Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T18:29:28.914Z Has data issue: false hasContentIssue false

9 - Pharmacophore methods

from PART II - COMPUTATIONAL CHEMISTRY METHODOLOGY

Published online by Cambridge University Press:  06 July 2010

Kenneth M. Merz, Jr
Affiliation:
University of Florida
Dagmar Ringe
Affiliation:
Brandeis University, Massachusetts
Charles H. Reynolds
Affiliation:
Johnson & Johnson Pharmaceutical Research & Development
Get access

Summary

INTRODUCTION

Paul Ehrlich introduced the pharmacophore concept in the early 1900s while studying the efficacy of dyes and other compounds as potential chemotherapeutic agents. By analogy with chromophores and toxophores, Ehrlich suggested the term pharmacophore to refer to the molecular framework that carries (phoros) the features that are essential for the biological activity of a drug (pharmacon). The modern, widely accepted definition was offered by Peter Gund in 1977: “a set of structural features in a molecule that is recognized at the receptor site and is responsible for that molecule's biological activity.” In practice, the modern definition is implicitly restricted to cover only specific, noncovalent interactions between a molecule and receptor. Thus a pharmacophore model is not concerned with binding that occurs solely as a result of short-lived surface-to-surface hydrophobic interactions, nor binding that involves the formation of covalent bonds.

Although a pharmacophore model codifies the key interactions between a ligand and its biological target, neither the structure of the target nor even its identity is required to develop a useful pharmacophore model. For this reason, pharmacophore methods are often considered to be indispensable when the available information is very limited, for example, when one knows nothing more than the structures of a handful of actives. However, pharmacophore approaches can also be vital for accelerating discovery efforts when more extensive data are available by providing a means of superimposing structures for 3D quantitative structure/activity relationship (QSAR) development, or by acting as a rapid prefilter on real or virtual libraries that are too large for routine treatment with more expensive structure-based techniques, such as docking.

Type
Chapter
Information
Drug Design
Structure- and Ligand-Based Approaches
, pp. 137 - 150
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ehrlich, P.Present status of chemotherapy. Chem. Ber. 1909, 42, 17–47.Google Scholar
Gund, P.Three-dimensional pharmacophore pattern searching. In: Progress in Molecular and Subcellular Biology, Hahn, F. E.; Ed. Berlin: Springer-Verlag; 1977, 5, 117–143.
Marshall, G. R.; Barry, C. D.; Bosshard, H. E.; Dammkoehler, R. A.; Dunn, D. A.The conformational parameter in drug design: the active analog approach. In: Computer-Assisted Drug Design, Olson, E. C.; Christoffersen, R. E.; Eds. Washington, D.C.: American Chemical Society; 1979, 205–226.
Cramer, R. D.; Patterson, D. E.; Bunce, J. D.Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967.Google Scholar
Klebe, G.; Abraham, U.; Mietzner, T.Molecular similarity indices in comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 1994, 37, 4130–4146.Google Scholar
Li, H.; Sutter, J.; Hoffmann, R.HypoGen: an automated system for generating 3d predictive pharmacophore models. In: Pharmacophore Perception, Development and Use in Drug Design, Güner, O. F.; Ed. La Jolla, CA: International University Line; 2000, 173–189.
Dixon, S. L.; Smondyrev, A. M.; Knoll, E. H.; Rao, S. N.; Shaw, D. E.; Friesner, R. A.PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3d database screening. 1. Methodology and preliminary results. J. Comput. Aided Mol. Des. 2006, 20, 647–671.Google Scholar
Jacobsson, M.; Gäredal, M.; Schultz, J.; Karlén, A.Identification of plasmodium falciparum spermidine synthase active site binders through structure-based virtual screening. J. Med. Chem. 2008, 51, 2777–2786.Google Scholar
Martin, Y. C.Distance comparisons (DISCO): a new strategy for examining 3d structure-activity relationships. In: Classical and 3D QSAR in Agrochemistry, Hansch, C., Fujita, T.; Ed. Washington, D.C.: American Chemical Society; 1995, 318–329.
Barnum, D.; Greene, J.; Smellie, A.; Sprague, P.Identification of common functional configurations among molecules. J. Chem. Inf. Comput. Sci. 1996, 36, 563–571.Google Scholar
Jones, G.; Willett, P.; Glen, R. C.A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J. Comput. Aided Mol. Des. 1995, 9, 532–549.Google Scholar
Richmond, N. J.; Abrams, C. A.; Wolohan, P. R. N.; Abrahamian, E.; Willet, P.; Clark, R. D.GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J. Comput. Aided Mol. Des. 2006, 20, 567–587.Google Scholar
Greenidge, P. A.; Carlsson, B.; Bladh, L.; Gillner, M.Pharmacophores incorporating numerous excluded volumes defined by x-ray crystallographic structure in three-dimensional database searching: application to the thyroid hormone receptor. J. Med. Chem. 1998, 41, 2503–2512.Google Scholar
Van Drie, J. H.Shrink-Wrap” surfaces: a new method for incorporating shape into pharmacophoric 3d database searching. J. Chem. Inf. Comput. Sci. 1997, 37, 38–42.Google Scholar
Good, A. C.; Kuntz, I. D.Investigating the extension of pairwise distance pharmacophore measures to triplet-based descriptors. J. Comput. Aided Mol. Des. 1995, 9, 373–379.Google Scholar
Pickett, S. D.; Mason, J. S.; McLay, I. M.Diversity profiling and design using 3d pharmacophores: pharmacophore-derived queries (PDQ). J. Chem. Inf. Comput. Sci. 1996, 36, 1214–1223.Google Scholar
McGregor, M. J.; Muskal, S. M.Pharmacophore fingerprinting. 1. Application to QSAR and focused library design. J. Chem. Inf. Comput. Sci. 1999, 39, 569–574.Google Scholar
Cato, S. J.Exploring pharmacophores with CHEM-X. In: Pharmacophore Perception, Development, and Use in Drug Design, Güner, O. F.; Ed. La Jolla, CA: International University Line; 2000, 110–125.
Güner, O. F.; Henry, D. R.; Pearlman, R. S.Use of flexible queries for searching conformationally flexible molecules in databases of three-dimensional structures. J. Chem. Inf. Comput. Sci. 1992, 32, 101–109.Google Scholar
Greene, J.; Kahn, S.; Savoj, H.; Sprague, P.; Teig, S.Chemical function queries for 3d database search. J. Chem. Inf. Comput. Sci. 1994, 34, 1297–1308.Google Scholar
Drie, J. H.Strategies for the determination of pharmacophoric 3d database queries. J. Comput. Aided Mol. Des. 1997, 11, 39–52.Google Scholar
Güner, O. F.Pharmacophore Perception, Development, and Use in Drug Design. La Jolla, CA: International University Line; 2000.
Mason, J. S.; Good, A. C.; Martin, E. J.3D pharmacophores in drug discovery. Curr. Pharm. Des. 2001, 7, 567–597.Google Scholar
Güner, O. F.History and evolution of the pharmacophore concept in computer-aided drug design. Curr. Top. Med. Chem. 2002, 2, 1321–1332.Google Scholar
Drie, J. H.Pharmacophore discovery: lessons learned. Curr. Pharm. Des. 2003, 9, 1649–1664.Google Scholar
Dror, O.; Shulman-Peleg, A.; Nussov, R.; Wolfson, H. J.Predicting molecular interaction in silico. I. A guide to pharmacophore identification and its applications to drug design. Curr. Med. Chem. 2004, 11, 71–90.Google Scholar
Drie, J.Pharmacophore-based virtual screening: A practical perspective. In: Virtual Screening in Drug Discovery, Alvarez, J.; Shoichet, B.; Ed. Boca Raton, FL: CRC Press; 2005.
Gund, P.; Wipke, W. T.; Langridge, R.Computer Searching of a Molecular Structure File for Pharmacophoric Patterns, Amsterdam: Elsevier; 1974, 3, 33–39.
Sheridan, R. P.; Nilakantan, R.; Dixon, J. S.; Venkataraghavan, R.The ensemble approach to distance geometry: application to the nicotinic pharmacophore. J. Med. Chem. 1986, 29, 899–906.Google Scholar
Mayer, D.; Naylor, C. B.; Motoc, I.; Marshall, G. R.A unique geometry of the active site of angiotensin-converting enzyme consistent with structure-activity studies. J. Comput. Aided Mol. Des. 1987, 1, 3–16.Google Scholar
Golender, V. E.; Vorpagel, E. R.Computer-assisted pharmacophore identification. In: 3D QSAR in Drug Design: Theory, Methods and Applications, Kubinyi, H.; Ed. Leiden: ESCOM Science Publishers; 1993, 137–149.
Havel, T. F.; Kuntz, I. D.; Crippen, G. M.The theory and practice of distance geometry. Bull. Math. Biol. 1983, 45, 665–720.Google Scholar
Bron, C.; Kerbosch, J.Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 1973, 16, 575–577.Google Scholar
Patel, Y.; Gillet, V. J.; Bravi, G.; Leach, A. R.A comparison of the pharmacophore identification programs: CATALYST, DISCO and GASP. J. Comput. Aided Mol. Des. 2002, 16, 653–681.Google Scholar
Goldberg, D. E.Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley; 1989.
Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J.Classification and Regression Trees. Belmont, CA: Wadsworth International Group; 1984.
Young, S. S.; Hawkins, D. M.Analysis of a 29 full factorial chemical library. J. Med. Chem. 1995, 38, 2784–2788.Google Scholar
Hawkins, D. M.; Young, S. S.; Rusinko, A.Analysis of a large structure-activity data set using recursive partitioning. Quant. Struct.-Act. Relat. 1997, 16, 1–7.Google Scholar
Young, S. S.; Hawkins, D. M.Using recursive partitioning to analyze a large sar data set. SAR QSAR. Eviron. Res. 1998, 8, 183–193.Google Scholar
Chen, X.; Rusinko, A.; Young, S. S.Recursive partitioning analysis of a large structure-activity data set using three-dimensional descriptors. J. Chem. Inf. Comput. Sci. 1998, 38, 1054–1062.Google Scholar
Dixon, S. L.; Villar, H. O.Investigation of classification methods for the prediction of activity in diverse chemical libraries. J. Comput. Aided Mol. Des. 1999, 13, 533–545.Google Scholar
Chen, X.; Rusinki, A.; Tropsha, A.; Young, S. S.Automated pharmacophore identification for large chemical data sets. J. Chem. Inf. Comput. Sci. 1999, 39, 887–896.Google Scholar
Drie, J. H.; Weininger, D.; Martin, Y. C.ALADDIN: an integrated tool for computer-assisted molecular design and pharmacophoric pattern recognition from geometric, steric and substructure searching of three-dimensional molecular structures. J. Comput. Aided Mol. Des. 1989, 3, 225–251.Google Scholar
Lauri, G.; Bartlett, P. A.CAVEAT: a program to facilitate the design of organic molecules. J. Comput. Aided Mol. Des. 1994, 8, 51–66.Google Scholar
Seeman, P.; Watanabe, M.; Grigoriadis, D.; Tedesco, J. L.; George, S. R.; Svensson, U.; Nilsson, J. L. G.; Neumeyer, J. L.Dopamine D-2 receptor binding sites for agonists: a tetrahedral model. Mol. Pharmacol. 1985, 28, 391–399.Google Scholar
Chang, G.; Guida, W.; Still, W. C.An internal coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 1989, 111, 4379–4386.Google Scholar
Smellie, A.; Teig, S. L.; Towbin, P.Poling: promoting conformational variation. J. Comput. Chem. 1995, 16, 171–187.Google Scholar
catalyst/confirm. San Diego, CA Accelrys.
,OMEGA. Sante Fe, NM OpenEye Scientific Software. September 2008.
Li, J.; Ehlers, T.; Sutter, J.; Varma-O'Brien, S.; Kirchmair, J.CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational consideration. J. Chem. Inf. Model. 2007, 47, 1923–1932.Google Scholar
Halgren, T. A.Merck molecular force field. I. Basis, form, scope, parameterization and performance of MMFF94. J. Comput. Chem. 1996, 17, 520–552.Google Scholar
Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J.Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236.Google Scholar
Shelley, J.; Cholleti, A.; Frye, L. L.; Greenwood, J. R.; Timlin, M. R.; Uchimaya, M.EPIK: a software program for pKa prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007, 21, 681–691.Google Scholar
Forbes, I. T.; Dabbs, S.; Duckworth, M. D.; Ham, P.; Jones, G. E.; King, F. D.; Saunders, D. V.; Blaney, F. E.; Naylor, C. B.; Baxter, G. S.; Blankburn, T. P.; Kennett, G. A.; Wood, M. D.Synthesis, biological activity, and molecular modeling studies of selective 5-HT2C/2B receptor antagonists. J. Med. Chem. 1996, 39, 4966–4977.Google Scholar
phase 3.0. New York: Schrödinger, LLC; 2008.
Ash, S.; Cline, M. A.; Homer, R. W.; Hurst, T.; Smith, G. B.SYBYL line notation (SLN): a versatile language for chemical structure representation. J. Chem. Inf. Comput. Sci. 1997, 37, 71–79.Google Scholar
SMARTS: Smiles ARbitrary Target Specification. Aliso Viejo, CA: Daylight Chemical Information Systems.
Schonemann, P.A generalized solution of the orthogonal procrustes problem. Psychometrika 1966, 31, 1–10.Google Scholar
Ferro, D.; Hermans, J. A.A different best rigid-body molecular fit routine. Acta Crystallogr. 1977, A33, 345–347.Google Scholar
Beusen, D. D.; Marshall, G. R.Pharmacophore definition using the active analog approach. In: Pharmacophore Perception, Development, and Use in Drug Design, Güner, O. F.; Ed. La Jolla, CA: International University Line; 2000, 23–45.
Griffith, R.; Bremner, J. B.; Coban, B.Docking-derived pharmacophores from models of receptor-ligand complexes. In: Pharmacophore Perception, Development, and Use in Drug Design, Güner, O. F.; Ed. La Jolla, CA: International University Line; 2000, 387–408.
Claussen, H.; Gastreich, M.; Apelt, V.; Greene, J.; Hindle, S. A.; Lemmen, C.The FlexX database docking environment: rational extraction of receptor based pharmacophores. Curr. Drug Discov. Technol. 2004, 1, 49–60.Google Scholar
Tschinke, V.; Cohen, N. C.The NEWLEAD program: a new method for the design of candidate structures from pharmacophoric hypotheses. J. Med. Chem. 1993, 36, 3863–3870.Google Scholar
Gastreich, M.; Lilienthal, M.; Briem, H.; Claussen, H.Ultrafast de novo docking combining pharmacophores and combinatorics. J. Comput. Aided Mol. Des. 2006, 20, 717–734.Google Scholar
Carlson, H. A.; Masukawa, K. M.; Rubins, K.; D., B. F.; Jorgensen, W. L.; Lins, R. D.; Briggs, J. M.; McCammon, J. A.Developing a dynamic pharmacophore model for HIV-1 integrase. J. Med. Chem. 2000, 43, 2100–2114.Google Scholar
Deng, J.; Lee, K. W.; Sanchez, T.; Cui, M.; Neamati, N.; Briggs, J. M.Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors. J. Med. Chem. 2005, 48, 1496–1505.Google Scholar
Kirchhoff, P. D.; Brown, R.; Kahn, S.; Waldman, M.Application of structure-based focusing to the estrogen receptor. J. Comput. Chem. 2001, 22, 993–1003.Google Scholar
Böhm, H.-J.LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J. Comput. Aided Mol. Des. 1992, 6, 593–606.Google Scholar
Wlber, G.; Langer, T.ligandscout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169.Google Scholar
Markt, P.; Schuster, D.; Kirchmair, J.; Laggner, C.; Langer, T.Pharmacophore modeling and parallel screening for PPAR ligands. J. Comput. Aided Mol. Des. 2007, 21, 575–590.Google Scholar
Murray, C. W.; Baxter, C. A.; Frenkel, A. D.The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. J. Comput. Aided Mol. Des. 1999, 13, 547–562.Google Scholar
Carlson, H. A.; McCammon, J. A.Accommodating protein flexibility in computational drug design. Mol. Pharmacol. 2000, 57, 213–218.Google Scholar
Sherman, W.; Day, T.; Jacobson, M. P.; Friesner, R. A.; Farid, R.Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 2006, 49, 534–553.Google Scholar
catalyst/hyporefine. San Diego, CA: Accelrys.
Schuster, D.; Laggner, C.; Steindl, T. M.; Palusczak, A.; Hartmann, R.; Langer, T.Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors. J. Chem. Inf. Model. 2006, 46, 1301–1311.Google Scholar
Brown, R. D.; Martin, Y. C.Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci. 1996, 36, 572–584.Google Scholar
Brown, R. D.; Martin, Y. C.The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comput. Sci. 1997, 37, 1–9.Google Scholar
Flower, D. R.On the properties of bit string-based measures of chemical similarities. J. Chem. Inf. Comput. Sci. 1998, 38, 379–386.Google Scholar
Dixon, S. L.; Koehler, R. T.The hidden component of size in two-dimensional fragment descriptors: side effects on sampling in bioactive libraries. J. Med. Chem. 1999, 42, 2287–2900.Google Scholar
Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.; Weinberger, L. E.Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J. Med. Chem. 1996, 3049–3059.
Matter, H.Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors. J. Med. Chem. 1997, 40, 1219–1229.Google Scholar
Lajiness, M. S.Dissimilarity-based compound selection techniques. Perspect. Drug Discov. Des. 1997, 7/8, 65–84.Google Scholar
Pötter, T.; Matter, H.Random or rational design? Evaluation of diverse compound subsets from chemical structure databases. J. Med. Chem. 1998, 41, 478–488.Google Scholar
Ajay, A.; Walters, W. P.; Murcko, M. A.Can we learn to distinguish between “drug-like” and “nondrug-like” molecules?J. Med. Chem. 1998, 41, 3314–3324.Google Scholar
Murrall, N. W.; Davies, E. K.Conformational freedom in 3-D databases. 1. Techniques. J. Chem. Inf. Comput. Sci. 1990, 30, 312–316.Google Scholar
Clark, D. E.; Jones, G.; Willett, P.Pharmacophoric pattern matching in files of three-dimensional chemical structures: comparison of conformational searching algorithms for flexible searching. J. Chem. Inf. Comput. Sci. 1994, 34, 197–206.Google Scholar
Moock, T. E.; Henry, D. R.; Ozkabak, A. G.; Alamgir, M.Conformational searching in ISIS/3D databases. J. Chem. Inf. Comput. Sci. 1994, 34, 184–189.Google Scholar
Hurst, T.Flexible 3D searching: the directed tweak technique. J. Chem. Inf. Comput. Sci. 1994, 34, 190–196.Google Scholar
Martin, Y.; Bures, M.; Danaher, E.; DeLazzer, J.New strategies that improve the efficiency of the 3D design of bioactive molecules. In: Trends in QSAR and Molecular Modelling 92, Wermuth, C.; Ed. Leiden: ESCOM; 1993, 20–26.
Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G.Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew. Chem. Int. Ed. Engl. 1999, 38, 2894–2896.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×