Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-02T10:23:28.297Z Has data issue: false hasContentIssue false

3 - Energy acquisition and use

Published online by Cambridge University Press:  12 March 2010

S. A. L. M. Kooijman
Affiliation:
Vrije Universiteit, Amsterdam
Get access

Summary

This chapter discusses the mechanistic basis of different processes which together constitute the Dynamic Energy Budget (DEB) model. Further chapters evaluate consequences at the individual level. Tests against experimental data are presented during the discussion to examine the realism of the model formulations, and also to develop a feeling for the numerical behaviour of the model elements. The next chapter presents additional tests that involve combinations of processes. The sequential nature of human language does not do justice to the many interrelationships of the processes. These interrelationships are what makes the DEB model more than just a collection of independent submodels. I have chosen here to follow the fate of food, ending up with production processes. This order fits ‘supply’ systems, but for ‘demand’ systems another order may be more natural. The relationships between the different processes is schematically summarized in Figure 3.1.

The details and logic of the energy flows will be discussed in this chapter; a brief introduction will be given in this introductory section.

Food is ingested by an animal, transformed into faeces and egested. Energy derived from food is taken up via the blood, which has a low capacity for energy but a high transportation rate. Blood exchanges energy with the storage, and delivers energy to somatic and reproductive tissues. A fixed part, k, of the catabolic flux, i.e. the energy delivered by the blood, is used for (somatic) maintenance plus growth, the rest for development and/or reproduction. The decision rule for this fork is called the k-rule.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Energy acquisition and use
  • S. A. L. M. Kooijman, Vrije Universiteit, Amsterdam
  • Book: Dynamic Energy and Mass Budgets in Biological Systems
  • Online publication: 12 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511565403.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Energy acquisition and use
  • S. A. L. M. Kooijman, Vrije Universiteit, Amsterdam
  • Book: Dynamic Energy and Mass Budgets in Biological Systems
  • Online publication: 12 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511565403.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Energy acquisition and use
  • S. A. L. M. Kooijman, Vrije Universiteit, Amsterdam
  • Book: Dynamic Energy and Mass Budgets in Biological Systems
  • Online publication: 12 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511565403.006
Available formats
×