport, 20: 1376–1381.CrossRefGoogle Scholar
Hikosaka, O. (2010). The habenula: From stress evasion to value-based decision-making. Nature Neuroscience, 11: 503–513.CrossRefGoogle ScholarPubMed
Hill, A., Howard, C. V., Strahle, U. & Cossins, A. (2003). Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations. Toxicology Science, 76: 392–399.CrossRefGoogle ScholarPubMed
Hill, K. R., Walker, R. S., Božičevíc, M. et al.(2011). Co-residence patterns in hunter–gatherer societies show unique human social structure. Science, 331: 1286–1289.CrossRefGoogle ScholarPubMed
Hirnstein, M., Leask, S., Rose, J. & Hausmann, M. (2010). Disentangling the relationship between hemispheric asymmetry and cognitive performance. Brain and Cognition, 73: 119–127.CrossRefGoogle ScholarPubMed
Hobert, O., Johnston, R. J. & Chang, S. (2002). Left-right asymmetry in the nervous system: The Caenorhabditis elegans model. Nature Reviews Neuroscience, 3: 629–640.CrossRefGoogle ScholarPubMed
Hochner, B., Shomrat, T. & Fiorito, G. (2006). The octopus: A model for the comparative analysis of the evolution of learning and memory. Biological Bulletin, 210: 308–317.CrossRefGoogle ScholarPubMed
Hodos, W. & Campbell, C. B. G. (1969). Scala Naturae: Why there is no theory in comparative psychology. Psychological Review, 76: 337–350.CrossRefGoogle Scholar
Hoffman, A. M., Robakiewicz, P. E., Tuttle, E. M. & Rogers, L. J. (2006). Behavioural lateralization in the Australian magpie (Gymnorhina tibicen). Laterality, 11: 110–121.CrossRefGoogle Scholar
Holdstock, J. S., Crane, J., Bachorowski, J. A. et al. (2010). Equivalent activation of the hippocampus by face–face and face–laugh paired associate learning and recognition. Neuropsychologia, 48: 3757–3771.CrossRefGoogle ScholarPubMed
Holland, R., Leff, A. P., Josephs, O. et al. (2011). Speech facilitation by left inferior frontal cortex stimulation. Current Biology, 21: 1403–1407.CrossRefGoogle ScholarPubMed
Hook, M. A. & Rogers, L. J. (2000). Development of hand preferences in marmosets (Callithrix jacchus) and effects of ageing. Journal of Comparative Psychology, 114: 263–271.CrossRefGoogle Scholar
Hook, M. A. & Rogers, L. J. (2008). Visuospatial reaching preferences of common marmosets: An assessment of individual biases across a variety of tasks. Journal of Comparative Psychology, 122: 41–51.CrossRefGoogle ScholarPubMed
Hopkins, W. D. (1995). Hand preferences for a coordinated bimanual task in 110 chimpanzees (Pan troglodytes): Cross-sectional analysis. Journal of Comparative Psychology, 109: 291–297.CrossRefGoogle ScholarPubMed
Hopkins, W. D. (1997). Hemispheric specialisation for local and global processing of hierarchical visual stimuli in chimpanzees (Pan troglodytes). Neuropsychologia, 35: 343–348.CrossRefGoogle Scholar
Hopkins, W. D. (2006). Comparative and familial analysis of handedness in great apes. Psychological Bulletin, 132: 538–559.CrossRefGoogle ScholarPubMed
Hopkins, W. D. (ed.) (2007). Evolution of Hemispheric Specialization in Primates. Oxford: Academic Press.
Hopkins, W. D. & Bennett, A. J. (1994). Handedness and approach-avoidance behaviour in chimpanzees (Pan troglodytes). Journal of Experimental Psychology, 20: 413–418.Google Scholar
Hopkins, W. D. & Cantalupo, C. (2004). Handedness in chimpanzees (Pan troglodytes) is associated with asymmetries of the primary motor cortex but not with homologous language areas. Behavioral Neuroscience, 118: 1176–1183.CrossRefGoogle Scholar
Hopkins, W. D. & Nir, T. M. (2010). Planum temporale surface area and grey matter asymmetries in chimpanzees (Pan troglodytes): The effect of handedness and comparison with findings in humans. Behavioural Brain Research, 208: 436–443.CrossRefGoogle ScholarPubMed
Hopkins, W. D., Phillips, K. A., Bania, A., Calcutt, et al. (2011). Hand preferences for coordinated bimanual actions in 777 great apes: Implications for the evolution of handedness in Hominins. Journal of Human Evolution, 60: 605–611.CrossRefGoogle ScholarPubMed
Hopkins, W. D., Russell, J. L. & Cantalupo, C. (2007). Neuroanatomical correlates of handedness for tool use in chimpanzees (Pan troglodytes): Implication for theories on the evolution of language. Psychological Sciences, 18: 971–977.CrossRefGoogle ScholarPubMed
Hopkins, W. D., Russell, J. L., Freeman, H. et al. (2006). Lateralized scratching in chimpanzees: Evidence of a functional asymmetry during arousal. Emotion, 6: 553–559.CrossRefGoogle ScholarPubMed
Hopkins, W. D., Russell, J. L., Schaeffer, J. A. et al. (2009). Handedness for tool use in captive chimpanzees (Pan troglodytes): Sex differences, performance, heritability and comparison to the wild. Behaviour, 146: 1463–1483.CrossRefGoogle Scholar
Hopkins, W. D., Wesley, M. J., Izard, M. K., Hook, M. & Schapiro, S. J. (2004). Chimpanzees are predominantly right-handed: Replication in three colonies of apes. Behavioral Neuroscience, 118: 659–663.CrossRefGoogle ScholarPubMed
Hopp, S. L., Jablonski, P. & Brown, J. L. (2001). Recognition of group membership by voice in Mexican jays, Aphelocoma ultramarina. Animal Behaviour, 62: 297–303.CrossRefGoogle Scholar
Hori, M. (1993). Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science, 260: 216–219.CrossRefGoogle ScholarPubMed
Horn, G. (1985). Memory, Imprinting and the Brain. Oxford: Clarendon Press.CrossRefGoogle Scholar
Horn, G. (1991). Cerebral Function and Behaviour Investigated through a Study of Filial Imprinting. Cambridge: Cambridge University Press.Google Scholar
Horn, G. (2004). Pathways of the past; the imprint of memory. Nature Reviews Neuroscience, 5: 108–120.CrossRefGoogle Scholar
Horn, G., Rose, S. P. R. & Bateson, P. P. G. (1973). Experience and plasticity in the central nervous system. Science, 181: 506–514.CrossRefGoogle ScholarPubMed
Horowitz, A. (2009). Attention to attention in domestic dog (Canis familiaris). Animal Cognition, 12: 107–118.CrossRefGoogle Scholar
Hostetter, A. B., Cantero, M. & Hopkins, W. D. (2001). Differential use of vocal and gestural communication by chimpanzees (Pan troglodytes) in response to attentional status of a human (Homo sapiens). Journal of Comparative Psychology, 115: 337–343.CrossRefGoogle Scholar
Hourcade, B., Perisse, E., Devaud, J.-M. et al. (2009). Long-term memory shapes the primary olfactory centre of an insect brain. Learning and Memory, 16: 607–615.CrossRefGoogle ScholarPubMed
Howard, R. J., Ffytche, D. H., Barnes, J. et al. (1998). The functional anatomy of imaging and perceiving colour. NeuroReport, 9: 1019–1023.CrossRefGoogle ScholarPubMed
Hugdahl, K. (1995). Classical conditioning and implicit learning: The right hemisphere hypothesis. In: Davidson, R. J & Hugdahl, K. (eds.), Brain Asymmetry, Cambridge, MA: MIT Press, pp. 235–267.Google Scholar
Hui-Di, Y., Wang, Q., Wang, Z. et al. (2011). Food hoarding and associated neuronal activation in brain reward circuitry in Mongolian gerbils. Physiology and Behavior, 104: 429–436.Google Scholar
Humphrey, N. (1998). Left-footedness in peacocks: An emperor’s tale. Laterality, 3: 289–289.CrossRefGoogle ScholarPubMed
Huster, R. J., Westerhausen, R. & Herrmann, C. S. (2011). Sex differences in cognitive control are associated with midcingulate and callosal morphology. Brain Structure and Function, 215: 225–235.CrossRefGoogle ScholarPubMed
Iacoboni, M., Molnar-Szakaes, I., Gallese, V. et al. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3: e79.CrossRefGoogle ScholarPubMed
Ingle, D. J. & Hoff, K. vS. (1990). Visually evoked evasive behaviour in frogs. BioScience, 40: 284–291.CrossRefGoogle Scholar
Iturria-Medina, Y. Péréz, Fernández, A., Morris, D. M. et al. (2011). Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and non-human primates. Cerebral Cortex, 21: 56–67.CrossRefGoogle Scholar
Izquierdo, I., Bevilaqua, L. R. M., Rossato, J. I. et al. (2006). Different molecular cascades in different sites of the brain control memory consolidation. Trends in Neuroscience, 29: 496–505.CrossRefGoogle ScholarPubMed
Jacobs, L. F. & Spencer, W. D. (1994). Natural space-use patterns and hippocampal size in kangaroo rats. Brain, Behavior and Evolution, 44: 125–132.CrossRefGoogle ScholarPubMed
James, T. W. & Kimura, D. (1997). Sex differences in remembering the locations of objects in an array: Location-shift versus location-exchanges. Evolution and Human Behavior, 18: 155–163.CrossRefGoogle Scholar
Jamieson, D. & Roberts, A. (1999). A possible pathway connecting the photosensitive pineal eye to the swimming generator in young Xenopus laevis tadpoles. Brain Behaviour and Evolution, 54: 323–337.CrossRefGoogle ScholarPubMed
Jefferies, R. P. S. & Lewis, D. N. (1978). The English Silurian fossil Placocystites forbesianus and the ancestry of the vertebrates. Philosophical Transactions of the Royal Society of London B, 282: 205–323.CrossRefGoogle Scholar
Johanson, R. S., Theorin, A., Westling, G. et al. (2006). How a lateralised brain supports symmetrical bimanual tasks. PLoS Biol., 4: 1462–1466.CrossRefGoogle Scholar
Johnson, K. M., Boonstra, R. & Wojtowicz, J. M. (2010). Hippocampal neurogenesis in food-storing red squirrels: The impact of age and spatial behavior. Genes, Brain and Behavior, 9: 583–591.Google ScholarPubMed
Johnston, A. N. B. & Rose, S. P. R. (2002). Memory and lateralised recall. In: Rogers, L. J. & Andrew, R. J. (eds.), Comparative Vertebrate Lateralisation, Cambridge: Cambridge University Press, pp. 533–581.CrossRefGoogle Scholar
Jozet-Alves, C., Romagny, S., Bellanger, C. & Dickel, L. (2012). Cerebral correlates of visual lateralization in Sepia. Behavioural Brain Research, 234: 20–25.CrossRefGoogle ScholarPubMed
Kanwisher, N., Chunn, M. M., McDermott, J. & Ledden, P. J. (1996). Functional imaging of human visual recognition. Cognitive Brain Research, 5: 55–67.CrossRefGoogle ScholarPubMed
Kaplan, G. (2000). Song structure and function of mimicry in the Australian magpie (Gymnorhina tibicen) compared to the lyrebird (Menura ssp.). International Journal of Comparative Psychology, 12: 219–241.Google Scholar
Kaplan, G. (2008). The Australian magpie (Gymnorhina tibicen): An alternative model for the study of songbird neurobiology. In: Zeigler, P. & Marler, P. (eds.), The Neuroscience of Birdsong, Cambridge: Cambridge University Press, pp. 153–170.Google Scholar
Kaplan, G. & Rogers, L. J. (2002). Patterns of gazing in orang-utans (Pongo pygmaeus). International Journal of Primatology, 23: 501–526.CrossRefGoogle Scholar
Kaplan, G. & Rogers, L. J. (2003). Gene Worship: Moving Beyond the Nature/Nurture Debate over Genes, Brain, and Gender. New York: OtherPress.Google Scholar
Kaplan, G., Pines, M. K. & Rogers, L. J. (2012). Stress and stress reduction in common marmosets. Applied Animal Behaviour Science, 137: 175–182.CrossRefGoogle Scholar
Kappers, A., Huber, G. C. & Crosby, E. A. (1936). The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. New York: Hafner Publishing Company.Google Scholar
Karenina, K., Giljov, A., Baranov, V. et al. (2010). Visual laterality of calf–mother interactions in wild whales. PLoS One, 5: e13787.CrossRefGoogle ScholarPubMed
Kawakami, R., Dobe, A., Shibemoto, R. et al. (2008). Right isomerism of the brain in inversus viscerum mutant mice. PLoS One, 3(4): e1945.CrossRefGoogle ScholarPubMed
Kawakami, R., Shinohara, Y., Kato, Y. et al. (2003). Asymmetric allocation of NMDA receptor ε2 subunits in hippocampal circuitry. Science, 300: 990–994.CrossRefGoogle Scholar
Keenan, J. P., Nelson, A., O’Connor, M. & Pascual-Leone, A. (2001). Self recognition and the right hemisphere. Nature, 409: 305.CrossRefGoogle ScholarPubMed
Kells, A. R. & Goulson, D. (2001). Evidence for handedness in bumblebees. Journal of Insect Behaviour, 14: 47–55.CrossRefGoogle Scholar
Kendrick, K. M. (2006). Brain asymmetries for face recognition and emotion control in sheep. Cortex, 42: 96–98.CrossRefGoogle Scholar
Kendrick, K. M. & Baldwin, B. A. (1987). Cells in the temporal cortex of sheep can respond preferentially to the sight of faces. Science, 236: 448–450.CrossRefGoogle ScholarPubMed
Kendrick, K. M., Atkins, K., Hinton, M. R. et al. (1995). Facial and vocal discrimination in sheep. Animal Behaviour, 49: 1665–1676.CrossRefGoogle Scholar
Kendrick, K. M., Atkins, K., Hinton, M. R., Heavens, P. & Keverne, B. (1996). Are faces special for sheep? Evidence from facial and object discrimination learning tests showing effects of inversion and social familiarity. Behavioural Processes, 38: 19–35.CrossRefGoogle ScholarPubMed
Kendrick, K. M., da Costa, A. P., Leigh, A. E., Hinton, M. R. & Peirce, J. W. (2001). Sheep don’t forget a face. Nature, 414: 165–166.CrossRefGoogle ScholarPubMed
Kight, S. L., Steelman, L., Coffey, G., Lucente, J. & Castillo, M. (2008). Evidence of population level in giant water bugs, Belostoma flumineum Say (Heteroptera: Belostomatidae): T-maze turning is left biased. Behavioural Processes, 79: 66–69.Google ScholarPubMed
Kilpatrick, L. A., Zald, D. H., Pardo, J. V. et al. (2006). Sex-related differences in amygdala functional connectivity during resting conditions. NeuroImage, 30: 452–461.CrossRefGoogle ScholarPubMed
Kim, D., Carlson, J. N., Seegal, R. F. & Lawrence, D. A. (1999). Differential immune responses in mice with left and right-turning preference. Journal of Neuroimmunology, 93: 164–171.CrossRefGoogle ScholarPubMed
Kim, H. (2011). Neural activity that predicts subsequent memory and forgetting: A meta-analysis of 74 fMRI studies. NeuroImage, 54: 2446–2461.CrossRefGoogle ScholarPubMed
Kimura, D. (1999). Sex and Cognition. Cambridge, MA: MIT Press.Google Scholar
King, J. E. & Landau, V. I. (1993). Manual preferences in varieties of reaching in squirrel monkeys. In: Ward, J. P. & Hopkins, W. D. (eds.), Primate Laterality: Current Evidence of Primate Asymmetries, New York: Springer-Verlag, pp. 107–124.CrossRefGoogle Scholar
Kipper, S. & Todt, D. (2002). The use of vocal signals in the social play of Barbary Macaques. Primates, 43: 3–17.CrossRefGoogle ScholarPubMed
Kiuchi, M., Nagata, N., Ikeno, S. & Terakawa, N. (2000). The relationship between the response to external light stimulation and behavioral state in the human fetus: How it differs from vibroacoustic stimulation. Early Human Development, 58: 153–165.CrossRefGoogle Scholar
Klein, R. M. & Andrew, R. J. (1986). Distractions, decisions and persistence in runway tests using the domestic chick. Behaviour, 99: 139–156.CrossRefGoogle Scholar
Knecht, S., Drager, B., Deppe, M. et al. (2000). Handedness and hemispheric language dominance in healthy humans. Brain, 123: 2512–2518.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C. & Baron-Cohen, S. (2006). Foetal testosterone and sex difference in typical social development and in autism. Journal of Child Neurology, 21: 825–845.CrossRefGoogle ScholarPubMed
Koboroff, A., Kaplan, G. & Rogers, L. J. (2008). Hemispheric specialization in Australian magpies (Gymnorhina tibicen) shown as eye preferences during response to a predator. Brain Research Bulletin, 76: 304–306.CrossRefGoogle ScholarPubMed
Kocot, K. M., Cannon, J. T., Todt, C. et al. (2011). Phylogenomics reveals deep molluscan relationships. Nature, 477: 452–456.CrossRefGoogle ScholarPubMed
Koechlin, E. & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318: 594–598.CrossRefGoogle ScholarPubMed
Koechlin, E. & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Science, 11: 229–235.CrossRefGoogle ScholarPubMed
Kon, T., Masahiro, N., Yusuke, Y. et al. (2007). Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from mitochondrial genome sequences. BMC Evolutionary Biology, 7: 127.CrossRefGoogle ScholarPubMed
Konkel, A., Warren, D. E., Duff, M. C. et al. (2008). Hippocampal amnesia impairs all manner of relational memory. Frontiers in Human Neuroscience, 2. .CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Chabris, C. F., Marsolek, C. J. & Koenig, O. (1992). Categorical versus coordinate spatial relations: Computational analyses and computer simulations. Journal of Experimental Psychology: Human Perception and Performance, 18: 562–577.Google ScholarPubMed
Kovach, J. K. (1968). Spatial orientation of the chick embryo during the last five days of incubation. Journal of Comparative and Physiological Psychology, 66: 283–288.CrossRefGoogle ScholarPubMed
Krebs, J. R. & Dawkins, R. (1984). Animal signals: Mind reading and manipulation. In: Krebs, J. R. & Davies, N. B. (eds.), Behavioural Ecology: An Evolutionary Approach, Sunderland, MA: Sinauer Associates, pp. 25–50.Google Scholar
Kuan, Y.-S., Gamse, J. T., Schreiber, A. M. & Halpern, M. E. (2007a). Selective asymmetry in a conserved forebrain to midbrain projection. Journal of Experimental Zoology B: Molecular and Developmental Evolution, 308: 669–678.CrossRefGoogle Scholar
Kuan, Y.-S., Yu, H.-H., Moens, C. B. & Halpern, M. E. (2007b). Neuropilin asymmetry mediates a left-right difference in habenular connectivity. Development, 134: 857–865.CrossRefGoogle ScholarPubMed
Kwok, V., Niu, Z., Kay, P. et al. (2011). Learning new color names produces rapid increase in gray matter in the intact human cortex. Proceedings of the National Academy of Sciences USA, 108: 6686–6688.CrossRefGoogle ScholarPubMed
Lacalli, T. C. (1994). Apical organs, epithelial domains and the origin of the chordate central nervous system. American Zoologist, 34: 533–541.CrossRefGoogle Scholar
Lacalli, T. C. (1996). Frontal eye circuitry, rostral sensory pathways and brain organisation in amphioxus larvae: Evidence from 3D reconstruction. Philosophical Transactions of the Royal Society of London B, 351: 243–263.CrossRefGoogle Scholar
Lacalli, T. C. (2002). The dorsal compartment locomotory control system in amphioxus larvae. Journal of Morphology, 252: 227–237.CrossRefGoogle ScholarPubMed
Lacalli, T. C. (2008). Basic features of the ancestral chordate brain: A protochordate perspective. Brain Research Bulletin, 75: 319–323.CrossRefGoogle ScholarPubMed
Lacalli, T. C., Holland, N. D. & West, J. E. (1994). Landmarks in the anterior nervous system of amphioxus larvae. Philosophical Transactions of the Royal Society of London B, 344: 165–185.CrossRefGoogle Scholar
LaMendola, N. P. & Bever, T. G. (1997). Peripheral and cerebral asymmetries in the rat. Science, 278: 483–486.CrossRefGoogle ScholarPubMed
Land, M. F. & Fernald, R. D. (1992). The evolution of eyes. Annual Review of Neuroscience, 15: 1–29.CrossRefGoogle ScholarPubMed
Lane, R. D. & Jennings, J. R. (1995). Hemispheric asymmetry, autonomic asymmetry and the problem of sudden cardiac death. In: Davidson, R. J. & Hugdahl, K. (eds.), Brain Asymmetry, Cambridge, MA: MIT Press, pp. 271–304.Google Scholar
Langford, D. J., Crager, S. E., Shehzad, Z. et al. (2006). Social modulation of pain as evidence for empathy in mice. Science, 312: 1967–1970.CrossRefGoogle ScholarPubMed
Larose, C., Rogers, L. J., Ricard-Yris, M.-A. & Hausberger, M. (2006). Laterality of horses associated with emotionality in novel situations. Laterality, 11: 355–367.CrossRefGoogle ScholarPubMed
Lartillot, N. & Philippe, H. (2008). Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Philosophical Transactions of the Royal Society of London B, 363: 1463–1472.CrossRefGoogle ScholarPubMed
Laviola, G., Maerí, S., Morley-Fletcher, S. et al. (2003). Risk-taking in adolescent mice: Psychobiological determinants and early epigenetic influences. Neuroscience and Biobehavioral Reviews, 27: 19–31.CrossRefGoogle Scholar
Lavrysen, A., Heremans, E., Peeters, R. et al. (2008). Hemispheric asymmetries in eye–hand coordination. NeuroImage, 39: 1938–1949.CrossRefGoogle ScholarPubMed
Leavens, D. A., Hopkins, W. D. & Thomas, R. K. (2004). Referential communication by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 118: 48–57.CrossRefGoogle Scholar
Leith, J. L., Koutsikou, S., Lumb, B. M. et al. (2010). Spinal processing of noxious and innocuous cold information: Differential modulation by the periaqueductal grey. Journal of Neuroscience, 30: 4933–4942.CrossRefGoogle Scholar
Letzkus, P., Boeddeker, N., Wood, J. T., Zhang, S. W. & Srinivasan, M. V. (2007). Lateralization of visual learning in the honeybee. Biology Letters, 4: 16–18.CrossRefGoogle Scholar
Letzkus, P., Ribi, W. A., Wood, J. T. et al. (2006). Lateralisation of olfaction in the honeybee Apis mellifera. Current Biology, 16: 1471–1476.CrossRefGoogle Scholar
Levin, M., Johnson, R. L., Sten, C. D., Kuehn, M. & Tabin, C. (1995). A molecular pathway determining left–right asymmetry in chick embryogenesis. Cell, 82: 803–814.CrossRefGoogle ScholarPubMed
Levy, J. (1969). Possible basis for the evolution of lateral specialization of the human brain. Nature, 224: 614–615.CrossRefGoogle ScholarPubMed
Levy, J., Trevarthen, C. & Sperry, R. W. (1972). Perception of bilateral chimeric figures following hemispheric disconnection. Brain, 95: 61–78.CrossRefGoogle Scholar
Li, C., Tierney, C., Wen, L. et al. (1997). A single morphogenetic field gives rise to two retina primordial under the influence of the prechordal plate. Development, 124: 603–615.Google Scholar
Lippolis, G., Bisazza, A., Rogers, J. & Vallortigara, G. (2002). Lateralization of predator avoidance responses in three species of toads. Laterality, 7: 163–183.CrossRefGoogle Scholar
Lippolis, G., Joss, J. & Rogers, L. J. (2009). Australian lungfish (Neoceratodus forsteri): A missing link in the evolution of complementary side biases for predator avoidance and prey capture. Brain Behavior and Evolution, 73: 295–303.CrossRefGoogle ScholarPubMed
Lippolis, G., Westman, W., McAllan, B. M. & Rogers, L. J. (2005). Lateralization of escape responses in the striped-faced dunnart, Sminthopsis macroura (Dasyuridae: Marsupalia). Laterality, 10: 457–470.CrossRefGoogle Scholar
Llorente, M., Mosquera, M. & Fabre, M. (2009). Manual laterality for simple reaching and bimanual coordinated task in naturalistic housed chimpanzees (Pan troglodytes). International Journal of Primatology, 30: 183–197.CrossRefGoogle Scholar
Llorente, M., Riba, D., Palou, L. et al. (2011). Population-level right-handedness for a coordinated bimanual task in naturalistic housed chimpanzees: Replication and extension in 114 animals from Zambia and Spain. American Journal of Primatology, 73: 281–290.CrossRefGoogle ScholarPubMed
Lonsdorf, E. V. & Hopkins, W. D. (2005). Wild chimpanzees show population-level handedness for tool use. Proceeding of the National Academy of Sciences USA, 102: 12634–12638.CrossRefGoogle ScholarPubMed
Lössner, B. & Rose, S. P. (1983). Passive avoidance training increases fucokinase activity in right forebrain base of day-old chicks. Journal of Neurochemistry, 41: 1357–1363.CrossRefGoogle ScholarPubMed
Louis, M., Huber, T., Benton, R. et al. (2008). Bilateral olfactory sensory input enhances chemotaxis behaviour. Nature Neuroscience, 11: 187–199.CrossRefGoogle Scholar
Love, O. P., Wynne-Edwards, K. E., Bond, L. & William, T. D. (2008). Determinants of within- and among-clutch variation in yolk corticosterone in the European starling. Hormones and Behavior, 53: 104–111.CrossRefGoogle ScholarPubMed
Lowe, C. J., Wu, M., Salic, A. et al. (2003). Anteroposterior patterning in hemichordates and the origin of the chordate nervous system. Cell, 113: 853–865.CrossRefGoogle Scholar
Lüders, E., Narr, K. L., Thompson, P. M. et al. (2006). Hemispheric asymmetries in cortical thickness. Cerebral Cortex, 16: 1232–1238.CrossRefGoogle ScholarPubMed
Lurito, J. T. & Dzemidzic, M. (2001). Determination of cerebral hemisphere language dominance with functional magnetic resonance imaging. Neuroimaging Clinics of North America, 11: 355–363.Google ScholarPubMed
MacNeilage, P. F. (1998). Towards a unified view of cerebral hemispheric specialisations in vertebrates. In: Milner, A. (ed.), Comparative Neuropsychology, Oxford: Oxford University Press, pp. 167–183.CrossRefGoogle Scholar
MacNeilage, P. F. (2007). Present status of the postural origins theory. In: Hopkins, W. D. (ed.), The Evolution of Hemispheric Specialization in Primates. Special Topics in Primatology, Vol. 5, London: Academic Press, pp. 59–91.CrossRefGoogle Scholar
MacNeilage, P. F. (2008). The Origin of Speech. Oxford: Oxford University Press.Google Scholar
MacNeilage, P. F., Rogers, L. J. & Vallortigara, G. (2009). Origins of the left and right brain. Scientific American, 301: 60–67.CrossRefGoogle ScholarPubMed
MacNeilage, P. F., Studdert-Kennedy, M. J. & Lindblom, B. (1987). Primate handedness reconsidered. Behavioral and Brain Sciences, 10: 247–303.CrossRefGoogle Scholar
MacPherson, S. E., Turner, M. S., Bozzali, M. et al. (2010). Frontal subregions mediating elevator counting task performance. Neuropsychologia, 48: 3679–3682.CrossRefGoogle ScholarPubMed
Magat, M. & Brown, C. (2009). Laterality enhances cognition in Australian parrots. Proceedings of the Royal Society of London B, 276: 4155–4162.CrossRefGoogle ScholarPubMed
Maguire, E. A. & Mummery, C. J. (1999). Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus, 9: 54–61.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Maguire, E. A., Gadian, D. G., Johnsrude, I. S. et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences USA, 97: 4398–4403.CrossRefGoogle ScholarPubMed
Maguire, E. A., Woollett, K. & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus, 16: 1091–1101.CrossRefGoogle ScholarPubMed
Maillard, L., Barbeau, E. J., Baumann, C. et al. (2011). From perception to recognition memory: Time course and lateralisation of neural substrates of word and abstract picture processing. Journal of Cognitive Neuroscience, 23: 782–800.CrossRefGoogle Scholar
Malaschichev, Y. B. & Wassersug, R. J. (2004). Left and right in the amphibian world: Which way to develop and where to turn? BioEssays, 26: 1–11.Google Scholar
Mallatt, J. (1985). Reconstructing the life cycle and the feeding of ancestral vertebrates. In: Foreman, R. E., Gorbman, A., Dodd, J. M. & Olsson, R. (eds.), The Evolutionary Biology of Primitive Fishes, New York: Plenum Press, pp. 59–68.CrossRefGoogle Scholar
Mallatt, J. & Chen, J.-Y. (2003). Fossil sister group of craniates: Predicted and found. Journal of Morphology, 258: 1–31.CrossRefGoogle Scholar
Manns, M. & Güntürkün, O. (2009). Dual coding of visual asymmetries in the pigeon brain: The interaction of bottom-up and top-down systems. Experimental Brain Research, 199: 323–332.CrossRefGoogle ScholarPubMed
Marchant, L. F. & Steklis, H. D. (1986). Hand preference in a captive island group of chimpanzees (Pan troglodytes). American Journal of Primatology, 10: 301–313.CrossRefGoogle Scholar
Marchant, L. F., McGrew, W. C. & Eibl-Eibesfeldt, I. (1995). Is human handedness universal? Ethological analyses from three traditional cultures. Ethology, 101: 239–258.CrossRefGoogle Scholar
Mari, M., Castiello, U., Marks, D. et al. (2003). The reach-to-grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society of London B, 358: 393–403.CrossRefGoogle ScholarPubMed
Marshall, A. J., Wrangham, R. W. & Arcadi, A. C. (1999). Does learning affect the structure of vocalisations in chimpanzees? Animal Behaviour, 58: 825–830.CrossRefGoogle Scholar
Martin, B., Andreas, S., Ramona, K. et al. (2010b). Von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia. Acta Neuropathologica, 119: 771–778.Google Scholar
Martin, F. & Niemitz, C. (2003). ‘Right-trunkers’ and ‘left-trunkers’: Side preferences of trunk movements in wild Asian elephants (Elephas maximus). Journal of Comparative Psychology, 117: 371–379.CrossRefGoogle Scholar
Martin, G. N. & Gray, C. D. (1996). The effect of audience laughter on men’s and women’s response to humour. Journal of Social Psychology, 136: 221–231.CrossRefGoogle Scholar
Martin, G. R. (2009). What is binocular vision for? A birds’ eye view. Journal of Vision, 9: 1–19.CrossRefGoogle ScholarPubMed
Martin, J., López, P., Bonati, B. & Csermely, D. (2010a). Lateralization when monitoring predators in the wild: A left eye control of the common wall lizard (Podarcis muralis). Ethology, 116: 1226–1233.CrossRefGoogle Scholar
Marzoli, D. & Tommasi, L. (2009). Side biases in humans (Homo sapiens): Three ecological studies on hemispheric asymmetries. Naturwissenschaften, 96: 1099–1106.CrossRefGoogle ScholarPubMed
Matsuo, R., Kawaguchi, E., Yamagishi, M. et al. (2010). Unilateral storage in the procerebrum of the terrestrial slug Limax. Neurobiology of Learning and Memory, 93: 337–342.CrossRefGoogle ScholarPubMed
Matsusaka, T. (2004). When does play panting occur during social play in wild chimpanzees? Primates, 45: 221–228.CrossRefGoogle ScholarPubMed
Maynard-Smith, J. (1982). Evolution and the Theory of Games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mazzotti, G. A. & Boere, V. (2009). The right ear but not the left ear temperature is related to stress-induced cortisolaemia in the domestic cat (Felis catus). Laterality, 14: 196–204.CrossRefGoogle Scholar
McCourt, M. E., Garlinglhouse, M. & Butler, J. (2001). The influence of viewing eye on pseudoneglect magnitude. Journal of the International Neuropsychological Society, 7: 391–395.CrossRefGoogle ScholarPubMed
McGilchrist, I. (2009). The Master and his Emissary. New Haven, CT: Yale University Press.Google Scholar
McGinnis, M. Y. & Vakulenko, M. (2003). Characterisation of 50-kHz ultrasonic vocalisations in male and female rats. Physiology and Behaviour, 80: 81–88.CrossRefGoogle Scholar
McGlone, J. (1980). Sex differences in human brain asymmetry. Behavioral and Brain Sciences, 3: 215–263.CrossRefGoogle Scholar
McGreevy, P. D. & Rogers, L. J. (2005). Motor and sensory laterality in thoroughbred horses. Applied Animal Behaviour Science, 92: 337–352.CrossRefGoogle Scholar
McGrew, W. C. & Marchant, L. F. (1997). On the other hand: Current issues in and meta-analysis of the behavioral laterality of hand function in nonhuman primates. American Journal of Physical Anthropology, 40: 201–232.3.0.CO;2-6>CrossRefGoogle Scholar
McGrew, W. C. & Marchant, L. F. (1999). Laterality of hand use pays off in foraging success for wild chimpanzees. Primates, 40: 509–513.CrossRefGoogle Scholar
McKenzie, R., Andrew, R. J. & Jones, R. B. (1998). Lateralisation in chicks and hens: New evidence for the control of response by the right eye system. Neuropsychologia, 36: 51–58.CrossRefGoogle Scholar
McManus, I. C. (1981). Handedness and birth stress. Psychological Medicine, 11: 485–496.CrossRefGoogle ScholarPubMed
McManus, I. C. (1999). Handedness, cerebral lateralization and the evolution of language. In: Corballis, M. C. & Lea, S. E. G. (eds.), The Descent of Mind: Psychological Perspectives on Hominid Evolution, Oxford: Oxford University Press, pp. 194–217.Google Scholar
McManus, I. C. (2002). Right Hand, Left Hand: The Origins of Asymmetry in Brains, Bodies, Atoms, and Cultures. London: Weidenfeld & Nicolson.Google Scholar
Meguerditchian, A. & Vauclair, J. (2006). Baboons communicate with their right hand. Behavioural Brain Research, 171: 170–174.CrossRefGoogle ScholarPubMed
Meguerditchian, A., Calcutt, S. E., Lonsdorf, E. V., Ross, S. R. & Hopkins, W. D. (2010a). Captive gorillas are right-handed for bimanual feeding. American Journal of Physical Anthropology, 141: 638–645.Google ScholarPubMed
Meguerditchian, A., Vauclair, J. & Hopkins, W. D. (2010b). Captive chimpanzees use their right hand to communicate with each other: Implications for the origin of the cerebral substrate for language. Cortex, 46: 40–48.CrossRefGoogle ScholarPubMed
Mehlhorn, J., Haastert, B. & Rehkämper, G. (2010). Asymmetry of different brain structures in homing pigeons with and without navigational experience. Journal of Experimental Biology, 213: 2219–2224.CrossRefGoogle ScholarPubMed
Mench, J. & Andrew, R. J. (1986). Lateralisation of a food search task in the domestic chick. Behavioral and Neural Biology, 46: 107–114.CrossRefGoogle Scholar
Mendl, M., Burman, O. H. P., Parker, R. M. A. & Paul, E. S. (2009). Cognitive bias as an indicator of animal emotion and welfare: Emerging evidence and underlying mechanisms. Applied Animal Behaviour Science, 118: 161–181.CrossRefGoogle Scholar
Merckelbach, H., De Ruiter, C. & Olff, M. (1989). Handedness and anxiety in normal and clinical populations. Cortex, 25: 599–606.CrossRefGoogle ScholarPubMed
Messenger, J. B. (2001). Cephalopod chromatophores: Neurobiology and natural history. Biological Reviews, 76: 473–528.CrossRefGoogle ScholarPubMed
Michel, G. F. (1981). Right handedness: A consequence of infant supine head orientation preference? Science, 212: 685–687.CrossRefGoogle ScholarPubMed
Michel, G. F. & Goodwin, R. (1979). Intrauterine birth position predicts newborn supine head position preference. Infant Behavior and Development, 2: 29–38.CrossRefGoogle Scholar
Miklósi, A. & Andrew, R. J. (1999). Right eye use associated with decision to bite in zebrafish. Behavioural Brain Research, 105: 199–205.CrossRefGoogle ScholarPubMed
Miklósi, A., Andrew, R. J. & Dharmaretnam, M. (1996). Auditory lateralisation: shifts in ear use during attachment in the domestic chick. Laterality, 1: 215–224.CrossRefGoogle ScholarPubMed
Miklósi, A., Andrew, R. J. & Gasparini, S. (2001). Role of right hemifield in visual control of approach to target in zebrafish. Behavioural Brain Research, 106: 175–180.Google Scholar
Miklósi, A., Andrew, R. J. & Savage, H. (1998). Behavioural lateralisation of the tetrapod type in the zebrafish (Brachydanio rerio). Physiology and Behavior, 63: 127–135.CrossRefGoogle Scholar
Miller, B. L., Cummings, F., Mishkin, K. et al. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51: 978–982.CrossRefGoogle ScholarPubMed
Miller, M. B., Kingstone, A. & Gazzaniga, M. S. (2002). Hemispheric encoding asymmetry is more apparent than real. Journal of Cognitive Neuroscience, 14: 702–708.CrossRefGoogle ScholarPubMed
Minagawa-Kawai, Y., Cristia, A. & Dupoux, E. (2011). Cerebral lateralization and early speech acquisition: A developmental scenario. Developmental Cognitive Neuroscience, 1: 217–232.CrossRefGoogle ScholarPubMed
Miyasaki, N., Morimoto, K., Tsubokawa, T. et al. (2009). From the olfactory bulb to higher brain centres: Genetic visualisation of secondary olfactory pathways in zebrafish. Journal of Neuroscience, 29: 4756–4767.CrossRefGoogle Scholar
Mobbs, D., Greicius, M. D., Abdel-Azim, E. et al. (2003). Humour modulates the mesolimbic reward centres. Neuron, 40: 1041–1048.CrossRefGoogle Scholar
Mormann, F., Dubois, J., Kornblith, S. et al. (2011). A category-specific response to animals in the right human amygdala. Nature Neuroscience, 14: 1247–1249.CrossRefGoogle ScholarPubMed
Morris, J. S., Ǒhman, A. & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393: 467–470.CrossRefGoogle ScholarPubMed
Morris, J. S., Ǒhman, A. & Dolan, R. J. (1999). A subcortical pathway to the right amygdala mediating ‘unseen’ fear. Proceedings of the National Academy of Sciences USA, 96: 1680–1685.CrossRefGoogle ScholarPubMed
Morris, R. D. & Hopkins, W. D. (1993). Perception of human chimeric faces by chimpanzees: Evidence for a right hemisphere advantage. Brain and Cognition, 21: 111–122.CrossRefGoogle ScholarPubMed
Mulckhuyse, M. & Theeuwes, J. (2010). Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychologica, 134: 299–309.CrossRefGoogle ScholarPubMed
Mundinger, P. C. (1970). Vocal imitation and individual recognition of finch calls. Science, 168: 480–482.CrossRefGoogle ScholarPubMed
Myowa-Yamakoshi, M., Tomonaga, M., Tanaka, M. et al. (2004). Imitation in neonatal chimpanzees (Pan troglodytes). Developmental Science, 7: 437–442.CrossRefGoogle Scholar
Nagy, M., Àkos, Z., Biro, D. & Vicsek, T. (2010). Hierarchical group dynamics in pigeon flocks. Nature, 464: 890–894.CrossRefGoogle ScholarPubMed
Narang, H. K. (1977). Right–left asymmetry of myelin development in epiretinal potion of rabbit optic nerve. Nature, 266: 855–856.CrossRefGoogle Scholar
Narang, H. K. & Wisniewski, H. M. (1977). The sequence of myelination in the epiretinal portion of the optic nerve in the rabbit. Neuropathology and Applied Neurobiology, 3: 15–27.CrossRefGoogle Scholar
Nepi, M., Cresti, L., Maccagnani, B., Ladurner, E. & Pacini, E. (2005). From the anther to the proctodeum: Pear (Pyrus communis) pollen digestion in Osmia cornuta larvae. Journal of Insect Physiology, 51: 749–757.CrossRefGoogle ScholarPubMed
Nestor, P. G. & Safer, M. A. (1990). A multi-method investigation of individual differences in hemisphericity. Cortex, 26: 409–421.CrossRefGoogle ScholarPubMed
Nicholls, M. E. R., Clode, D., Wood, S. J. & Wood, A. G. (1999). Laterality of expression in portraiture: Putting your best cheek forward. Proceedings of the Royal Society of London B, 266: 1517–1522.CrossRefGoogle ScholarPubMed
Nixon, M. & Young, J. Z. (2003). The Brains and Lives of Cephalopods. Oxford: Oxford University Press.Google Scholar
Nottebohm, F. (1970). Ontogeny of bird song. Science, 167: 950–956.CrossRefGoogle ScholarPubMed
Nottebohm, F. (1971). Neural lateralization of vocal control in a Passerine bird. I. Song. Journal of Experimental Zoology, 177: 229–261.CrossRefGoogle Scholar
Nottebohm, F. (1977). Asymmetries in neural control of vocalization in the canary. In: Harnard, S., Doty, R. W., Goldstein, L., Jaynes, J. & Krauthamer, G. (eds.), Lateralization of the Nervous System, New York: Academic Press, pp. 23–44.CrossRefGoogle Scholar
Nottebohm, F. (1980). Brain pathways for vocal learning in birds: A review of the first 10 years. In: Sprague, J. M. & Epstein, A. N. (eds.), Progress in Psychobiology and Physiological Psychology, New York: Academic Press, pp. 85–124.Google Scholar
Nottebohm, F. (1981). Laterality, season and space govern the learning of a motor skill. Trends in Neuroscience, 4: 104–106.CrossRefGoogle Scholar
Nottebohm, F., Kasparian, S. & Pandazis, C. (1981). Brain space for a learned task. Brain Research, 213: 99–109.CrossRefGoogle ScholarPubMed
Nottebohm, F., Stokes, T. M. & Leonard, C. M. (1976). Central control of song in the canary, Serinus canarius. Journal of Comparative Neurology, 165: 457–486.CrossRefGoogle Scholar
Nowicka, A. & Tacikowski, P. (2011). Transcallosal transfer of information and functional asymmetry of human brain. Laterality, 16: 35–74.CrossRefGoogle ScholarPubMed
Nünez, J. L. & Juraska, J. M. (1998). The size of the splenium of the rat corpus callosum: Influence of hormones, sex ratio, and neonatal cryoanesthesia. Developmental Psychobiology, 33: 295–303.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Nunn, C. L. (1999). The evolution of exaggerated sexual swellings in primates and the graded signal hypothesis. Animal Behaviour, 58: 229–246.CrossRefGoogle ScholarPubMed
Ocklenburg, S. & Güntürkün, O. (2009). Head-turning asymmetries during kissing and their association with lateral preference. Laterality, 14: 79–85.CrossRefGoogle ScholarPubMed
Okubo, M. (2010). Right movies on the right seat: Laterality and seat choice. Applied Cognitive Psychology, 42: 90–99.CrossRefGoogle Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9: 97–113.CrossRefGoogle ScholarPubMed
Olko, C. & Turkewitz, G. (2001). Cerebral asymmetry of emotion and its relationship to olfaction in infancy. Laterality, 6: 29–37.CrossRefGoogle ScholarPubMed
Ortiz, C. O., Faumont, S., Takayama, J. et al. (2009). Lateralised gustatory behaviour of C. elegans is controlled by specific receptor type guanylyl cyclases. Current Biology, 19: 996–1004.CrossRefGoogle Scholar
Ott, L., Schleidt, M. & Kien, J. (1994). Temporal organisation of action in baboons: Comparisons with the temporal segmentation in chimpanzee and human behaviour. Brain, Behaviour and Evolution, 44: 101–107.CrossRefGoogle ScholarPubMed
Palmer, A. R. (1996). Waltzing with asymmetry. Bioscience, 46: 518–532.CrossRefGoogle Scholar
Palmer, A. R. (2002). Chimpanzee right-handedness reconsidered: Evaluating the evidence with funnel plots. American Journal of Physical Anthropology, 118: 191–199.CrossRefGoogle ScholarPubMed
Palmer, A. R. (2003). Reply to Hopkins and Cantalupo: Chimpanzee right-handedness reconsidered. Sampling issues and data presentation. American Journal of Physical Anthropology, 121: 382–384.CrossRefGoogle Scholar
Palmer, A. R. (2010). Scale-eating cichlids: From hand(ed) to mouth. Journal of Biology, 9: 11.CrossRefGoogle ScholarPubMed
Panganiban, G., Irvine, S. M., Lowe, C. et al. (1997). The origin and evolution of animal appendages. Proceedings of the National Academy of Sciences USA, 94: 5162–5166.CrossRefGoogle ScholarPubMed
Panksepp, J. (2007). Neuroevolutionary sources of laughter and social joy: Modelling primal human laughter in laboratory rats. Behavioural Brain Research, 182: 231–244.CrossRefGoogle Scholar
Papadatou, M., Martin, M., Munafo, M. R. et al. (2008). Sex differences in left handedness: A meta-analysis of 144 studies. Psychological Bulletin, 134: 677–699.CrossRefGoogle Scholar
Papademetriou, E., Sheu, C. F. & Michel, G. F. (2005). A meta-analysis of primate hand preferences, particularly for reaching. Journal of Comparative Psychology, 119: 33–48.CrossRefGoogle ScholarPubMed
Park, H. & Rugg, M. D. (2011). Neural correlates of encoding within- and across inter-item associations. Journal of Cognitive Neuroscience, 23: 2533–2543.CrossRefGoogle ScholarPubMed
Parker, J. D., Keightley, M. L., Smith, C. T. & Taylor, C. J. (1999). Interhemispheric transfer deficit in alexithymia: An experimental study. Psychosomatic Medicine, 61: 464–468.CrossRefGoogle Scholar
Parr, L. A. & Hopkins, W. D. (2000). Brain temperature asymmetries and emotional perception in chimpanzees, Pan troglodytes. Physiology and Behavior, 71: 363–371.CrossRefGoogle ScholarPubMed
Pascual, A., Huang, K.-L., Nevue, J. & Préat, T. (2004). Brain asymmetry and long-term memory. Nature, 427: 605–606.CrossRefGoogle ScholarPubMed
Pasteels, J. J. (1970). Développement embryonnaire. In: Grassé, P. P. (ed.), Traité de Zoologie, Vol. XIV, Paris: Masson et Cie, pp. 893–971.Google Scholar
Paterson, J. R., Garcia-Bellido, D. C., Lee, M. S. Y. et al. (2011). Acute vision in the giant Cambrian predator Anomalocaris and the origin of compount eyes. Nature, 480: 237–240.CrossRefGoogle Scholar
Patterson, T. A., Gilbert, D. B. & Rose, S. P. (1990). Pre- and post-training lesions of the intermediate medial hyperstriatum ventrale and passive avoidance learning in the chick. Experimental Brain Research, 80: 189–195.CrossRefGoogle ScholarPubMed
Pecchia, T., Gagliardo, A., Filannino, C., Ioalè, P. & Vallortigara, G. (2012). Navigating through an asymmetrical brain: Lateralisation and homing in pigeon. In: Csermely, D. & Regolin, L. (eds.), Behavioural Lateralization in Vertebrates: Two Sides of the Same Coin, Berlin, Heidelberg: Springer, in press.Google Scholar
Peirce, J. W. & Kendrick, K. M. (2002). Functional asymmetry in sheep temporal cortex. NeuroReport, 13: 2395–2399.CrossRefGoogle ScholarPubMed
Peirce, J. W., Leigh, A. E., da Costa, A. P. C. & Kendrick, K. M. (2001). Human face recognition in sheep: Lack of configurational coding and right hemisphere advantage. Behavioural Processes, 55: 13–26.CrossRefGoogle ScholarPubMed
Peirce, J. W., Leigh, A. E. & Kendrick, K. M. (2000). Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep. Neuropsychologia, 38: 475–483.CrossRefGoogle Scholar
Pellis, S. M. (1981). A description of social play by the Australian magpie Gymnorhina tibicen based on Eshkol–Wachman notation. Bird Behaviour, 3: 61–79.CrossRefGoogle Scholar
Pepperberg, I. M. (1994). Vocal learning in gray parrots (Psittacus erithacus) – effects of social interaction, reference and context. The Auk, 111: 300–313.CrossRefGoogle Scholar
Perelle, I. B. & Ehrman, L. (1994). An international study of human handedness: The data. Behavioral Genetics, 24: 217–227.CrossRefGoogle ScholarPubMed
Peters, H. & Rogers, L. J. (2007). Limb use and preferences in wild orang-utans during feeding and locomotor behavior. American Journal of Primatology, 69: 1–15.Google Scholar
Petkov, C. L., Kayser, C., Steudel, T. et al. (2008). A voice region in the monkey brain. Nature Neuroscience, 11: 367–374.CrossRefGoogle ScholarPubMed
Pfannkuche, K. A., Bouma, A. & Groothuis, T. G. G. (2009). Does testosterone affect lateralization of brain and behaviour? A meta-analysis in humans and other animal species. Philosophical Transactions of the Royal Society of London B, 364: 929–942.CrossRefGoogle ScholarPubMed
Phelps, E. A., O’Connor, K. J., Gatenby, G. et al. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437–441.CrossRefGoogle Scholar
Phillips, R. E. & Youngren, O. M. (1986). Unilateral kainic acid lesions reveal dominance of right archistriatum in avian fear behaviour. Brain Research, 377: 216–220.CrossRefGoogle Scholar
Piekema, C., Kessels, R. P. C., Mars, K. B. et al. (2006). The right hippocampus participates in short-term memory maintenance of object-location associations. NeuroImage, 33: 374–382.CrossRefGoogle ScholarPubMed
Pierson, J. M., Bradshaw, J. L. & Nettleton, N. C. (1983). Head and body space to left and right, front and rear. 1. Unidirectional competitive auditory stimulation. Neuropsychologia, 21: 463–473.CrossRefGoogle Scholar
Pilcher, D. L., Hammock, E. A. D. & Hopkins, W. D. (2001). Cerebral volumetric asymmetries in non-human primates: A magnetic resonance imaging study. Laterality, 6: 165–179.CrossRefGoogle ScholarPubMed
Pinsk, M. A., DeSimone, K., Moore, T., Gross, C. G. & Kastner, S. (2005). Representations of faces and body parts in macaque temporal cortex: A functional MRI study. Proceedings of the National Academy of Sciences USA, 102: 6996–7001.CrossRefGoogle ScholarPubMed
Pisella, L., Alahyane, N., Blangero, A. et al. (2011). Right hemispheric dominance for visual remapping in humans. Philosophical Transactions of the Royal Society of London B, 365: 572–585.CrossRefGoogle Scholar
Pizzamiglio, L. & Mammucari, A. (1985). Evidence for sex differences in brain organisation in patients with recovery in aphasia. Brain and Language, 25: 213–223.CrossRefGoogle Scholar
Pizzamiglio, L., Guariglia, C. & Cosentino, T. (1998). Evidence for separate allocentric and egocentric space processing in neglect patients. Cortex, 34: 719–730.CrossRefGoogle ScholarPubMed
Poirier, C., Boumans, T., Verhoye, M., Balthazart, J. & Van Der Linden, A. (2009). Own song recognition in the songbird auditory pathway: Selectivity and lateralization. Journal of Neuroscience, 29: 2252–2258.CrossRefGoogle ScholarPubMed
Poremba, A. & Mishkin, M. (2007). Exploring the extent and function of higher-order auditory cortex in rhesus monkeys. Hearing Research, 229: 14–23.CrossRefGoogle ScholarPubMed
Prather, J. F., Peters, S., Nowicki, S. et al. (2008). Precise-auditory mirroring in neurons for learned vocal communication. Nature, 451: 305–310.CrossRefGoogle ScholarPubMed
Previc, F. H. (1991). A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychological Review, 98: 299–334.CrossRefGoogle ScholarPubMed
Proverbio, A. M., Riva, F., Martin, E. et al. (2010). Face coding is bilateral in the female brain. PLoS One, 5: e11242.CrossRefGoogle ScholarPubMed
Pu, G. A. & Dowling, J. E. (1981). Anatomical and physiological characteristics of pineal photoreceptor cells in the larval lamprey, Petromyzon fluviatilis. Journal of Neurophysiology, 46: 1018–1038.CrossRefGoogle Scholar
Putnam, M. C., Steven, M. S., Doron, K. W. et al. (2010). Cortical projection topography of the human splenium: hemispheric asymmetry and individual differences. Journal of Cognitive Neuroscience, 22: 1662–1669.CrossRefGoogle ScholarPubMed
Puzdrowski, R. L. & Gruber, S. (2009). Morphological features of the cerebellum of the Atlantic stingray and their possible evolutionary significance. Integrative Zoology, 4: 110–122.CrossRefGoogle Scholar
Quaranta, A., Siniscalchi, M., Albrizio, M. et al. (2008). Influence of behavioural lateralization on interleukin-2 and interleukin-6 gene expression in dogs before and after immunization with rabies vaccine. Behavioural Brain Research, 186: 256–260.CrossRefGoogle ScholarPubMed
Quaranta, A., Siniscalchi, M., Frate, A. & Vallortigara, G. (2004). Paw preference in dogs: Relations between lateralised behaviour and immunity. Behavioural Brain Research, 153: 521–525.CrossRefGoogle ScholarPubMed
Quaranta, A., Siniscalchi, M. & Vallortigara, G. (2007). Asymmetric tail-wagging responses by dogs to different emotive stimuli. Current Biology, 17: 199–201.CrossRefGoogle ScholarPubMed
Rahman, Q. & Wilson, G. D. (2003). Large sexual-orientation-related differences in performance of mental rotation and judgement of line orientation tasks. Neuropsychology, 17: 25–31.CrossRefGoogle ScholarPubMed
Rahman, Q., Abrahams, S. & Wilson, G. D. (2003). Sexual-orientation-related difference in verbal fluency. Neuropsychology, 17: 240–246.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z. et al. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA, 98: 676–682.CrossRefGoogle ScholarPubMed
Rajendra, S. & Rogers, L. J. (1993). Asymmetry is present in the thalamofugal projections of female chicks. Experimental Brain Research, 92: 542–544.CrossRefGoogle ScholarPubMed
Rashid, N. Y. & Andrew, R. J. (1989). Right hemisphere advantage for topographical orientation in the domestic chick. Neuropsychologia, 7: 937–948.CrossRefGoogle Scholar
Raymond, M. & Pontier, D. (2004). Is there geographical variation in human handedness?Laterality, 9: 35–51.CrossRefGoogle ScholarPubMed
Raymond, M., Pontier, D., Dufour, A. & Moller, A. P. (1996). Frequency-dependent maintenance of left handedness in humans. Proceedings of the Royal Society of London B, 263: 1627–1633.CrossRefGoogle ScholarPubMed
Regan, J. C., Concha, M. L., Roussigne, M., Russell, C. & Wilson, S. W. (2009). An Fgf8-dependent bistable cell migratory event establishes CNS asymmetry. Neuron, 61: 27–34.CrossRefGoogle ScholarPubMed
Regier, T., Kay, P. & Khetarpal, N. (2007). Colour naming reflects optimal partitions of colour space. Proceedings of the National Academy of Sciences USA, 104: 1436–1441.CrossRefGoogle Scholar
Regolin, L., Marconato, F. & Vallortigara, G. (2004). Hemispheric differences in the recognition of partly occluded objects by newly hatched domestic chicks (Gallus gallus). Animal Cognition, 7: 162–170.CrossRefGoogle Scholar
Ren, P., Nicholls, M. E. R., Ma, Y.-Y. et al. (2011). Size matters: Non-numerical magnitude affects the spatial coding of response. PLoS One, 6: e23553.CrossRefGoogle Scholar
Reverberi, C., Shallice, T., D’Agostini, S. et al. (2009). Cortical bases of elementary deductive reasoning: inference, memory and metadeduction. Neuropsychologia, 47: 1107–1116.CrossRefGoogle ScholarPubMed
Reynolds Losin, E. A., Russell, J. L., Freeman, H. et al. (2008). Left hemisphere specialisation for oro-facial movements of learned vocal signals by captive chimpanzees. PLoS One, 3: e2529.CrossRefGoogle Scholar
Rickard, N. S. & Gibbs, M. E. (2003a). Effects of nitric oxide inhibition on avoidance learning in the chick are lateralized and localized. Neurobiology of Learning and Memory, 79: 252–256.CrossRefGoogle ScholarPubMed
Rickard, N. S. & Gibbs, M. E. (2003b). Hemispheric dissociation of the involvement of NOS isoforms in memory for discriminated avoidance in the chick. Learning and Memory, 10: 314–318.CrossRefGoogle ScholarPubMed
Rieger, V., Perez, Y., Muellin, C. H. G. et al. (2011). Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha) and implications for nervous system evolution in Bilateria. Development Growth and Differentiation, 53: 740–759.CrossRefGoogle ScholarPubMed
Rigosi, E., Frasnelli, E., Vinegoni, C. et al. (2011). Searching for anatomical correlates of olfactory lateralization in the honeybee antennal lobes: A morphological and behavioural study. Behavioural Brain Research, 221: 290–294.CrossRefGoogle ScholarPubMed
Rizzolatti, G. & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21: 188–194.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3: 131–141.CrossRefGoogle ScholarPubMed
Roberson, D. & Hanley, J. R. (2009). Only half right: Comment on Regier and Kay. Trends in Cognitive Sciences, 13: 500.CrossRefGoogle ScholarPubMed
Robert, M. & Ohlman, T. (1994). Water-level representation by men and women as a function of rod-and-frame test proficiency and visual and postural information. Perception, 23: 1321–1333.CrossRefGoogle ScholarPubMed
Roberts, A. (1978). Pineal eye and behaviour in Xenopus tadpoles. Nature, 273: 774–775.CrossRefGoogle ScholarPubMed
Robins, A. & Phillips, C. (2010). Lateralised visual processing in domestic cattle herds responding to novel and familiar stimuli. Laterality, 15: 514–534.CrossRefGoogle ScholarPubMed
Robins, A. & Rogers, L. J. (2004). Lateralised prey catching responses in the toad (Bufo marinus): Analysis of complex visual stimuli. Animal Behaviour, 68: 567–575.CrossRefGoogle Scholar
Robins, R. & Rogers, L. J. (2006). Complementary and lateralized forms of processing in Bufo marinus for novel and familiar prey. Neurobiology of Learning and Memory, 86: 214–227.CrossRefGoogle ScholarPubMed
Robins, A., Lippolis, G., Bisazza, A., Vallortigara, G. & Rogers, L. J. (1998). Lateralized agonistic responses and hindlimb use in toads. Animal Behaviour, 56: 875–881.CrossRefGoogle ScholarPubMed
Robinson, R. G. (1985). Lateralized behavioural and neurochemicaal consequences of unilateral brain injury in rats. In: Glick, S. D. (ed.), Cerebral Lateralization in Nonhuman Species, Orlando, FL: Academic Press, pp. 135–156.CrossRefGoogle Scholar
Robinson, R. G. & Downhill, P. (1995). Lateralization of psychopathology in response to focal brain injury. In: Davidson, R. J. & Hugdahl, K. (eds.), Brain Asymmetry, London: MIT Press, pp. 693–711.Google Scholar
Robinson, R. G., Kubos, K. L., Starr, L. B. et al. (1984). Mood disorders in stroke patients: Importance of location of lesion. Brain, 107: 81–93.CrossRefGoogle Scholar
Rodriguez, F., Lopez, J. C., Vargas, J. P. et al. (2002). Spatial memory and hippocampal pallium through vertebrate evolution: Insights from reptiles and teleost fish. Brain Research Bulletin, 57: 499–503.CrossRefGoogle ScholarPubMed
Rogers, L. J. (1974). Persistence and search influenced by natural levels of androgens in young and adult chickens. Physiology and Behavior, 12: 197–204.CrossRefGoogle Scholar
Rogers, L. J. (1980). Lateralisation in the avian brain. Bird Behaviour, 2: 1–12.CrossRefGoogle Scholar
Rogers, L. J. (1982). Light experience and asymmetry of brain function in chickens. Nature, 297: 223–225.CrossRefGoogle ScholarPubMed
Rogers, L. J. (1990). Light input and the reversal of functional lateralization in the chicken brain. Behavioural Brain Research, 38: 211–221.CrossRefGoogle ScholarPubMed
Rogers, L. J. (1991). Development of lateralisation. In: Andrew, R. J. (ed.), Neural and Behavioural Plasticity: The Use of the Domestic Chicken as a Model, Oxford: Oxford University Press, pp. 507–535.CrossRefGoogle Scholar
Rogers, L. J. (1995). The Development of Brain and Behaviour in the Chicken. Wallingford: CAB International:.Google Scholar
Rogers, L. J. (1999a). Effect of light exposure of eggs on posthatching behaviour of chickens. In: Adams, N. & Slotow, R. (eds.), Making Rain for African Ornithology. Proceedings of the 22nd International Ornithological Congress 16–22 August 1998, Durban. Johannesburg: Birdlife South Africa, S46.2.Google Scholar
Rogers, L. J. (1999b). Sexing the Brain. London: Weidenfeld and Nicolson.Google Scholar
Rogers, L. J. (2000). Evolution of hemispheric specialisation: Advantages and disadvantages. Brain and Language, 73: 236–253.CrossRefGoogle ScholarPubMed
Rogers, L. J. (2002a). Lateralization in vertebrates: Its early evolution, general pattern and development. In: Slater, P. J. B., Rosenblatt, J., Snowdon, C. & Roper, T. (eds.), Advances in the Study of Behavior, Vol. 31, San Diego, CA: Academic Press, pp. 107–162.Google Scholar
Rogers, L. J. (2002b). Advantages and disadvantages of lateralization. In: Rogers, L. J. & Andrew, R. J. (eds.), Comparative Vertebrate Lateralization, Cambridge: Cambridge University Press, pp. 126–153.CrossRefGoogle Scholar
Rogers, L. J. (2002c). Lateralized brain function in anurans: Comparison to lateralization in other vertebrates. Laterality, 7: 219–239.CrossRefGoogle Scholar
Rogers, L. J. (2006). Cognitive and social advantages of a lateralized brain. In: Malashichev, Y. B. & Deckel, A. W. (eds.), Behavioral and Morphological Asymmetries in Vertebrates, Texas: Landes Bioscience, pp. 129–139.Google Scholar
Rogers, L. J. (2008). Development and function of lateralization in the avian brain. Brain Research Bulletin, 76: 235–244.CrossRefGoogle ScholarPubMed
Rogers, L. J. (2009). Hand and paw preferences in relation to the lateralised brain. Philosophical Transactions of the Royal Society of London B, 364: 943–954.CrossRefGoogle Scholar
Rogers, L. J. (2010a). Relevance of brain and behavioural lateralization to animal welfare. Applied Animal Behaviour Science, 127: 1–11.CrossRefGoogle Scholar
Rogers, L. J. (2010b). Interactive contributions of genes and early experience to behavioural development: Sensitive periods and lateralized brain and behaviour. In: Hood, K. E., Halpern, C. T., Greenberg, G. & Lerner, R. M. (eds.), Handbook of Developmental Science, Behavior, and Genetics, Malden, MA: Wiley-Blackwell Publishing, pp. 400–433.CrossRefGoogle Scholar
Rogers, L. J. (2010c). Relevance of brain and behavioural lateralization to animal welfare. Applied Animal Behaviour Science, 127: 1–11.CrossRefGoogle Scholar
Rogers, L. J. (2011a). Does brain lateralization have practical implications for improving animal welfare?CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 6(36), 1–10.CrossRefGoogle Scholar
Rogers, L. J. (2011b). The two hemispheres of the avian brain: Their differing roles in perceptual processing and the expression of behavior. Journal of Ornithology, 153 (Suppl. 1): S61–S74.CrossRefGoogle Scholar
Rogers, L. J. & Andrew, R. J. (1989). Frontal and lateral visual field use after treatment with testosterone. Animal Behaviour, 38: 394–405.CrossRefGoogle Scholar
Rogers, L. J. & Andrew, R. J. (eds.) (2002). Comparative Vertebrate Lateralization. Cambridge: Cambridge University Press.CrossRef
Rogers, L. J. & Anson, J. M. (1979). Lateralisation of function in the chicken forebrain. Pharmacology Biochemistry and Behaviour, 10: 679–686.CrossRefGoogle Scholar
Rogers, L. J. & Bell, G. A. (1989). Different rates of functional development in the two visual systems of the chicken revealed by {14C} 2-deoxyglucose. Developmental Brain Research, 49: 161–172.CrossRefGoogle ScholarPubMed
Rogers, L. J. & Deng, C. (1999). Light experience and lateralization of the two visual pathways in the chick. Behavioural Brain Research, 98: 277–287.CrossRefGoogle ScholarPubMed
Rogers, L. J. & Deng, C. (2005). Corticosterone treatment of the chick embryo affects light-stimulated development of the thalamofugal visual pathway. Behavioural Brain Research, 159: 63–71.CrossRefGoogle ScholarPubMed
Rogers, L. J. & Kaplan, G. (1996). Hand preferences and other lateral biases in rehabilitated orang-utans, Pongo pygmaeus pygmaeus. Animal Behaviour, 51: 13–25.CrossRefGoogle Scholar
Rogers, L. J. & Kaplan, G. (2006). An eye for a predator: Lateralization in birds, with particular reference to the Australian magpie. In: Malashichev, Y. & Deckel, W. (eds.) Behavioral and Morphological Asymmetries in Vertebrates, Texas: Landes Bioscience, pp. 47–57.Google Scholar
Rogers, L. J. & Rajendra, S. (1993). Modulation of the development of light-initiated asymmetry in chick thalamofugal visual projections by oestradiol. Experimental Brain Research, 93: 89–94.CrossRefGoogle ScholarPubMed
Rogers, L. J. & Sink, H. S. (1988). Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Experimental Brain Research, 70: 378–384.CrossRefGoogle ScholarPubMed
Rogers, L. J. & Vallortigara, G. (2008). From antenna to antenna: Lateral shift of olfactory memory in honeybees. PLoS One, 3: e2340.CrossRefGoogle ScholarPubMed
Rogers, L. J. & Workman, L. (1989). Light exposure during incubation affects competitive behaviour in domestic chicks. Applied Animal Behaviour Science, 23: 187–198.CrossRefGoogle Scholar
Rogers, L. J. & Workman, L. (1993). Footedness in birds. Animal Behaviour, 45: 409–411.CrossRefGoogle Scholar
Rogers, L. J., Andrew, R. J. & Burne, T. H. J. (1998). Light exposure of the embryo and development of behavioural lateralisation in chicks: I. Olfactory responses. Behavioural Brain Research, 97: 195–200.CrossRefGoogle ScholarPubMed
Rogers, L. J., Munro, U., Freire, R., Wiltschko, R. & Wiltschko, W. (2008). Lateralized response of chicks to magnetic cues. Behavioural Brain Research, 186: 66–71.CrossRefGoogle ScholarPubMed
Rogers, L. J., Zappia, J. V. & Bullock, S. P. (1985). Testosterone and eye-brain asymmetry for copulation in chickens. Experientia, 41: 1447–1449.CrossRefGoogle Scholar
Rogers, L. J., Zucca, P. & Vallortigara, G. (2004). Advantage of having a lateralized brain. Proceedings of the Royal Society of London B, 271: S420–S422.CrossRefGoogle ScholarPubMed
Rosa, C., Lassonde, M., Pinard, C., Keenan, J. P. & Belin, P. (2008). Investigations of hemispheric specialization of self-voice recognition. Brain Cognition, 68: 204–214.CrossRefGoogle ScholarPubMed
Rosa Salva, O., Daisley, J. N., Regolin, L. & Vallortigara, G. (2009). Lateralization of social learning in the domestic chick (Gallus gallus domesticus): Learning to avoid. Animal Behaviour, 78: 847–856.CrossRefGoogle Scholar
Rosa Salva, O., Regolin, L., Mascalzoni, E. & Vallortigara, G. (2012). Cerebral and behavioural asymmetries in animal social recognition. Comparative Cognition and Behavior Reviews, in press.CrossRef
Rose, S. P. (1992). The Making of Memory. London: Bantam Press.Google Scholar
Rose, S. P. (2000). God’s organism? The chick as a model system for memory studies. Learning and Memory, 7: 1–17.CrossRefGoogle ScholarPubMed
Rota-Stabelli, O., Kayal, E., Gleeson, D. et al. (2010). Ecdysozoan mitogenomics: Evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biology and Evolution, 2: 425–440.CrossRefGoogle ScholarPubMed
Roussigné, M., Bianco, I. H, Wilson, S. W. & Blader, P. (2009). Nodal signalling imposes left–right asymmetry upon neurogenesis in the habenular nuclei. Development, 136: 1549–1557.CrossRefGoogle ScholarPubMed
Rowe, T. B., Macrini, T. E. & Luo, Z.-X. (2011). Fossil evidence on origin of mammalian brain. Science, 332: 955–957.CrossRefGoogle ScholarPubMed
Rugani, R., Kelly, D. M., Szelest, I. et al. (2010). Is it only humans that count from left to right? Biology Letters, 6: 290–292.CrossRefGoogle ScholarPubMed
Rugani, R., Vallortigara, G., Vallini, B. & Regolin, L. (2011). Asymmetrical number-space mapping in the avian brain. Neurobiology of Learning and Memory, 95: 231–238.CrossRefGoogle ScholarPubMed
Ryan, B. C. & Vandenbergh, J. G. (2002). Intrauterine position effect. Neuroscience and Biobehavioral Reviews, 26: 665–678.CrossRefGoogle Scholar
Sackeim, H. A., Weiman, A. L., Gur, R. C. et al. (1982). Pathological laughing and crying: Functional brain asymmetry in the experience of positive and negative emotions. Archives of Neurology, 39: 210–218.CrossRefGoogle Scholar
Sagasti, A. (2007). Three ways to make two sides: Genetic models of asymmetric nervous system development. Neuron, 55: 345–351.CrossRefGoogle ScholarPubMed
Saint-Galli, A., Marchand, A. R., Decorte, L. et al. (2011). Retrospective evaluation and its neuronal circuit in rats. Behavioural Brain Research, 223: 262–270.CrossRefGoogle Scholar
Sakai, M., Hishii, T., Takeda, S. & Kohshima, S. (2006). Laterality of flipper rubbing behaviour in wild bottlenose dolphins (Tursiops aduncus): Caused by asymmetry of eye use?Behavioural Brain Research, 170: 204–210.CrossRefGoogle ScholarPubMed
Samara, A., Vougas, K., Papadopoulou, A. et al. (2011). Proteomics reveal rat hippocampal lateral asymmetry. Hippocampus, 21: 108–119.CrossRefGoogle ScholarPubMed
Sandi, C., Patterson, T. A. & Rose, S. P. (1993). Visual input and lateralization of brain function in learning in the chick. Neuroscience, 52: 393–401.CrossRefGoogle ScholarPubMed
Sandoz, J.-C., Hammer, M. & Menzel, R. (2002). Side-specificity of olfactory learning in the honeybee: US input side. Learning and Memory, 9: 337–348.CrossRefGoogle ScholarPubMed
Santrock, J. W. (2008). Motor, sensory, and perceptual development. In: Ryan, M. (ed.), A Topical Approach to Life-Span Development, Boston: McGraw-Hill Higher Education, pp. 172–205.Google Scholar
Savic, I. & Lindström, P. (2008). PET and MRI show difference in cerebral asymmetry and functional connectivity between homo- and heterosexual subjects. Proceedings of the National Academy of Sciences USA, 105: 9403–9408.CrossRefGoogle Scholar
Sayigh, L. S., Esch, H. C., Wells, R. S. et al. (2007). Facts about signature whistles of bottlenose dolphins Tursiops truncatus. Animal Behaviour, 74: 1631–1642.CrossRefGoogle Scholar
Saykin, A. J., Johnson, S. C., Flashman, L. A. et al. (1999). Functional differentiation of medial temporal and frontal regions involved in processing novel and familiar words: An fMRI study. Brain, 122: 1963–1971.CrossRefGoogle Scholar
Schaeffel, F., Howland, H. C. & Farkas, L. (1986). Natural accomodation in the growing chicken. Vision Research, 26: 1977–1993.CrossRefGoogle Scholar
Schenker, N. M., Hopkins, W. D., Spocter, M. A. et al. (2010). Broca’s area homologue in chimpanzees (Pan troglodytes): Probabilistic mapping, asymmetry and comparison to humans. Cerebral Cortex, 20: 730–742.CrossRefGoogle Scholar
Schiff, B. B. & Lamon, M. (1989). Inducing emotion by unilateral contraction of facial muscles: A new look at hemispheric specialisation and the experience of emotion. Neuropsychologia, 27: 923–935.CrossRefGoogle Scholar
Schiff, B. B. & Lamon, M. (1994). Inducing emotion by unilateral contraction of hand muscles. Cortex, 30: 247–254.CrossRefGoogle ScholarPubMed
Schmidt, M. F., Ashmore, R. C. & Vu, E. T. (2004). Bilateral control and interhemispheric coordination in the avian song motor system. Annals of the New York Academy of Sciences, 1016: 171–186.CrossRefGoogle ScholarPubMed
Schomerus, C., Korf, H. W., Laedtke, E. et al. (2008). Nocturnal behaviour and rhythmic Period gene expression in a lancelet, Branchiostoma lanceolatum. Journal of Biological Rhythms, 23: 170.CrossRefGoogle Scholar
Schulte, T. & Müller-Oehring, E. M. (2010). Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychological Review, 20: 174–190.CrossRefGoogle ScholarPubMed
Schwabl, H. (1999). Developmental changes and among-sibling variation of corticosterone levels in an altricial avian species. General and Comparative Endocrinology, 116: 403–408.CrossRefGoogle Scholar
Schwarz, I. M. & Rogers, L. J. (1992). Testosterone: A role in the development of brain asymmetry in the chick. Neuroscience Letters, 146: 167–170.CrossRefGoogle ScholarPubMed
Seeck, M., Michel, C. M., Mainwaring, N. et al. (1997). Evidence for rapid face recognition from human scalp and intracranial electrodes. NeuroReport, 8: 2749–2754.CrossRefGoogle ScholarPubMed
Seeger, G., Braus, R. F., Ruf, M. et al. (2002). Body image distortion reveals amygdala activation in patients with anorexia nervosa – a functional magnetic resonance imaging study. Neuroscience Letters, 326: 25–29.CrossRefGoogle ScholarPubMed
Seeley, W. W., Carlin, D. A. & Allman, J. A. (2006). Early frontotemporal dementia targets neurons unique to apes and humans. Annals of Neurology, 60: 660–667.CrossRefGoogle ScholarPubMed
Seger, C. A., Poldrack, R. A., Prabhalcaran, V. et al. (2000). Hemispheric asymmetries and individual differences in visual concept learning as measured by functional MRI. Neuropsychologia, 38: 1316–1324.CrossRefGoogle ScholarPubMed
Semendeferi, K., Teffer, K., Buxhoeveden, D. P. et al. (2011). Spatial organisation of neurons in the frontal pole sets humans apart from great apes. Cerebral Cortex, 21: 1485–1497.CrossRefGoogle ScholarPubMed
Shallice, T., Burgess, P. & Robertson, I. (1996). The domain of supervisory processes and temporal organisation of behaviour. Philosophical Transactions of the Royal Society of London B, 351: 1405–1412.CrossRefGoogle ScholarPubMed
Shamay-Tsoori, S. G., Adler, N., Aharon-Peretz, J. et al.(2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49: 178–185.CrossRefGoogle Scholar
Shapleski, J., Rossell, S. L., Woodruff, P. W. R. et al. (1999). The planum temporale: A systematic, quantitative review of its structural, functional and clinical significance. Brain Research Review, 29: 26–49.CrossRefGoogle Scholar
Sharp, P. E., Turner-Williams, S. & Tuttle, S. (2006). Movement-related correlates of single cell activity in the interpeduncular nucleus and habenula of the rat. Behavioural Brain Research, 166: 55–70.CrossRefGoogle ScholarPubMed
Shaw, J., Claridge, G. & Clark, K. (2001). Schizotypy and the shift from dextrality: A study of handedness in a large non-clinical sample. Schizophrenia Research, 50: 181–189.CrossRefGoogle Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R. et al. (1995). Sex differences in the functional organisation of the brain for language. Nature, 373: 607–609.CrossRefGoogle ScholarPubMed
Sherry, D. F. & Schachter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94: 439–454.CrossRefGoogle Scholar
Sherwood, C. C., Duka, T., Simpson, C. D. et al. (2010). Neonatal synaptophysin asymmetry and behavioural lateralisation in chimpanzees (Pan troglodytes). European Journal of Neuroscience, 31: 1456–1464.CrossRefGoogle Scholar
Sherwood, C. C., Wahl, E., Erwin, J. M., Hof, P. R. & Hopkins, W. D. (2007). Histological asymmetries of primary motor cortex predict handedness in chimpanzees (Pan troglodytes). Journal of Comparative Neurology, 503: 525–537.CrossRefGoogle Scholar
Shettleworth, S. J. (2003). Memory and hippocampal specialization in food-storing birds: Challenges for research on comparative cognition. Brain Behavior and Evolution, 62: 108–116.CrossRefGoogle ScholarPubMed
Shin, L. M., McNally, R. J., Kosslyn, S. M. et al. (1999). Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: A PET investigation. American Journal of Psychiatry, 156: 575–584.Google ScholarPubMed
Shinohara, Y., Hosoya, A., Yamasaki, N. et al. (2012). Right-hemispheric dominance of spatial memory in split-brain mice. Hippocampus, 22: 117–121.CrossRefGoogle ScholarPubMed
Sholl, A. A. & Kim, K. L. (1990). Androgen receptors are differentially distributed between right and left cerebral hemispheres of the fetal male rhesus monkey. Brain Research, 516: 122–126.CrossRefGoogle ScholarPubMed
Shomrat, T., Zarrella, I., Fiorito, G. et al. (2008). The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Current Biology, 18: 337–342.CrossRefGoogle ScholarPubMed
Shu, D. G., Conway Morris, S., Han, J. et al. (2003). Head and backbone of the early Cambrian vertebrate Haikouichthys. Nature, 421: 526–529.CrossRefGoogle ScholarPubMed
Shulman, G. L., Pope, D. L. W., Astafiev, S. V. et al. (2010). Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. Journal of Neuroscience, 30: 3640–3651.CrossRefGoogle ScholarPubMed
Siegel, P. B., Isakson, S. T., Coleman, F. N. & Huffman, B. J. (1969). Photoacceleration of development in chick embryos. Comparative Biochemistry and Physiology, 28: 753–758.CrossRefGoogle Scholar
Sindhurakar, A. & Bradley, N. S. (2010). Kinematic analysis of overground locomotion in chicks incubated under different light conditions. Developmental Psychobiology, 52: 802–812.CrossRefGoogle ScholarPubMed
Siniscalchi, M., Dimatteo, S., Pepe, A. M., Sasso, R. & Quaranta, A. (2012). Visual lateralization in wild striped dophins (Stenella coeruleoalba) in response to stimuli with different degrees of familiarity. PloS One, 7: e30001.CrossRefGoogle Scholar
Siniscalchi, M., Quaranta, A. & Rogers, L. J. (2008). Hemispheric specialization in dogs for processing different acoustic stimuli. PloS One, 3(10): e3349.CrossRefGoogle ScholarPubMed
Siniscalchi, M., Sasso, R., Pepe, A. M. et al. (2010a). Catecholamine plasma levels following immune stimulation with rabies vaccine in dogs selected for their paw preferences. Neuroscience Letters, 476: 142–145.CrossRefGoogle ScholarPubMed
Siniscalchi, M., Sasso, R., Pepe, A. M. et al. (2011). Sniffing with the right nostril: Lateralisation of response to odour stimuli by dogs. Animal Behaviour, 82: 399–404.CrossRefGoogle Scholar
Siniscalchi, M., Sasso, R., Pepe, A. M., Vallortigara, G. & Quaranta, A. (2010b). Dogs turn left to emotional stimuli. Behavioural Brain Research, 208: 516–521.CrossRefGoogle ScholarPubMed
Siok, W. T., Kay, P., Wang, W. S. Y. et al. (2009). Language regions of the brain are operative in color perception. Proceedings of the National Academy of Sciences USA, 106: 8140–8145.CrossRefGoogle Scholar
Smaers, J. B., Steele, J., Case, C. R. et al. (2011). Primate prefrontal cortex evolution: Human brains are at the extreme of a lateralised ape trend. Brain Behavior and Evolution, 77: 67–78.CrossRefGoogle Scholar
Smart, J. L., Tonkiss, J. & Massey, R. F. (1986). A phenomenon: Left-biased asymmetrical eye-opening in artificially reared rat pups. Developmental Brain Research, 28: 134–136.CrossRefGoogle Scholar
Smith, A. B. (2005). The pre-radial history of echinoderms. Geological Journal, 40: 255–280.CrossRefGoogle Scholar
Smotherman, W. P., Brown, C. P. & Levine, S. (1977). Maternal responsiveness following differential pup treatment and mother–pup interactions. Hormones and Behavior, 8: 242–253.CrossRefGoogle ScholarPubMed
Snyder, A. & Mitchell, D. J. (1999). Is integer arithmetic fundamental to mental processing? The mind’s secret arithmetic. Proceedings of the Royal Society of London B, 266: 165–191.CrossRefGoogle ScholarPubMed
Snyder, A., Brahmanali, H., Hawker, T. & Mitchell, D. J. (2006). Savant-like numerosity skills revealed in normal people by magnetic pulses. Perception, 35: 837–845.CrossRefGoogle ScholarPubMed
Sovrano, V. A. (2004). Visual lateralization in response to familiar and unfamiliar stimuli in fish. Behavioural Brain Research, 152: 385–391.CrossRefGoogle Scholar
Sovrano, V. A. & Andrew, R. J. (2006). Eye use during viewing a reflection: behavioural lateralization in zebrafish larvae. Behavioural Brain Research, 167: 226–231.CrossRefGoogle Scholar
Sovrano, V. A., Bisazza, A. & Vallortigara, G. (2001). Lateralization of response to social stimuli in fishes: A comparison between different methods and species. Physiology and Behavior, 74: 237–244.CrossRefGoogle ScholarPubMed
Sovrano, V. A., Rainoldi, C., Bisazza, A. & Vallortigara, G. (1999). Roots of brain specializations: Preferential left-eye use during mirror-image inspection in six species of teleost fish. Behavioural Brain Research, 106: 175–180.CrossRefGoogle Scholar
Spear, L. P. (2000). The adolescent brain and age-related behavioural manifestations. Neuroscience and Biobehavioral Reviews, 24: 417–463.CrossRefGoogle Scholar
Spivak, B., Segal, M., Mester, R. & Weizman, A. (1998). Lateral preference in post-traumatic stress disorder. Psychological Medicine, 28: 229–232.CrossRefGoogle ScholarPubMed
Spocter, M. A., Hopkins, W. D., Garrison, A. R. et al. (2010). Wernicke’s area homologue in chimpanzees (Pan troglodytes) and its relation to the appearance of modern language. Proceedings of the Royal Society of London B, 277: 2165–2174.CrossRefGoogle Scholar
Spreng, R. N., Mar, R. A. & Kim, A. S. N. (2008). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21: 485–510.Google Scholar
Stewart, T. A. & Albertson, R. C. (2010). Evolution of a unique predatory feeding apparatus: Functional anatomy, development and a genetic locus for jaw laterality in Lake Tanganyika scale-eating cichlids. BMC Biology, 8: 8.CrossRefGoogle Scholar
Stokes, M. D. (1997). Larval locomotion of the lancelet Branchiostoma floridae. Journal of Experimental Biology, 200: 1661–1680.Google Scholar
Stokes, M. D. & Holland, D. D. (1995). Ciliary hovering in larval lancelets. Biological Bulletin, 188: 231–233.CrossRefGoogle ScholarPubMed
Stoodley, C. J. & Schmahmann, J. D. (2009). Functional tomography in the human cerebellum: A meta-analysis on neuroimaging studies, NeuroImage, 44: 489–501.CrossRefGoogle Scholar
Sullivan, R. M. (2004). Hemispheric asymmetry in stress processing in rat prefrontal cortex and the role of mesocortical dopamine. Stress, 7: 131–143.CrossRefGoogle ScholarPubMed
Summers, M. J., Crowe, S. F. & Ng, K. T. (1996). Administration of lanthanum chloride following a reminder induces transient loss of memory in the day-old chick. Cognitive Brain Research, 4: 109–119.CrossRefGoogle Scholar
Sutherland, R. J. (1982). The dorsal diencephalic conduction system: A review of the anatomy and function of the habenular complex. Neuroscience Biobehavioral Reviews, 6: 1–13.CrossRefGoogle ScholarPubMed
Suthers, R. A. (1990). Contributions to birdsong from the left and right sides of the intact syrinx. Nature, 347: 473–477.CrossRefGoogle Scholar
Swalla, B. J. & Smith, A. B. (2008). Deciphering deuterostome phylogeny: Molecular, morphological and palaeontological perspectives. Philosophical Transactions of the Royal Society of London B, 363: 1557–1568.CrossRefGoogle ScholarPubMed
Szaniawski, H. (2009). The earliest known venomous animals recognised amongst conodonts. Acta Palaeontologica Polonica, 54: 669–676.CrossRefGoogle Scholar
Tager-Flusberg, H. & Joseph, R. M. (2003). Identifying neurocognitive phenotypes in autism. Philosophical Transactions of the Royal Society of London B, 358: 303–314.CrossRefGoogle ScholarPubMed
Taglialatela, J. P., Russell, J. L., Schaeffer, J. A. et al. (2011). Chimpanzee vocal signalling points to a multimodal origin of human language. PLoS One, 6: e18852.CrossRefGoogle Scholar
Tan, U. (1987). Paw preferences in dogs. International Journal of Neuroscience, 32: 825–829.CrossRefGoogle ScholarPubMed
Tang, A. C. & Reeb, B. C. (2003). Neonatal novelty exposure, dynamics of brain asymmetry, and social recognition memory. Developmental Psychobiology, 44: 84–93.CrossRefGoogle Scholar
Tang, A. C. & Verstynen, T. (2002). Early life environment modulates ‘handedness’ in rats. Behavioural Brain Research, 131: 1–7.CrossRefGoogle ScholarPubMed
Taylor, R. W., Hsieh, Y. W., Gamse, J. T. & Chuang, C. F. (2010). Making a difference together: Reciprocal interactions in C. elegans and zebrafish asymmetric neural development. Development, 137: 681–691.CrossRefGoogle Scholar
Telford, M. J., Bourlat, S. J., Economou, A. et al. (2008). The evolution of the Ecdysozoa. Philosophical Transactions of the Royal Society of London B, 218: 333–339.Google Scholar
Tennie, C., Hedwig, D., Call, J. & Tomasello, M. (2008). An experimental study of nettle feeding in captive gorillas. American Journal of Primatology, 70: 584–593.CrossRefGoogle ScholarPubMed
Teufel, C., Ghazanfar, A. A. & Fischer, J. (2010). On the relationship between lateralised brain function and orienting asymmetries. Behavioral Neuroscience, 124: 437–445.CrossRefGoogle Scholar
Thatcher, W. W., Walker, R. A. & Giudice, S. (1987). Human cerebral hemispheres develop at different rates and ages. Science, 236: 1110–1113.CrossRefGoogle ScholarPubMed
Thomas, P. O. R., Croft, D. P., Marshall, L. J. et al. (2008). Does defection during predator inspection affect social structure in wild shoals of guppies? Animal Behaviour, 75: 43–53.CrossRefGoogle Scholar
Tomaz, C., Verburg, M. S., Boere, V., Pianta, T. F. & Belo, M. (2003). Evidence of hemispheric specialization in marmosets (Callithrix penicillata) using tympanic membrane thermometry. Brazilian Journal of Medical and Biological Research, 36: 913–918.CrossRefGoogle ScholarPubMed
Tomer, R., Denes, A. S., Tessmar-Raible, K. et al. (2010). Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell, 142: 800–809.CrossRefGoogle ScholarPubMed
Tommasi, L. & Andrew, R. J. (2002). The use of viewing posture to control visual processing by lateralised mechanisms. Journal of Experimental Biology, 205: 1451–1457.Google ScholarPubMed
Tommasi, L. & Vallortigara, G. (1999). Footedness in binocular and monocular chicks. Laterality. 4: 89–95.CrossRefGoogle ScholarPubMed
Tommasi, L. & Vallortigara, G. (2001). Encoding of geometric and landmark information in the left and right hemispheres of the avian brain. Behavioral Neuroscience, 115: 602–613.CrossRefGoogle ScholarPubMed
Tommasi, L. & Vallortigara, G. (2004). Hemispheric processing of landmark and geometric information in male and female domestic chicks (Gallus gallus). Behavioural Brain Research, 155: 85–96.CrossRefGoogle Scholar
Tommasi, L., Andrew, R. J. & Vallortigara, G. (2000). Eye use is determined by the nature of task in the domestic chick (Gallus gallus). Behavioural Brain Research, 112: 119–126.CrossRefGoogle Scholar
Tommasi, L., Gagliardo, A., Andrew, R. J. & Vallortigara, G. (2003). Separate processing mechanisms for encoding geometric and landmark information in the avian hippocampus. European Journal of Neuroscience, 17: 1695–1702.CrossRefGoogle ScholarPubMed
Tommasi, L., Vallortigara, G. & Zanforlin, M. (1997). Young chickens learn to localize the centre of a spatial environment. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 180: 567–572.CrossRefGoogle ScholarPubMed
Tourville, J. A., Reilly, K. J. & Guenther, F. H. (2008). Neural mechanisms underlying auditory feedback control of speech. NeuroImage, 39: 1429–1443.CrossRefGoogle Scholar
Town, S. M. (2011). Preliminary evidence of a neurophysiological basis for individual discrimination in filial imprinting. Behavioural Brain Research, 225: 651–654.CrossRefGoogle ScholarPubMed
Tranel, D., Bechara, A. & Denberg, N. L. (2002). Asymmetric functional roles of right and left ventromedial prefrontal cortices. Cortex, 38: 589–612.CrossRefGoogle ScholarPubMed
Tsakiris, M. (2010). My body in my brain: A neurocognitive model of body ownership. Neuropsychologia, 48: 703–712.CrossRefGoogle Scholar
Tucker, D. M. & Frederick, S. L. (1989). Emotion and brain lateralisation. In: Wagner, H. & Manstead, A. (eds.), Handbook of Social Psychophysiology, Chichester: Wiley, pp. 27–70.Google Scholar
Tully, T. & Quinn, W. G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology A, 157: 263–277.CrossRefGoogle ScholarPubMed
Tulogdi, A., Toth, M., Halasz, J. et al. (2010). Brain mechanisms involved in predatory aggression are activated in a laboratory model of violent intra-specific aggression. European Journal of Neuroscience, 32: 1744–1753.CrossRefGoogle Scholar
Tulving, E., Kapur, S., Craik, F. I. et al. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences USA, 91: 2016–2020.CrossRefGoogle ScholarPubMed
Valencia-Alfonso, C. E., Verhaal, J. & Güntürkün, O. (2009). Ascending and descending mechanisms of visual lateralization in pigeons. Philosophical Transactions of the Royal Society of London B, 364: 955–963.CrossRefGoogle ScholarPubMed
Valenti, A., Sovrano, V. A., Zucca, P. & Vallortigara, G. (2003). Visual lateralization in quails. Laterality, 8: 67–78.CrossRefGoogle Scholar
Vallortigara, G. (1992). Right hemisphere advantage for social recognition in the chick. Neuropsychologia, 30: 761–768.CrossRefGoogle ScholarPubMed
Vallortigara, G. (2000). Comparative neuropsychology of the dual brain: A stroll through left and right animals’ perceptual worlds. Brain and Language, 73: 189–219.CrossRefGoogle ScholarPubMed
Vallortigara, G. (2004). Visual cognition and representation in birds and primates. In: Rogers, L. J. & Kaplan, G. (eds.), Comparative Vertebrate Cognition: Are Primates Superior to Non-Primates?New York: Kluwer Academic/Plenum Publishers, pp. 57–94.CrossRefGoogle Scholar
Vallortigara, G. (2005). Editorial for cortex forum: Cerebral lateralization: A common theme in the organization of the vertebrate brain. Cortex, 42: 5–7.CrossRefGoogle Scholar
Vallortigara, G. (2006a). The evolution of behavioural and brain asymmetries: Bridging together neuropsychology and evolutionary biology. In: Malashichev, Y. & Deckel, W. (eds.), Behavioral and Morphological Asymmetries in Vertebrates, Austin, TX: Landes Bioscience, pp. 1–20.Google Scholar
Vallortigara, G. (2006b). The cognitive chicken: Visual and spatial cognition in a non-mammalian brain. In: Wasserman, E. A. & Zentall, T. R. (eds.), Comparative Cognition: Experimental Explorations of Animal Intelligence, Oxford: Oxford University Press, pp. 41–58.Google Scholar
Vallortigara, G. (2006c). The evolutionary psychology of left and right: Costs and benefits of lateralization. Developmental Psychobiology, 48: 418–427.CrossRefGoogle ScholarPubMed
Vallortigara, G. & Andrew, R. J. (1991). Lateralization of response to change in a model partner by chicks. Animal Behaviour, 41: 187–194.CrossRefGoogle Scholar
Vallortigara, G. & Andrew, R. J. (1994a). Differential involvement of right and left hemisphere in individual recognition in the domestic chick. Behavioural Processes, 33: 41–58.CrossRefGoogle ScholarPubMed
Vallortigara, G. & Andrew, R. J. (1994b). Olfactory lateralization in the chick. Neuropsychologia, 32: 417–423.CrossRefGoogle ScholarPubMed
Vallortigara, G. & Bisazza, A. (2002). How ancient is brain lateralisation? In: Rogers, L. J. & Andrew, R. J. (eds.), Comparative Vertebrate Lateralization, Cambridge: Cambridge University Press, pp. 9–69.CrossRefGoogle Scholar
Vallortigara, G. & Rogers, L. J. (2005). Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behavioral and Brain Sciences, 28: 575–633.CrossRefGoogle ScholarPubMed
Vallortigara, G., Chiandetti, C. & Sovrano, V. A. (2011). Brain asymmetry (animal). Wiley Interdisciplinary Reviews: Cognitive Science, 2: 146–157.Google Scholar
Vallortigara, G., Cozzutti, C., Tommasi, L. & Rogers, L. J. (2001). How birds use their eyes: Opposite left–right specialisation for the lateral and frontal visual hemifield in the domestic chick. Current Biology, 11: 29–33.CrossRefGoogle ScholarPubMed
Vallortigara, G., Pagni, P. & Sovrano, V. A. (2004). Separate geometric and non-geometric modules for spatial reorientation: Evidence from a lopsided animal brain. Journal of Cognitive Neuroscience, 16: 390–400.CrossRefGoogle ScholarPubMed
Vallortigara, G., Regolin, L., Bortolomiol, G. & Tommasi, L. (1996). Lateral asymmetries due to preferences in eye use during visual discrimination learning in chicks. Behavioural Brain Research, 74: 135–143.CrossRefGoogle ScholarPubMed
Vallortigara, G., Rogers, L. J. & Bisazza, A. (1999). Possible evolutionary origins of cognitive brain lateralization. Brain Research Reviews, 30: 164–175.CrossRefGoogle ScholarPubMed
Vallortigara, G., Rogers, L. J., Bisazza, A., Lippolis, G. & Robins, A. (1998). Complementary right and left hemifield use for predatory and agonistic behaviour in toads. NeuroReport, 9: 3341–3344.CrossRefGoogle ScholarPubMed
Vallortigara, G., Snyder, A., Kaplan, G. et al. (2008). Are animals autistic savants?PLoS Biology, 6: 208–214.CrossRefGoogle ScholarPubMed
van den Berg, F. E., Swinnen, S. P. & Wenderoth, N. (2010). Hemispheric asymmetries of the premotor cortex are task specific as revealed by disruptive TMS during bimanual versus unimanual movements. Cerebral Cortex, 20: 2842–2851.CrossRefGoogle ScholarPubMed
van der Hoort, B., Gutyerstam, A. & Ehrsson, H. H. (2011). Being Barbie: The size of one’s own body determines the perceived size of the world. PLoS One, 6: e20195.CrossRefGoogle Scholar
van Dijck, J. P. & Fias, W. (2011). A working memory account of spatial-numerical associations. Cognition, 119: 114–119.CrossRefGoogle ScholarPubMed
van Dooren, T. J., van Goor, H. A. & van Putten, M. (2010). Handedness and asymmetry in scale-eating cichlids: Antisymmetries of different strength. Evolution, 64: 2159–2165.Google ScholarPubMed
Vandenberg, L. N. & Levin, M. (2009). Perspectives and open problems in the early phases of left–right patterning. Seminars in Cell and Developmental Biology, 20: 456–463.CrossRefGoogle ScholarPubMed
Vauclair, J. (2004). Lateralization of communicative signals in nonhuman primates and the hypothesis of the gestural origin of language. Interaction Studies, 5: 365–386.Google Scholar
Vauclair, J. & Meguerditchian, A. (2008). The gestural origin of language and its lateralization: Theory and data from studies in nonhuman primates. In: Kern, S., Gayraud, F. & Marsico, E. (eds.), Emergence of Linguistic Abilities: From Gestures to Grammar, Cambridge: Cambridge Scholars Publishing, pp. 43–59.Google Scholar
Ventolini, N., Ferrero, E. A., Sponza, S. et al. (2005). Laterality in the wild: Preferential hemifield use during predatory and sexual behaviour in the black-winged stilt. Animal Behaviour, 69: 1077–1084.CrossRefGoogle Scholar
Versace, E., Morgante, M., Pulina, G. & Vallortigara, G. (2007). Behavioural lateralization in sheep (Ovis aries). Behavioural Brain Research, 184: 72–80.CrossRefGoogle Scholar
Verstynen, T., Tierney, R., Urbanski, T. & Tang, A. (2001). Neonatal novelty exposure modulates hippocampal volumetric asymmetry in the rat. NeuroReport, 12: 3019–3022.CrossRefGoogle ScholarPubMed
Vigh-Teichmann, I., Korf, H. W., Nűrnbeyer, F. et al. (1983). Opsin-immunoreactive outer segments in the pineal and parapineal organs of the lamprey (Lampetra fluviatilis), the eel (Anguilla anguilla) and the rainbow trout (Salmo gairdneri). Cell and Tissue Research, 230: 289–307.CrossRefGoogle Scholar
Vingiano, W. (1991). Pseudoneglect on a cancellation task. International Journal of Neuroscience, 58: 63–67.CrossRefGoogle ScholarPubMed
von Economo, C. & Koskinas, G. (1925). Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Berlin: Springer.Google Scholar
Voyer, D., Bowes, A. & Snaggi, M. (2009). Response procedures and laterality effects in emotion recognition: Implications for models of dichotic listening. Neuropsychologia, 47: 23–29.CrossRefGoogle ScholarPubMed
Voyer, D., Voyer, S. & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117: 250–270.CrossRefGoogle ScholarPubMed
Wallman, J. & Pettigrew, J. D. (1985). Conjugate and disjunctive saccades in two avian species with contrasting oculomotor strategies. Journal of Neuroscience, 5: 1418–1428.CrossRefGoogle ScholarPubMed
Wang, X., Yand, J., Shu, H. et al. (2011). Left fusiform BOLD responses are inversely related to word-likeness in a one-back task. NeuroImage, 55: 1346–1356.CrossRefGoogle Scholar
Wanker, R., Sugama, Y. & Prinage, S. (2005). Vocal labelling of family members in spectacled parrotlets, Forpus conspiculatus. Animal Behaviour, 70: 111–118.CrossRefGoogle Scholar
Ward, R. & Collins, R. L. (1985). Brain size and shape in strongly and weakly lateralized mice. Brain Research, 328: 243–249.CrossRefGoogle ScholarPubMed
Waters, N. S. & Denenberg, V. H. (1994). Analysis of two measures of paw preference in a large population of inbred mice. Behavioural Brain Research, 63: 195–204.CrossRefGoogle Scholar
Watkins, J. A. S. (1999). Lateralisation of auditory learning and processing in the domestic chick (Gallus gallus domesticus). Unpublished D.Phil. thesis, University of Sussex.
Watson, N. V. & Kimura, D. (1989). Right-hand superiority for throwing but not for intercepting. Neuropsychologia, 27: 1399–1414.CrossRefGoogle Scholar
Webb, J. E. (1969). On the feeding and behaviour of the larva of Branchiostoma lanceolatum. Marine Biology, 3: 58–72.CrossRefGoogle Scholar
Webb, J. E. (1975). The distribution of amphioxus. Symposia of the Zoological Society of London. 36: 179–212.Google Scholar
Weekes, N. Y., Zaidel, D. W. & Zaidel, E. (1995). Effects of sex and sex role attribution on the ear advantage in dichotic listening. Neuropsychology, 9: 62–67.CrossRefGoogle Scholar
Weiss, R. A. (2009). Apes, lice and prehistory. Journal of Biology, 8: 20.CrossRefGoogle ScholarPubMed
Wells, D. L. (2003). Lateralized behavior in the domestic dog. Behavioral Processes, 61: 27–35.CrossRefGoogle Scholar
Wells, D. L. & Millsopp, S. (2009). Lateralized behaviour in the domestic cat, Felis silvestris catus. Animal Behaviour, 78: 537–541.CrossRefGoogle Scholar
Weniger, G., Lange, C. & Irle, E. (2006). Abnormal size of the amygdala predicts impaired emotional memory in major depressive disorder. Journal of Affective Disorders, 94: 219–229.CrossRefGoogle ScholarPubMed
Wentworth, S. L. & Muntz, W. R. A. (1989). Asymmetries in the sense organs and central nervous system of the squid Histioteuthis. Journal of Zoology, 219: 607–619.CrossRefGoogle Scholar
Westerhausen, R. & Hugdahl, K. (2008). The corpus callosum in dichotic listening studies of hemispheric asymmetry: A review of clinical and experimental evidence. Neuroscience and Biobehavioral Reviews, 32: 1044–1054.CrossRefGoogle ScholarPubMed
Westin, L. (1998). The spawning migration of European silver eel (Aguilla anguilla L.), with special reference to stocked eels in the Baltic. Fisheries Research, 38: 257–260.CrossRefGoogle Scholar
Weyers, P., Milnik, A., Muller, C. & Pauli, P. (2006). How to choose a seat in theatres: Always sit on the right side?Laterality, 11: 181–193.CrossRefGoogle ScholarPubMed
Whiten, A. (2005). The second inheritance system of chimpanzees and humans. Nature, 437: 52–54.CrossRefGoogle ScholarPubMed
Whiten, A., Goodall, J., McGrew, W. C. et al. (2001). Charting cultural variation in chimpanzees. Behaviour, 138: 1481–1516.CrossRefGoogle Scholar
Whiten, A., Schick, K. & Toth, N. (2009). The evolution and cultural transmission of percussive technology: Integrating evidence from palaeoanthropology and primatology. Journal of Human Evolution, 57: 420–435.CrossRefGoogle ScholarPubMed
Wichman, A., Freire, R. & Rogers, L. J. (2009). Light exposure during incubation and social and vigilance behaviour in domestic chicks. Laterality, 14: 381–394.CrossRefGoogle ScholarPubMed
Wichman, A., Rogers, L. J. & Freire, R. (2008). Visual lateralization and development of spatial and social spacing behaviour of chicks (Gallus gallus domesticus). Behavioural Processes, 81: 14–19.CrossRefGoogle Scholar
Wild, B., Rodden, F. A., Grodd, W. et al. (2003). Neural correlates of laughter and humour. Brain, 126: 2121–2138.CrossRefGoogle ScholarPubMed
Wild, J. M., Williams, M. N. & Suthers, R. A. (2000). Neural pathways for bilateral vocal control in songbirds. Journal of Comparative Neurology, 423: 413–426.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Wiltschko, W. & Wiltschko, R. (2005). Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology A, 191: 675–693.CrossRefGoogle ScholarPubMed
Wiltschko, W. & Wiltschko, R. (2009). Avian navigation. The Auk, 126: 717–743.CrossRefGoogle Scholar
Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. (2003). Lateralization of magnetic compass orientation in silvereye, Zosterops lateralis. Australian Journal of Zoology, 51: 1–6.CrossRefGoogle Scholar
Wiltschko, W., Traudt, J., Güntürkün, O., Prior, H. & Wiltschko, R. (2002). Lateralization of magnetic compass orientation in a migratory bird. Nature, 419: 467–470.CrossRefGoogle Scholar
Wiltschko, W., Wiltschko, R. & Ritz, T. (2011). The mechanism of the avian magnetic compass. Procedia Chemistry, 3: 276–284.CrossRefGoogle Scholar
Wisniewsky, A. B. (1998). Sexually-dimorphic patterns of cortical asymmetry, and the role for sex steroids in determining cortical patterns of lateralisation. Psychoneuroendocrinology, 23: 519–547.CrossRefGoogle Scholar
Witelson, S. F. (1976). Sex and the single hemisphere: Specialization of the right hemisphere for spatial processing. Science, 193: 425–427.CrossRefGoogle ScholarPubMed
Witelson, S. F. & Nowakowski, R. S. (1991). Left out axons make men right: A hypothesis for the origin of handedness and functional asymmetry. Neuropsychologia, 29: 327–333.CrossRefGoogle ScholarPubMed
Witelson, S. F., Kigar, D. L., Scamvougeras, A. et al. (2008). Corpus callosum anatomy in right-handed homosexual and heterosexual men. Archives of Sexual Behavior, 37: 857–863.CrossRefGoogle ScholarPubMed
Workman, L. & Andrew, R. J. (1989). Simultaneous changes in behaviour and in lateralization during the development of male and female domestic chicks. Animal Behaviour, 38: 596–605.CrossRefGoogle Scholar
Yamazaki, Y., Aust, U., Huber, L., Hausmann, M. & Güntürkün, O. (2007). Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the ‘human concept’. Cognition, 104: 315–344.CrossRefGoogle Scholar
Yáněz, J., Busch, J., Anadón, R. & Meissl, H. (2009). Pineal projections in the zebrafish (Danio rerio): Overlap with retinal and cerebellar projections. Neuroscience, 164: 1712–1720.CrossRefGoogle ScholarPubMed
Yáněz, J., Pombal, M. A. & Anadón, R. (1999). Afferent and efferent connections of the parapineal organ in lampreys: A tract tracing and immunocytochemical study. Journal of Comparative Neurology, 403: 171–189.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Young, J. Z. (1962). Why do we have two brains? In: Mountcastle, V. B. (ed.), Interhemispheric Relations and Cerebral Dominance, Baltimore, MD: Johns Hopkins Press, pp. 7–24.Google Scholar
Yu, D., Akalal, D.-B. G. & Davis, R. L. (2006). Drosophila α/β mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron, 52: 845–855.CrossRefGoogle Scholar
Zalc, B., Goujet, D. & Colman, D. (2008). The origin of the myelination programme in vertebrates. Current Biology, 18: R511–R512.CrossRefGoogle Scholar
Zappia, J. V. & Rogers, L. J. (1983). Light experience during development affects asymmetry of fore-brain function in chickens. Developmental Brain Research, 11: 93–106.CrossRefGoogle Scholar
Zeigler, H. P. & Marler, P. (2008). Neuroscience of Birdsong. Cambridge: Cambridge University Press.Google Scholar
Zeitlin, S. B., Lane, R. D., O’Leary, D. S. & Schrift, M. J. (1989). Interhemispheric transfer deficit and alexithymia. American Journal of Psychiatry, 146: 1434–1439.Google ScholarPubMed
Zhuralev, A. V. (2007). Morphofunctional analysis of late Paleozoic conodont elements and apparatuses. Paleolontical Journal, 41: 549–557.CrossRefGoogle Scholar
Zucca, P. & Sovrano, V. A. (2008). Animal lateralization and social recognition: quails use their left visual hemifield when approaching a companion and their right visual hemifield when approaching a stranger. Cortex, 44: 13–20.CrossRefGoogle ScholarPubMed
Zucca, P., Baciadonna, L., Masci, S. & Mariscoli, M. (2011a). Illness as a source of variation of laterality in lions (Panthera leo). Laterality, 16: 356–366.CrossRefGoogle Scholar
Zucca, P., Cerri, F., Carluccio, A. & Baciadonna, L. (2011b). Space availability influences laterality in donkeys (Equus asinus). Behavioural Processes, 88: 63–66.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×