Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-10T08:29:18.278Z Has data issue: false hasContentIssue false

Section 9 - Ovary and Fallopian Tubes

Published online by Cambridge University Press:  24 November 2021

Tahir Mahmood
Affiliation:
Victoria Hospital, Kirkcaldy
Charles Savona-Ventura
Affiliation:
University of Malta, Malta
Ioannis Messinis
Affiliation:
University of Thessaly, Greece
Sambit Mukhopadhyay
Affiliation:
Norfolk & Norwich University Hospital, UK
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Brookfield, KF, Cheung, MC, Koniaris, LG, Sola, JE, Fischer, AC. A population-based analysis of 1037 malignant ovarian tumors in the pediatric population. J Surg Res 2009. doi:10.1016/j.jss.2009.03.069.Google Scholar
Schultz, KAP, Harris, AK, Finch, M, et al. DICER1-related Sertoli–Leydig cell tumor and gynandroblastoma: clinical and genetic findings from the International Ovarian and Testicular Stromal Tumor Registry. Gynecol Oncol 2017. doi:10.1016/j.ygyno.2017.09.034.CrossRefGoogle Scholar
Schultz, KAP, Harris, A, Messinger, Y, et al. Ovarian tumors related to intronic mutations in DICER1: a report from the international ovarian and testicular stromal tumor registry. Fam Cancer 2016. doi:10.1007/s10689-015-9831-y.CrossRefGoogle Scholar
Lang, JD, Hendricks, WPD. Identification of driver mutations in rare cancers: the role of SMARCA4 in small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). Methods Mol Biol 2018. doi:10.1007/978-1-4939-7471-9_20.CrossRefGoogle Scholar
Marro, A, Allen, LM, Kives, SL, Moineddin, R, Chavhan, GB. Simulated impact of pelvic MRI in treatment planning for pediatric adnexal masses. Pediatr Radiol 2016. doi:10.1007/s00247-016-3606-y.Google Scholar
Epelman, M, Chikwava, KR, Chauvin, N, Servaes, S. Imaging of pediatric ovarian neoplasms. Pediatr Radiol 2011. doi:10.1007/s00247-011-2128-x.CrossRefGoogle Scholar
Capito, C, Arnaud, A, Hameury, F, et al. Dysgerminoma and gonadal dysgenesis: the need for a new diagnosis tree for suspected ovarian tumours. J Pediatr Urol 2011. doi:10.1016/j.jpurol.2011.02.021.Google Scholar
Renaud, EJ, Sømme, S, Islam, S, et al. Ovarian masses in the child and adolescent: an American Pediatric Surgical Association Outcomes and Evidence-Based Practice Committee systematic review. J Pediatr Surg 2019. doi:10.1016/j.jpedsurg.2018.08.058.CrossRefGoogle Scholar
Tamauchi, S, Kajiyama, H, Yoshihara, M, et al. Reproductive outcomes of 105 malignant ovarian germ cell tumor survivors: a multicenter study. Am J Obstet Gynecol 2018. doi:10.1016/j.ajog.2018.07.021.Google Scholar
Rogers, PC, Olson, TA, Cullen, JW, et al. Treatment of children and adolescents with stage II testicular and stages I and II ovarian malignant germ cell tumors: a Pediatric Intergroup study – Pediatric Oncology Group 9048 and Children’s Cancer Group 8891. J Clin Oncol 2004;22:35633569.CrossRefGoogle ScholarPubMed
Madenci, AL, Vandewalle, RJ, Dieffenbach, BV, et al. Multicenter pre-operative assessment of pediatric ovarian malignancy. J Pediatr Surg 2019. doi:10.1016/j.jpedsurg.2019.02.019.CrossRefGoogle Scholar
Madenci, AL, Levine, BS, Laufer, MR, et al. Preoperative risk stratification of children with ovarian tumors. J Pediatr Surg 2016. doi:10.1016/j.jpedsurg.2016.05.004.CrossRefGoogle Scholar
Abbas, PI, Dietrich, JE, Francis, JA, et al. Ovarian-sparing surgery in pediatric benign ovarian tumors. J Pediatr Adolesc Gynecol 2016. doi:10.1016/j.jpag.2016.03.009.CrossRefGoogle Scholar
Faure-Conter, C, Pashankar, F. Immature ovarian teratoma: when to give adjuvant therapy? J Pediatr Hematol Oncol 2017. doi:10.1097/MPH.0000000000000950.CrossRefGoogle Scholar
Pashankar, F, Hale, JP, Dang, H, et al. Is adjuvant chemotherapy indicated in ovarian immature teratomas? A combined data analysis from the Malignant Germ Cell Tumor International Collaborative. Cancer 2016. doi:10.1002/cncr.29732.CrossRefGoogle Scholar
Terenziani, M, Cecchetto, G, Inserra, A, et al. Mature and immature teratoma: results of the second pediatric AIEOP (Associazione Italiana Di Ematologia Oncologia Pediatrica) Italian study. Pediatr Blood Cancer 2014;61:S120. doi:10.1002/pbc.25314.Google Scholar
Satoh, T, Aoki, Y, Kasamatsu, T, et al. Administration of standard-dose BEP regimen (bleomycin + etoposide + cisplatin) is essential for treatment of ovarian yolk sac tumour. Eur J Cancer 2015. doi:10.1016/j.ejca.2014.12.004.CrossRefGoogle Scholar
Shaikh, F, Cullen, JW, Olson, TA, et al. Reduced and compressed cisplatin-based chemotherapy in children and adolescents with intermediate-risk extracranial malignant germ cell tumors: a report from the Children’s Oncology Group. J Clin Oncol 2017. doi:10.1200/JCO.2016.67.6544.CrossRefGoogle Scholar
Frazier, AL, Stoneham, S, Rodriguez-Galindo, C, et al. Comparison of carboplatin versus cisplatin in the treatment of paediatric extracranial malignant germ cell tumours: a report of the Malignant Germ Cell International Consortium. Eur J Cancer 2018;98:3037.CrossRefGoogle ScholarPubMed
Shah, R, Xia, C, Krailo, M, et al. Is carboplatin-based chemotherapy as effective as cisplatin-based chemotherapy in the treatment of advanced-stage dysgerminoma in children, adolescents and young adults? Gynecol Oncol 2018. doi:10.1016/j.ygyno.2018.05.025.Google Scholar
Frazier, AL, Hale, JP, Rodriguez-Galindo, C, et al. Revised risk classification for pediatric extracranial germ cell tumors based on 25 years of clinical trial data from the United Kingdom and United States. J Clin Oncol 2015. doi:10.1200/JCO.2014.58.3369.Google Scholar
Fresneau, B, Orbach, D, Faure-Conter, C, et al. Sex-cord stromal tumors in children and teenagers: results of the TGM-95 Study. Pediatr Blood Cancer 2015. doi:10.1002/pbc.25614.CrossRefGoogle Scholar
Schneider, DT, Calaminus, G, Wessalowksi, R, et al. Ovarian sex cord–stromal tumors in children and adolescents. J Clin Oncol 2003;21:23572363. doi:10.1200/JCO.2003.05.038.Google Scholar
Schneider, DT, Orbach, D, Cecchetto, G, et al. Ovarian Sertoli Leydig cell tumours in children and adolescents: an analysis of the European Cooperative Study Group on Pediatric Rare Tumors (EXPeRT). Eur J Cancer 2015;51:543550.CrossRefGoogle Scholar
Cecchetto, G, Ferrari, A, Bernini, G, et al. Sex cord stromal tumors of the ovary in children: a clinicopathological report from the Italian TREP project. Pediatr Blood Cancer 2011. doi:10.1002/pbc.22918.Google Scholar
Calaminus, G, Wessalowski, R, Harms, D, Göbel, U. Juvenile granulosa cell tumors of the ovary in children and adolescents: results from 33 patients registered in a prospective cooperative study. Gynecol Oncol 1997. doi:10.1006/gyno.1997.4695.Google Scholar
Powell, JL, Kotwall, CA, Shiro, BC. Fertility-sparing surgery for advanced juvenile granulosa cell tumor of the ovary. J Pediatr Adolesc Gynecol 2014. doi:10.1016/j.jpag.2013.10.001.Google Scholar
Distelmaier, F, Calaminus, G, Harms, D, et al. Ovarian small cell carcinoma of the hypercalcemic type in children and adolescents: a prognostically unfavorable but curable disease. Cancer 2006;107:22982306.CrossRefGoogle ScholarPubMed
Pressey, JG, Kelly, DR, Hawthorne, HT. Successful treatment of preadolescents with small cell carcinoma of the ovary hypercalcemic type. J Pediatr Hematol Oncol 2013. doi:10.1097/MPH.0b013e318282cca8.Google Scholar
Ripperger, T, Bielack, SS, Borkhardt, A, et al. Childhood cancer predisposition syndromes: a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet Part A 2017. doi:10.1002/ajmg.a.38142.Google Scholar
Kurobe, M, Kawai, K, Oikawa, T, et al. Paclitaxel, ifosfamide, and cisplatin (TIP) as salvage and consolidation chemotherapy for advanced germ cell tumor. J Cancer Res Clin Oncol 2015. doi:10.1007/s00432-014-1760-x.Google Scholar
Einhorn, LH. Salvage chemotherapy for patients with germ cell tumors: is there a best regimen? J Clin Oncol 2012. doi:10.1200/jco.2011.40.4160.Google Scholar
Rashdan, S, Einhorn, LH. Salvage therapy for patients with germ cell tumor. J Oncol Pract 2016. doi:10.1200/jop.2016.011411.CrossRefGoogle Scholar
Faure-Conter, C, Orbach, D, Cropet, C, et al. Salvage therapy for refractory or recurrent pediatric germ cell tumors: the French SFCE experience. Pediatr Blood Cancer 2014. doi:10.1002/pbc.24730.CrossRefGoogle Scholar
Pashankar, F, Frazier, AL, Krailo, M, et al. Treatment of refractory germ cell tumors in children with paclitaxel, ifosfamide, and carboplatin: a report from the Children’s Oncology Group AGCT0521 study. Pediatr Blood Cancer 2018;65.Google Scholar
Motzer, RJ, Mazumdar, M, Sheinfeld, J, et al. Sequential dose-intensive paclitaxel, ifosfamide, carboplatin, and etoposide salvage therapy for germ cell tumor patients. J Clin Oncol 2000. doi:10.1200/JCO.2000.18.6.1173.Google Scholar
Fenner, MH, Beutel, G, Grünwald, V. Targeted therapies for patients with germ cell tumors. Expert Opin Investig Drugs 2008. doi:10.1517/13543784.17.4.511.Google Scholar
Wessalowski, R, Schneider, DT, Mils, O, et al. Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: an open-label, non-randomised, single-institution, phase 2 study. Lancet Oncol 2013. doi:10.1016/S1470-2045(13)70271-7.Google Scholar
Hayes-Jordan, A, Lopez, C, Green, HL, et al. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) in pediatric ovarian tumors: a novel treatment approach. Pediatr Surg Int 2016. doi:10.1007/s00383-015–3814-9.CrossRefGoogle Scholar
Dicken, BJ, Billmire, DF, Krailo, M, et al. Gonadal dysgenesis is associated with worse outcomes in patients with ovarian nondysgerminomatous tumors: a report of the Children’s Oncology Group AGCT 0132 study. Pediatr Blood Cancer 2018. doi:10.1002/pbc.26913.CrossRefGoogle Scholar

References

Royal College of Obstetric s and Gynaecology and British Society for Gynaecological Endoscopy. Management of suspected ovarian masses in premenopausal women. Green-top Guideline No. 62. 2011.Google Scholar
Royal College of Obstetrics and Gynaecology. The management of ovarian cysts in postmenopausal women. Green-top Guideline No. 34. 2016.Google Scholar
American College of Obstetricians and Gynaecologists. Evaluation and management of adnexal masses. Practice Bulletin. 2016Google Scholar
National Institute for Health and Care Excellence. Ovarian cancer: recognition and initial management. Clinical Guideline No. 122. 2011Google Scholar
Schmeler, KM, Mayo-Smith, WW, Peipert, JF, et al. Adnexal masses in pregnancy: surgery compared with observation. Obstet Gynecol 2005;105:10981103.Google Scholar
Modesitt, SC, Pavlik, EJ, Ueland, FR, et al. Risk of malignancy in unilocular ovarian cystic tumours less than 10 centimetres in diameter. Obstet Gynecol 2003;102:594599.Google ScholarPubMed
Fischerova, D, Zikan, M, Dundr, P, Cibula, D. Diagnosis, treatment, and follow-up of borderline ovarian tumors. Oncologist 2012;17:15151533.CrossRefGoogle ScholarPubMed
Fotopoulou, C, British Gynaecological Cancer Society (BGCS). Epithelial ovarian/fallopian tube/primary peritoneal cancer guidelines: recommendations for practice. 2017.CrossRefGoogle Scholar
Khunamornpong, S, Settakorn, J, Sukpan, K, Suprasert, P, Siriaunkgul, S. Mucinous tumor of low malignant potential (‘borderline’ or ‘atypical proliferative’ tumor) of the ovary: a study of 171 cases with the assessment of intraepithelial carcinoma and microinvasion. Int J Gynecol Pathol 2011;30:218213.CrossRefGoogle ScholarPubMed
Faluyi, O, Mackean, M, Gourley, C, Bryant, A, Dickinson, HO. Interventions for the treatment of borderline ovarian tumours. Cochrane Database Syst Rev 2010;8:CD007696.Google Scholar
Leiserowitz, GS. Managing ovarian masses during pregnancy. Obstet Gynecol Surv 2006;61:463470.Google Scholar
Ronnett, BM, Kajdacsy-Balla, A, Gilks, CB, et al. Mucinous borderline ovarian tumors: points of general agreement and persistent controversies regarding nomenclature, diagnostic criteria, and behavior. Hum Pathol 2004;35:949960.Google Scholar

References

Ray-Coquard, I, Morice, P, Lorusso, D, et al. Non-epithelial ovarian cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018;29(Suppl. 4):iv1–iv18.Google Scholar
Young, RH. Sex cord-stromal, steroid cell, and other ovarian tumors with endocrine, paraendocrine, and paraneoplastic manifestations. In: Blaustein’s Pathology of the Female Genital Tract, 6th edition. New York: Springer, 2011.Google Scholar
Talerman, A, Vang, R. Germ cell tumors of the ovary. In: Blaustein’s Pathology of the Female Genital Tract, 6th edition. New York: Springer, 2011.Google Scholar
Brown, J, Friedlander, M, Backes, FJ, et al. Gynecologic Cancer Intergroup (GCIG) consensus review for ovarian germ cell tumors. Int J Gynecol Cancer 2014;24(9 Suppl 3):S48S54.Google Scholar
Seckl, M, Rustin, G. Malignant ovarian germ cell tumours. In: Textbook of Gyneacological Oncology. Ankara: Gunes Publishing, 2016.Google Scholar
Ray-Coquard, I, Brown, J, Harter, P, et al. Gynecologic Cancer Intergroup (GCIG) consensus review for ovarian sex cord stromal tumors. Int J Gynecol Cancer 2014;24:S42S47CrossRefGoogle ScholarPubMed
Peiretti, M, Angioni, S, Corda, V, Colombo, N. Sex cord-stromal tumors of the ovary. In: Textbook of Gyneacological Oncology. Ankara: Gunes Publishing, 2016.Google Scholar
Berek, JS, Kehoe, ST, Kumar, L, Friedlander, M. Cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet 2018;143(Suppl. 2):5978.Google Scholar
Disaia, PJ, Creasman, WT, Mannel, RS, Mcmeekin, DS, Mutch, DG. Germ cell, stromal, and other ovarian tumors. In: Clinical Gynecologic Oncology, 9th edition. Philadelphia, PA: Elsevier, 2018.Google Scholar
Bryant, CS, Kumar, A, Shah, JP, et al. Racial disparities in survival among patients with germ cell tumors of the ovary: United States. Gynecologic Oncol 2009;114:437441.Google Scholar
Kurman, RJ, Carcangiu, ML, Herrington, CS, Young, RH. Tumors of the ovary. In: WHO Classification of Tumors of Female Reproductive Organs, 4th edition. Lyon: IARC, 2014.Google Scholar
Gershenson, DM. Current advances in the management of malignant germ cell and sex cord-stromal tumors of the ovary. Gynecol Oncol 2012;125:515517.CrossRefGoogle ScholarPubMed
Gershenson, DM, Goff, B, Pappo, AS, Garcia, RL. Ovarian germ cell tumors: pathology, clinical manifestations, and diagnosis. UpToDate. 2017. Available at: www.uptodate.com/contents/ovarian-germ-cell-tumors-pathology-clinical-manifestations-and-diagnosis.Google Scholar
Berek, N. Germ cell and nonepithelial ovarian cancer. In: Berek & Hacker’s Gynecologic Oncology. Philadelphia, PA: Wolters Kluwer, 2015.Google Scholar
Lee-Jones, L. Ovary: germ cell tumors, solid tumor section. Atlas Genet Cytogenet Oncol Haematol 2003;7(4).Google Scholar
Melamed, A, Keating, NL, Clemmer, JT, et al. Laparoscopic staging for apparent stage I epithelial ovarian cancer. Am J Obstet Gynecol 2017;216:50.e1–50.e12.CrossRefGoogle ScholarPubMed
Nasioudis, D, Minis, E, Chapman-Davis, E, et al. Minimally invasive surgery staging of apparent stage I malignant ovarian germ cell tumors; prevalence and outcomes. J Min Invasive Gynecol 2019;26:471476.Google Scholar
Gremeau, AS, Bourdel, N, Jardon, K, et al. Surgical management of non-epithelial ovarian malignancies: advantages and limitations of laparoscopy. Eur J Obstet Gynecol Reprod Biol 2014;172:106110.Google Scholar
Talukdar, S, Kumar, S, Bhatla, N, et al. Neo-adjuvant chemotherapy in the treatment of advanced malignant germ cell tumors of ovary. Gynecol Oncol 2014;132:2832.CrossRefGoogle ScholarPubMed
Di Tucci, C, Casorelli, A, Morrocchi, E, et al. Fertility management for malignant ovarian germ cell tumors patients. Crit Rev Oncol Hematol 2017;120:3442.CrossRefGoogle ScholarPubMed
Feichtinger, M, Rodriguez-Wallberg, KA. Fertility preservation in women with cervical, endometrial or ovarian cancers. Gynecologic Oncol Res Prac 2016;3:8.CrossRefGoogle ScholarPubMed
National Comprehensive Cancer Network (NCCN). Guidelines: ovarian cancer, including fallopian tube cancer and primary peritoneal cancer. Version 4. 2017.Google Scholar
Murugaese, N, Schmid, P, Dancey, G, et al. Malignant ovarian germ cell tumors: identification of novel prognostic markers and long-term outcomes after multimodality treatment. J Clin Oncol 2006;24:48624866.CrossRefGoogle Scholar
Horta, M, Cunha, TM. Sex cord-stromal tumors of the ovary: a comprehensive review and update for radiologists. Diagn Interv Radiol 2015;21:277286.Google Scholar
Nasioudis, D, Kanninen, TT, Holcomb, K, Sisti, G, Witkin, SS. Prevalence of lymph node metastasis and prognostic significance of lymphadenectomy in apparent early-stage malignant ovarian sex cord-stromal tumors. Gynecol Oncol 2017;145:243247.Google Scholar
Bergamini, A, Ferrandina, G, Candiani, M, et al. Laparoscopic surgery in the treatment of stage I adult granulosa cells tumors of the ovary: results from the MITO-9 study. Eur J Surg Oncol 2018;44:766770.CrossRefGoogle Scholar

References

Kurman, RJ, Shih, IeM. Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol 2008;27:151160.Google ScholarPubMed
Levanon, K, Crum, C, Drapkin, R. New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J Clin Oncol 2008;26:52845293.Google Scholar
Kurman, RJ, Shih, IeM. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol 2010;34:433443.CrossRefGoogle ScholarPubMed
Anglesio, MS, Papadopoulos, N, Ayhan, A, et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med 2017;376:18351848.CrossRefGoogle ScholarPubMed
Kvaskoff, M, Horne, AW, Missmer, SA. Informing women with endometriosis about ovarian cancer risk. Lancet 2017;390:24332434.CrossRefGoogle ScholarPubMed
Bolton, KL, Chenevix-Trench, G, Goh, C, et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 2012;307:382390.Google Scholar
Norquist, BM, Harrell, MI, Brady, MF, et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol 2016;2:482490.Google Scholar
Finch, AP, Lubinski, J, Moller, P, et al. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol 2014;32:15471553.CrossRefGoogle ScholarPubMed
Buys, SS, Partridge, E, Black, A, et al. Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA 2011;305:22952303.CrossRefGoogle ScholarPubMed
Jacobs, IJ, Menon, U, Ryan, A, et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 2016;387:945956.Google Scholar
Kobayashi, H, Yamada, Y, Sado, T, et al. A randomized study of screening for ovarian cancer: a multicenter study in Japan. Int J Gynecol Cancer 2008;18:414420.CrossRefGoogle ScholarPubMed
van Nagell, JR, Jr., Miller, RW, DeSimone, CP, et al. Long-term survival of women with epithelial ovarian cancer detected by ultrasonographic screening. Obstet Gynecol 2011;118:12121221.Google Scholar
van der Velde, NM, Mourits, MJ, Arts, HJ, et al. Time to stop ovarian cancer screening in BRCA1/2 mutation carriers? Int J Cancer 2009;124:919923.Google Scholar
Goff, BA, Mandel, LS, Melancon, CH, Muntz, HG. Frequency of symptoms of ovarian cancer in women presenting to primary care clinics. JAMA 2004;291:27052712.CrossRefGoogle ScholarPubMed
Schnatz, PF, Guile, M, O’Sullivan, DM, Sorosky, JI. Clinical significance of atypical glandular cells on cervical cytology. Obstet Gynecol 2006;107:701708.Google Scholar
Jacob, F, Meier, M, Caduff, R, et al. No benefit from combining HE4 and CA125 as ovarian tumor markers in a clinical setting. Gynecol Oncol 2011;121:487491.CrossRefGoogle ScholarPubMed
Zaino, R, Whitney, C, Brady, MF, et al. Simultaneously detected endometrial and ovarian carcinomas: a prospective clinicopathologic study of 74 cases: a gynecologic oncology group study. Gynecol Oncol 2001;83:355362.Google Scholar
Jacobs, I, Oram, D, Fairbanks, J, et al. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol 1990;97:922929.Google Scholar
Chia, YN, Marsden, DE, Robertson, G, Hacker, NF. Triage of ovarian masses. Aust N Z J Obstet Gynaecol 2008;48:322328.Google Scholar
Manegold-Brauer, G, Buechel, J, Knipprath-Meszaros, A, et al. Improved detection rate of ovarian cancer using a 2-step triage model of the risk of malignancy index and expert sonography in an outpatient screening setting. Int J Gynecol Cancer 2016;26:10621069.Google Scholar
Timmerman, D, Van Calster, B, Testa, A, et al. Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis group. Am J Obstet Gynecol 2016;214:424437.Google Scholar
Dann, RB, DeLoia, JA, Timms, KM, et al. BRCA1/2 mutations and expression: response to platinum chemotherapy in patients with advanced stage epithelial ovarian cancer. Gynecol Oncol 2012;125:677682.CrossRefGoogle ScholarPubMed
Pennington, KP, Walsh, T, Harrell, MI, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res 2014;20:764775.CrossRefGoogle ScholarPubMed

References

Colombo, N, Sessa, C, du Bois, A, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent diseasedagger. Ann Oncol 2019;30:672705.Google Scholar
Wilson, MK, Pujade-Lauraine, E, Aoki, D, et al. Fifth Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup: recurrent disease. Ann Oncol 2017;28:727732.Google Scholar
Alsop, K, Fereday, S, Meldrum, C, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 2012;30:26542663.CrossRefGoogle ScholarPubMed
Vergote, I, De Brabanter, J, Fyles, A, et al. Prognostic importance of degree of differentiation and cyst rupture in stage I invasive epithelial ovarian carcinoma. Lancet 2001;357:176182.CrossRefGoogle ScholarPubMed
Timmers, PJ, Zwinderman, AH, Coens, C, Vergote, I, Trimbos, JB. Understanding the problem of inadequately staging early ovarian cancer. Eur J Cancer 2010;46:880884.Google Scholar
Harter, P, Sehouli, J, Lorusso, D, et al. LION: Lymphadenectomy in Ovarian Neoplasms – a prospective randomized AGO study group led gynecologic cancer intergroup trial. J Clin Oncol 2017;35(Suppl. 15):5500.Google Scholar
Bristow, RE, Tomacruz, RS, Armstrong, DK, Trimble, EL, Montz, FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 2002;20:12481259.Google Scholar
du Bois, A, Reuss, A, Pujade-Lauraine, E, et al. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer 2009;115:12341244.CrossRefGoogle Scholar
Harter, P, du Bois, A, Hahmann, M, et al. Surgery in recurrent ovarian cancer: the Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) DESKTOP OVAR trial. Ann Surg Oncol 2006;13:17021710.Google Scholar
Bois, AD, Vergote, I, Ferron, G, et al. Randomized controlled phase III study evaluating the impact of secondary cytoreductive surgery in recurrent ovarian cancer: AGO DESKTOP III/ENGOT ov20. J Clin Oncol 2017;35(Suppl. 15):5501.CrossRefGoogle Scholar
Du Bois A, Sehouli J, Vergote I, et al. Randomized phase III study to evaluate the impact of secondary cytoreductive surgery in recurrent ovarian cancer: Final analysis of AGO DESKTOP III/ENGOT-ov20. J Clin Oncol. DOI: 10.1200/JCO.2020.38.15_suppl.6000Google Scholar
Vergote, I, Trope, CG, Amant, F, et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med 2010;363:943953.CrossRefGoogle ScholarPubMed
Kehoe, S, Hook, J, Nankivell, M, et al. Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomised, controlled, non-inferiority trial. Lancet 2015;386:249257.CrossRefGoogle ScholarPubMed
Parmar, MK, Ledermann, JA, Colombo, N, et al. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet 2003;361:20992106.Google Scholar
Pignata, S, Scambia, G, Ferrandina, G, et al. Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial. J Clin Oncol 2011;29:36283635.Google Scholar
Collinson, F, Qian, W, Fossati, R, et al. Optimal treatment of early-stage ovarian cancer. Ann Oncol 2014;25:11651171.Google Scholar
Wagner, U, Marth, C, Largillier, R, et al. Final overall survival results of phase III GCIG CALYPSO trial of pegylated liposomal doxorubicin and carboplatin vs paclitaxel and carboplatin in platinum-sensitive ovarian cancer patients. Br J Cancer 2012;107:588591.CrossRefGoogle ScholarPubMed
Aghajanian, C, Blank, SV, Goff, BA, et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol 2012;30:20392045.Google Scholar
Fisterer, J. Carboplatin/pegylated liposomal doxorubicin/bevacizumab (CD-BEV) vs. carboplatin/gemcitabine/bevacizumab (CG-BEV) in patients with recurrent ovarian cancer: a prospective randomized phase III ENGOT/GCIG-Intergroup study (AGO study group, AGO-Austria, ANZGOG, GINECO, SGCTG) (9330). Ann Oncol 2018;29(Suppl. 8):viii332–viii358.Google Scholar
Poveda, A, Vergote, I, Tjulandin, S, et al. Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer: outcomes in the partially platinum-sensitive (platinum-free interval 6–12 months) subpopulation of OVA-301 phase III randomized trial. Ann Oncol 2011;22:3948.CrossRefGoogle ScholarPubMed
Katsumata, N, Yasuda, M, Takahashi, F, et al. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trial. Lancet 2009;374:13311338.Google Scholar
Clamp, AR. ICON8: a GCIG phase III randomised trial evaluating weekly dose-dense chemotherapy integration in first-line epithelial ovarian/fallopian tube/primary peritoneal carcinoma (EOC) treatment – results of primary progression-free survival (PFS) analysis. Ann Oncol 2017;28(Suppl. 5). doi:10.1093/annonc/mdx440.Google Scholar
Chan, JK, Brady, MF, Penson, RT, et al. Weekly vs. every-3-week paclitaxel and carboplatin for ovarian cancer. N Engl J Med 2016;374:738748.Google Scholar
Pignata, S, Scambia, G, Katsaros, D, et al. Carboplatin plus paclitaxel once a week versus every 3 weeks in patients with advanced ovarian cancer (MITO-7): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2014;15:396405.Google Scholar
Pujade-Lauraine, E, Hilpert, F, Weber, B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol 2014;32:13021308.Google Scholar
Jaaback, K, Johnson, N, Lawrie, TA. Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst Rev 2016;1:CD005340.Google Scholar
van Driel, WJ, Koole, SN, Sikorska, K, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med 2018;378:230240.CrossRefGoogle ScholarPubMed
Perren, TJ, Swart, AM, Pfisterer, J, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 2011;365:24842496.Google Scholar
Burger, RA, Brady, MF, Bookman, MA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 2011;365:24732483.Google Scholar
Pignata, S. Chemotherapy plus or minus bevacizumab for platinum-sensitive ovarian cancer patients recurring after a bevacizumab containing first line treatment: the randomized phase 3 trial MITO16B-MaNGO OV2B-ENGOT OV17. J Clin Oncol 2018;36(Suppl.):5506.Google Scholar
Franzese, E, Centonze, S, Diana, A, et al. PARP inhibitors in ovarian cancer. Cancer Treat Rev 2019;73:19.Google Scholar
Moore, K, Colombo, N, Scambia, G, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2018;379:24952505.Google Scholar
Mirza, MR, Monk, BJ, Herrstedt, J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 2016;375:21542164.Google Scholar
Fruscio, R, de Haan, J, Van Calsteren, K, et al. Ovarian cancer in pregnancy. Best Pract Res Clin Obstet Gynaecol 2017;41:108117.Google Scholar
Rustin, GJ, van der Burg, ME, Griffin, CL, et al. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet 2010;376:11551163.Google Scholar

References

Hughes, LE. Classification of benign breast disorders: the ANDI classification based on physiological processes within the normal breast. Br Med Bull 1991;47:251257.Google Scholar
Dupont, WD, Page, DL. Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 1985;312:146151.Google Scholar
Neal, L, Sandhu, NP, Hieken, TJ, et al. Diagnosis and management of benign, atypical, and indeterminate breast lesions detected on core needle biopsy. Mayo Clin Proc 2014;89:536547.CrossRefGoogle ScholarPubMed
Hartmann, LC, Sellers, TA, Frost, MH, et al. Benign breast disease and the risk of breast cancer. N Engl J Med 2005;353:229237.Google Scholar
Orr, B, Kelley, JL. Benign breast diseases: evaluation and management. Clin Obstet Gynecol 2016;59:710726.Google Scholar
Rungruang, B, Kelley, JL. Benign breast diseases: epidemiology, evaluation, and management. Clin Obstet Gynecol 2011;54:110124.CrossRefGoogle ScholarPubMed
Rohan, TE, Miller, AB. Hormone replacement therapy and risk of benign proliferative epithelial disorders of the breast. Eur J Cancer Prev 1999;8:123130.Google Scholar
Tan-Chiu, E, Wang, J, Costantino, JP, et al. Effects of tamoxifen on benign breast disease in women at high risk for breast cancer. J Natl Cancer Inst 2003;95:302307.Google Scholar
Cho, SH, Park, SH. Mimickers of breast malignancy on breast sonography. J Ultrasound Med 2013;32:20292036.Google Scholar
Liu, L, Zhou, F, Wang, P, et al. Periductal mastitis: an inflammatory disease related to bacterial infection and consequent immune responses? Mediators Inflamm 2017;2017:5309081.Google Scholar
Koerner, FC. Epithelial proliferations of ductal type. Semin Diagn Pathol 2004;21:1017.CrossRefGoogle ScholarPubMed
Pearlman, MD, Griffin, JL. Benign breast disease. Obstet Gynecol 2010;116:747758.Google Scholar
Tan, BY, Tan, PH. A diagnostic approach to fibroepithelial breast lesions. Surg Pathol Clin 2018;11:1742.Google Scholar
Salemis, NS, Gemenetzis, G, Karagkiouzis, G, et al. Tubular adenoma of the breast: a rare presentation and review of the literature. J Clin Med Res 2012;4:6467.Google ScholarPubMed
Baker, TP, Lenert, JT, Parker, JB, et al. Lactating adenoma: a diagnosis of exclusion. Breast J 2001;7:354357.Google Scholar
Tse, GM, Law, BK, Ma, TK, et al. Hamartoma of the breast: a clinicopathological review. J Clin Pathol 2002;55:951954.Google Scholar
Lanng, C, Eriksen, B, Hoffmann, J. Lipoma of the breast: a diagnostic dilemma. Breast 2004;13:408411.Google Scholar
Bowman, E, Oprea, G, Okoli, J, et al. Pseudoangiomatous stromal hyperplasia (PASH) of the breast: a series of 24 patients. Breast J 2012;18:242247.Google Scholar
Visscher, DW, Nassar, A, Degnim, AC, et al. Sclerosing adenosis and risk of breast cancer. Breast Cancer Res Treat 2014;144:205212.Google Scholar
Berg, JC, Visscher, DW, Vierkant, RA, et al. Breast cancer risk in women with radial scars in benign breast biopsies. Breast Cancer Res Treat 2008;108:167174.Google Scholar
Bevers, TB, Helvie M, KE, Bonaccio, EMB, et al. Breast cancer screening and diagnosis, version 3.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2018;16:13621389.Google Scholar
Lavoué, V, Fritel, X, Antoine, M, et al. Clinical practice guidelines from the French College of Gynecologists and Obstetricians (CNGOF): benign breast tumors – short text. Eur J Obstet Gynecol Reprod Biol 2016;200:1623.Google Scholar
Yu, JH, Kim, MJ, Cho, H, et al. Breast diseases during pregnancy and lactation. Obstet Gynecol Sci 2013; 56:143159.Google Scholar
Xue, AS, Wolfswinkel, EM, Weathers, WM, Chike-Obi, C, Heller, L. Breast reduction in adolescents: indication, timing, and a review of the literature. J Pediatr Adolesc Gynecol 2013;26:228233.Google Scholar
Pullyblank, AM, Davies, JD, Basten, J, Rayter, Z. Fat necrosis of the female breast: Hadfield re-visited. Breast 2001;10:388391.Google Scholar
Li, S, Grant, CS, Degnim, A, Donohue, J. Surgical management of recurrent subareolar breast abscesses: Mayo Clinic experience. Am J Surg 2006;192:528529.Google Scholar
Sickles, E, D’Orsi, C, Bassett, L. ACR BI-RADS ® mammography. In: ACR BI-RADS ® Atlas, Breast Imaging Reporting and Data System. Reston, VA: American College of Radiology, 2013.Google Scholar
Committee on Practice Bulletins – Gynecology. Practice bulletin No. 164: diagnosis and management of benign breast disorders. Obstet Gynecol 2016;127:e141e156.Google Scholar
Uzan, C, Seror, JY, Seror, J. [Management of a breast cystic syndrome: Guidelines]. J Gynecol Obstet Biol Reprod (Paris) 2015;44:970979.Google Scholar
Bevers, TB, Ward, JH, Arun, BK, et al. Breast cancer risk reduction, version 2.2015. J Natl Compr Canc Netw 2015;13:880915.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×