Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T22:10:27.522Z Has data issue: false hasContentIssue false

3 - Global Bird Communities of Alpine and Nival Habitats

Published online by Cambridge University Press:  30 June 2023

Dan Chamberlain
Affiliation:
University of Turin
Aleksi Lehikoinen
Affiliation:
Finnish Museum of Natural History, University of Helsinki
Kathy Martin
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Alpine grassland and nival zones are characterized by variable environmental conditions, compressed breeding seasons, and limited resources such as food and nest site availability. As a result, high elevation habitats around the world contain an impressive diversity of unique bird species, highly specialized to thrive in challenging environmental conditions with limited breeding opportunities. In this chapter, we highlight the global diversity of alpine habitats and avifaunal communities. We first define general features of alpine and nival zones, before providing an overview of these habitats across 10 major regions around the world. Assembling a global list of alpine breeding birds, we then summarize what makes alpine avifauna unique and how communities vary regionally. Specifically, we focus on traits that characterize how species interact with their environment: i) alpine specialization and endemism, ii) nesting strategies, and iii) migration behaviour. Finally, we address some of the main eco-evolutionary drivers that shape these alpine communities, including climate, vegetation structure, food availability, and species interactions. We conclude by discussing the critical role snow dynamics play in maintaining many alpine bird communities and highlight the concerning trends associated with a rapidly changing climate that are putting pressure on alpine birds.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida-Leñero, L., Escamilla, M., Giménez de Azcárate, J., González-Trápaga, A. & Cleef, A.M. (2007) Vegetación alpina de los volcanes Popocatépetl, Iztaccíhuatl y Nevado de Toluca. In Biodiversidad de la Faja Volcánica Transmexicana. Luna, I., Morrone, J.J. & Espinosa, D. (eds.). Mexico City: Universidad Nacional Autónoma de México, pp. 179198.Google Scholar
Altamirano, T.A., de Zwaan, D.R., Ibarra, J.T., Wilson, S. & Martin, K. (2020) Treeline ecotones shape the distribution of avian species richness and functional diversity in south temperate mountains. Scientific Reports, 10, 113.CrossRefGoogle ScholarPubMed
Altamirano, T.A., de Zwaan, D.R., Scridel, D., Wilson, S. & Martin, K. (2022) Rock cavity nesting as the norm: alpine breeding birds in the south temperate Andes Mountains. Ecology, 104, e3931.Google Scholar
Antor, R.J. (1994) Arthropod fallout on high alpine snow patches of the Central Pyrenees, northeastern Spain. Arctic, Antarctic, and Alpine Research, 26, 7276.Google Scholar
Arredondo-Amezcua, L., Martén-Rodríguez, S., Lopezaraiza-Mikel, M., et al. (2018) Hummingbirds in high alpine habitats of the tropical Mexican mountains: new elevational records and ecological considerations. Avian Conservation and Ecology, 13, 14.CrossRefGoogle Scholar
Arthur, A.D., Pech, R.P., Davey, C., Yanming, Z. & Hui, L. (2008) Livestock grazing, plateau pikas and the conservation of avian biodiversity on the Tibetan plateau. Biological Conservation, 141, 19721981.CrossRefGoogle Scholar
Asefa, A., Richman, E., Admassu, B. & Baggallay, T. (2013) Bale Mountains National Park Birding Booklet. Addis Ababa: Ethiopian Wildlife Conservation Authority.Google Scholar
Bader, M.Y., Rietkerk, M. & Bregt, A.K. (2007) Vegetation structure and temperature regimes of tropical alpine treelines. Arctic, Antarctic, and Alpine Research, 39, 353364.Google Scholar
Bader, M.Y., Llambí, L.D., Case, B.S., et al. (2021) A global framework for linking alpine‐treeline ecotone patterns to underlying processes. Ecography, 44, 265292.CrossRefGoogle Scholar
Badyaev, A.V. (1997) Avian life history variation along altitudinal gradients: an example with cardueline finches. Oecologia, 111, 365374.CrossRefGoogle ScholarPubMed
Barrantes, G. (2005) Aves de los páramos de Costa Rica. In Páramos de Costa Rica. Kappelle, M. & Horn, S.P. (eds.). San José, Costa Rica: Instituto Nacional de Biodiversidad, pp. 521532.Google Scholar
Barras, A.G., Niffenegger, C.A., Candolfi, I., Hunziker, Y.A. & Arlettaz, R. (2021) Nestling diet and parental food provisioning in a declining mountain passerine reveal high sensitivity to climate change. Journal of Avian Biology, 52, e02649.Google Scholar
Bastianelli, G., Seoane, J., Álvarez-Blanco, P. & Laiolo, P. (2015) The intensity of male-male interactions declines in highland songbird populations. Behavioral Ecology and Sociobiology, 69, 14931500.Google Scholar
Bastianelli, G., Wintle, B.A., Martin, E.H., Seoane, J. & Laiolo, P. (2017) Species partitioning in a temperate mountain chain: segregation by habitat vs. interspecific competition. Ecology and Evolution, 7, 26852696.Google Scholar
Bello-Rodríguez, V., Cubas, J., Del Arco, M.J., Martín, J.L. & González-Mancebo, J.M. (2019) Elevational and structural shifts in the treeline of an oceanic island (Tenerife, Canary Islands) in the context of global warming. International Journal of Applied Earth Observation & Geoinformation, 82, 101918.CrossRefGoogle Scholar
Billerman, S.M., Keeney, B.K., Rodewald, P.G. & Schulenberg, T.S. (2020) Birds of the World. Ithaca: Cornell Laboratory of Ornithology.Google Scholar
Bowler, D.E., Kvasnes, M.A., Pedersen, H.C., Sandercock, B.K. & Nilsen, E.B. (2020) Impacts of predator-mediated interactions along a climatic gradient on the population dynamics of an alpine bird. Proceedings of the Royal Society B, 287, 20202653.Google ScholarPubMed
Boyle, W.A. (2008) Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia, 155, 397403.CrossRefGoogle ScholarPubMed
Boyle, W.A. & Martin, K. (2015) The conservation value of high elevation habitats to North American migrant birds. Biological Conservation, 192, 461476.Google Scholar
Boyle, W.A., Sandercock, B.K. & Martin, K. (2016) Patterns and drivers of intraspecific variation in avian life history along elevational gradients: a meta‐analysis. Biological Reviews, 92, 469482.Google Scholar
Buytaert, W., Cuesta‐Camacho, F. & Tobón, C. (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography, 20, 1933.CrossRefGoogle Scholar
Cadena, C.D., Kozak, K.H., Gomez, J.P., et al. (2012) Latitude, elevational climatic zonation and speciation in New World vertebrates. Proceedings of the Royal Society B, 279, 194201.Google Scholar
Cahill, J.R., Merckx, T., Van Dyck, H., Fernández, M. & Matthysen, E. (2021) Lower density of arthropod biomass in small high‐Andes Polylepis fragments affects habitat use in insectivorous birds. Ecosphere, 12, e03401.Google Scholar
Carbutt, C. (2019) The Drakensberg Mountain Centre: a necessary revision of southern Africa’s high-elevation centre of plant endemism. South African Journal of Botany, 124, 508529.Google Scholar
Cardenas, T., Naoki, K., Landivar, C.M., et al. (2022) Glacier influence on bird assemblages in habitat islands of the high Bolivian Andes. Diversity and Distributions, 28, 242256.Google Scholar
Cavieres, L.A., Peñaloza, A. & Arroyo, M.K. (2000) Altitudinal vegetation belts in the high-Andes of central Chile (33°S). Revista Chilena de Historia Natural, 73, 331344.CrossRefGoogle Scholar
Cheke, R. & Mann, C. (2020) Orange-breasted Sunbird (Anthobaphes violacea). In Birds of the World. Version 1.0. Billerman, S.M. (ed.). Ithaca: Cornell Lab of Ornithology.Google Scholar
Chignell, S.M., Laituri, M.J., Young, N.E. & Evangelista, P.H. (2019) Afroalpine wetlands of the Bale Mountains, Ethiopia: distribution, dynamics and conceptual flow model. Annals of the American Association of Geographers, 109, 791811.CrossRefGoogle Scholar
Clement, P. (2020) Yellow-browed Warbler (Phylloscopus inornatus). In Birds of the World. Version 1.0. del Hoyo, J., Elliott, A., Sargatal, J., Christie, A. & de Juana, E. (eds.). Ithaca: Cornell Lab of Ornithology.Google Scholar
Cuthbert, R. & Davis, L.S. (2002) The breeding biology of Hutton’s Shearwater. Emu, 102, 323329.Google Scholar
de Zwaan, D.R. & Martin, K. (2018) Substrate and structure of ground nests have fitness consequences for an alpine songbird. Ibis, 160, 790804.CrossRefGoogle Scholar
de Zwaan, D.R., Camfield, A.F., MacDonald, E.C. & Martin, K. (2019) Variation in offspring development is driven more by weather and maternal condition than predation risk. Functional Ecology, 33, 447456.CrossRefGoogle Scholar
de Zwaan, D.R., Drake, A., Greenwood, J.L. & Martin, K. (2020) Timing and intensity of weather events shape nestling development strategies in three alpine breeding songbirds. Frontiers in Ecology and Evolution, 8, 359.Google Scholar
de Zwaan, D.R., Scridel, D., Altamirano, T.A., et al. (2022a) GABB: a global dataset of alpine breeding birds and their ecological traits. Scientific Data, 9, 627. https://doi.org/10.1038/s41597-022-01723-6Google Scholar
de Zwaan, D.R., Scridel, D., Altamirano, T.A., et al. (2022b) GABB: global alpine breeding bird database. Figshare. https://doi.org/10.6084/m9.figshare.20556750Google Scholar
de Zwaan, D.R., Drake, A., Camfield, A.F., MacDonald, E.C. & Martin, K. (2022c) The relative influence of cross-seasonal and local weather effects on the breeding success of a migratory songbird. Journal of Animal Ecology, 91, 14581470.Google Scholar
Dorst, J. & Vuilleumier, F. (1986) Convergences in bird communities at high altitudes in the tropics (especially the Andes and Africa) and at temperate latitudes (Tibet). In High Altitude Tropical Biogeography. Vuilleumier, F. & Monasterio, M. (eds.). New York: Oxford University Press, pp. 120149.Google Scholar
Evans, M.R. (1996) Nectar and flower production of Lobelia telekii inflorescences and their influence on territorial behaviour of the scarlet-tufted malachite sunbird (Nectarinia johnstoni). Biological Journal of the Linnean Society, 57, 89105.Google Scholar
Evans Ogden, L.J., Martin, K. & Williams, T.D. (2013) Elevational differences in estimated fattening rates suggest that high-elevation sites are high-quality habitats for fall migrants. Auk, 130, 98106.CrossRefGoogle Scholar
Franzoi, A., Tenan, S., Sanchez, P.L. & Pedrini, P. (2021) Temporal trends in abundance and phenology of migratory birds across the Italian Alps during a 20-year period. Rivista Italiana di Ornitologia, 91, 1328.CrossRefGoogle Scholar
Freeman, B.G., Scholer, M.N., Ruiz-Gutierrez, V. & Fitzpatrick, J.W. (2018) Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proceedings of the National Academy of Sciences, 115, 11982–11987.CrossRefGoogle Scholar
Gansert, D. (2004) Treelines of the Japanese Alps–altitudinal distribution and species composition under contrasting winter climates. Flora, 199, 143156.CrossRefGoogle Scholar
García-González, R., Aldezabal, A., Laskurain, N.A., Margalida, A. & Novoa, C. (2016) Influence of snowmelt timing on the diet quality of Pyrenean rock ptarmigan (Lagopus muta pyrenaica): implications for reproductive success. PLoS ONE, 11, e0148632.Google Scholar
García-R, J.C., Gibb, G.C. & Trewick, S.A. (2014) Deep global evolutionary radiation in birds: diversification and trait evolution in the cosmopolitan bird family Rallidae. Molecular Phylogenetics and Evolution, 81, 96108.Google Scholar
Giaccone, E., Luoto, M., Vittoz, P., et al. (2019) Influence of microclimate and geomorphological factors on alpine vegetation in the Western Swiss Alps. Earth Surface Processes and Landforms, 44, 30933107.Google Scholar
Gill, F., Donsker, D. & Rasmussen, P. (2022) IOC World Bird List. Version 12.1. doi: 10.14344/IOC.ML.12.1.Google Scholar
Goodman, S.M. & Rasolonandrasana, B.P. (2001) Elevational zonation of birds, insectivores, rodents and primates on the slopes of the Andringitra Massif, Madagascar. Journal of Natural History, 35, 285305.Google Scholar
Green, K. (2010) Alpine taxa exhibit differing responses to climate warming in the Snowy Mountains of Australia. Journal of Mountain Science, 7, 167175.Google Scholar
Gulev, S.K., Thorne, P.W., Ahn, J., et al. (2021) Changing state of the climate system. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson Delmotte, V., Zhai, P., Pirani, A., et al. (eds.). Cambridge: Cambridge University Press, pp. 287422.Google Scholar
Hardy, S.P., Hardy, D.R. & Gil, K.C. (2018) Avian nesting and roosting on glaciers at high elevation, Cordillera Vilcanota, Peru. Wilson Journal of Ornithology, 130, 940957.Google Scholar
Harvey, M.G., Bravo, G.A., Claramunt, S., et al. (2020) The evolution of a tropical biodiversity hotspot. Science, 370, 13431348.Google Scholar
Hope, G. (2014) The sensitivity of the high mountain ecosystems of New Guinea to climatic change and anthropogenic impact. Arctic, Antarctic, and Alpine Research, 46, 777786.CrossRefGoogle Scholar
Hotaling, S., Wimberger, P.H., Kelley, J.L. & Watts, H.E. (2020) Macroinvertebrates on glaciers: a key resource for terrestrial food webs? Ecology, 101, e02947.Google Scholar
Hsiung, A.C., Boyle, W.A., Cooper, R.J. & Chandler, R.B. (2018) Altitudinal migration: ecological drivers, knowledge gaps and conservation implications. Biological Reviews, 93, 20492070.Google Scholar
Iijima, D. & Morimoto, G. (2021) Bird community heterogeneity along four gradients of different orientations on a temperate mountain. Ornithological Science, 20, 6582.Google Scholar
Ims, R.A., Henden, J.A., Strømeng, M.A., et al. (2019) Arctic greening and bird nest predation risk across tundra ecotones. Nature Climate Change, 9, 607610.Google Scholar
Irl, S.D.H. (2014) Patterns and Disturbance-induced Drivers of Plant Diversity and Endemism on High Elevation Islands. PhD thesis, University of Bayreuth, Bayreuth, Germany.Google Scholar
Jackson, W.D. (1999) The Tasmanian environment. In Vegetation of Tasmania. Reid, J.B., Hill, R.S., Brown, M.J. & Hovendon, M.J. (eds.). Canberra: Environment Australia, pp. 1138.Google Scholar
Jackson, M.M., Topp, E., Gergel, S.E., et al. (2016) Expansion of subalpine woody vegetation over 40 years on Vancouver Island, British Columbia, Canada. Canadian Journal of Forest Research, 46, 437443.Google Scholar
Jacob, M., Annys, S., Frankl, A., et al. (2015) Tree line dynamics in the tropical African highlands–identifying drivers and dynamics. Journal of Vegetation Science, 26, 920.Google Scholar
Jähnig, S., Sander, M.M., Caprio, E., et al. (2020) Microclimate affects the distribution of grassland birds, but not forest birds, in an Alpine environment. Journal of Ornithology, 161, 677689.Google Scholar
Jankowski, J.E., Londoño, G.A., Robinson, S.K. & Chappell, M.A. (2013) Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography, 36, 112.Google Scholar
Jarzyna, M.A., Quintero, I. & Jetz, W. (2021) Global functional and phylogenetic structure of avian assemblages across elevation and latitude. Ecology Letters, 24, 196207.Google Scholar
Kappelle, M. & Horn, S.P. (2016) The Paramo ecosystem of Costa Rica’s highlands. In Costa Rican Ecosystems. Kappelle, M. (ed.). Chicago: University of Chicago Press, pp. 492523.Google Scholar
Ke, D. & Lu, X. (2009) Burrow use by Tibetan Ground Tits Pseudopodoces humilis: coping with life at high altitudes. Ibis, 151, 321331.Google Scholar
Keller, V., Herrando, S., Voríšek, P., et al. (2020) European Breeding Bird Atlas: Distribution, Abundance and Change. Vol. 2. Barcelona: Lynx Edicions.Google Scholar
Kessler, M. (2006) Bosques de Polylepis. In Botánica Económica de los Andes Centrales. Moraes, R.M., Øllgaard, B., Kvist, L.P., Borchsenius, F. & Balslev, H. (eds.). La Paz: Universidad Mayor de San Andrés, pp. 110120.Google Scholar
Klinge, M., Böhner, J. & Lehmkuhl, F. (2003) Climate pattern, snow-, and timberlines in the Altai Mountains, Central Asia. Erdkunde, 57, 296308.Google Scholar
Körner, C. (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445459.Google Scholar
Körner, C. (1999) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Berlin: Springer.Google Scholar
Körner, C. (2012) Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Berlin: Springer.Google Scholar
Körner, C. & Ohsawa, M. (2006) Mountain systems. In Ecosystem and Human Well-being: Current State and Trends. Vol. 1. Hassan, R., Scholes, R. & Ash, N. (eds.). Washington DC: Island Press, pp. 681716.Google Scholar
Körner, C. & Paulsen, J. (2004) A world‐wide study of high-altitude treeline temperatures. Journal of Biogeography, 31, 713732.Google Scholar
Körner, C., Paulsen, J. & Spehn, E.M. (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alpine Botany, 121, 7378.Google Scholar
Marcora, P., Hensen, I., Renison, D., Seltmann, P. & Wesche, K. (2008) The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Diversity and Distributions, 14, 630636.Google Scholar
Mark, A.F., Dickinson, K.J. & Hofstede, R.G. (2000) Alpine vegetation, plant distribution, life forms and environments in a perhumid New Zealand region: oceanic and tropical high mountain affinities. Arctic, Antarctic, and Alpine Research, 32, 240254.Google Scholar
Martin, K. & Eadie, J.M. (1999) Nest Webs: a community wide approach to the management and conservation of cavity nesting birds. Forest Ecology and Management, 115, 243257.Google Scholar
Martin, K., Wilson, S., MacDonald, E.C., et al. (2017) Effects of severe weather on reproduction for sympatric songbirds in an alpine environment: interactions of climate extremes influence nesting success. Auk, 134, 696709.Google Scholar
Martin, K., Altamirano, T.A., de Zwaan, D.R., et al. (2021) Avian ecology and community structure across elevation gradients: the importance of high latitude temperate mountain habitats for conserving biodiversity in the Americas. Global Ecology and Conservation, 30, e01799.Google Scholar
Masoero, G., Maurino, L., Rolando, A. & Chamberlain, D. (2016) The effect of treeline proximity on predation pressure: an experiment with artificial nests along elevational gradients in the European Alps. Bird Study, 63, 395405.Google Scholar
McGowan, P.J.K. & Kirwan, G.M. (2020) Handsome Francolin (Pternistis nobilis). In Birds of the World. Version 1.0. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Ithaca: Cornell Lab of Ornithology.Google Scholar
McGuire, J.A., Witt, C.C., RemsenJr, J.V., et al. (2014) Molecular phylogenetics and the diversification of hummingbirds. Current Biology, 24, 910916.Google Scholar
Medrano, F., Barros, R., Norambuena, H.V., Matus, R. & Schmitt, F. (2018) Atlas de las Aves Nidificantes de Chile. Santiago: Red de Observadores de Aves.Google Scholar
Meinzer, F.C., Goldstein, G. & Rundel, P.W. (1994) Comparative water relations of tropical alpine plants. In Tropical Alpine Environments: Plant Form and Function. Rundel, P.W., Smith, A.P. & Meinzer, F.C. (eds.). Cambridge: Cambridge University Press, pp. 6176.Google Scholar
Messerli, B. & Winiger, M. (1992) Climate, environmental change and resources of the African mountains from the Mediterranean to the equator. Mountain Research and Development, 12, 315336.Google Scholar
Nagy, L. (2006) European high mountain (alpine) vegetation and its suitability for indicating climate change impacts. Biology and Environment, 106B, 335341.Google Scholar
Nagy, L. & Grabherr, G. (2009) The Biology of Alpine Habitats. New York: Oxford University Press.Google Scholar
Notarnicola, C. (2020) Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sensing of Environment, 243, 111781.Google Scholar
O’Donnell, C.F., Weston, K.A. & Monks, J.M. (2017) Impacts of introduced mammalian predators on New Zealand’s alpine fauna. New Zealand Journal of Ecology, 41, 122.Google Scholar
Ohsawa, M.P.H.J., Nainggolan, P.H.J., Tanaka, N. & Anwar, C. (1985) Altitudinal zonation of forest vegetation on Mount Kerinci, Sumatra: with comparisons to zonation in the temperate region of east Asia. Journal of Tropical Ecology, 1, 193216.Google Scholar
Päckert, M., Martens, J., Sun, Y.H. & Tietze, D.T. (2015) Evolutionary history of passerine birds (Aves: Passeriformes) from the Qinghai–Tibetan plateau: from a pre-Quaternary perspective to an integrative biodiversity assessment. Journal of Ornithology, 156, 355365.Google Scholar
Price, T.D., Hooper, D.M., Buchanan, C.D., et al. (2014) Niche filling slows the diversification of Himalayan songbirds. Nature, 509, 222225.Google Scholar
Quintero, I. & Jetz, W. (2018) Global elevational diversity and diversification of birds. Nature, 555, 246.Google Scholar
Rauter, C.M., Reyer, H.U. & Bollmann, K. (2002) Selection through predation, snowfall and microclimate on nest‐site preferences in the Water Pipit Anthus spinoletta. Ibis, 144, 433444.Google Scholar
Rawat, G.S. (2017) The Himalayan vegetation along horizontal and vertical gradients. In Bird Migration Across the Himalayas: Wetland Functioning Amidst Mountains and Glaciers. Prins, H.T. & Namgail, T. (eds.). Cambridge: Cambridge University Press, pp. 189204.Google Scholar
Rebelo, A.G., Boucher, C., Helme, N., Mucina, L. & Rutherford, M.C. (2006) Fynbos Biome. In The Vegetation of South Africa, Lesotho and Swaziland. Mucina, L. & Rutherford, M.C. (eds.). Pretoria: South African National Biodiversity Institute, pp. 53219.Google Scholar
RemsenJr, J.V. (2020) Slender-billed Miner (Geositta tenuirostris). In Birds of the World. Version 1.0. Billerman, S.M. (ed.). Ithaca: Cornell Lab of Ornithology.Google Scholar
Resano-Mayor, J., Bettega, C., del Mar Delgado, M., et al. (2020) Partial migration of white-winged snowfinches is correlated with winter weather conditions. Global Ecology and Conservation, 24, e01346.Google Scholar
Romanov, A.A. (2013) Bird Fauna of the Mountains of the Asian Subarctic: Principles of Development and Dynamics. Moscow: Russian Society for the Preservation and Study of Birds.Google Scholar
Romanov, A.A., Melikhova, E.V., Zarubina, M.A., Tarasov, V.V. & Yakovlev, V.O. (2021) Analysis of the avifauna structure in the alpine belt of the Northwestern Putorana Plateau, Central Siberia. Biology Bulletin, 48, 15131527.Google Scholar
Rosvold, J. (2016) Perennial ice and snow‐covered land as important ecosystems for birds and mammals. Journal of Biogeography, 43, 312.Google Scholar
Rutten, G., Ensslin, A., Hemp, A. & Fischer, M. (2015) Vertical and horizontal vegetation structure across natural and modified habitat types at Mount Kilimanjaro. PLoS ONE, 10, e0138822Google Scholar
Saavedra, F.A., Kampf, S.K., Fassnacht, S.R. & Sibold, J.S. (2018) Changes in Andes snow cover from MODIS data, 2000–2016. Cryosphere, 12, 10271046.Google Scholar
Saracco, J.F., Siegel, R.B., Helton, L., Stock, S.L. & DeSante, D.F. (2019) Phenology and productivity in a montane bird assemblage: trends and responses to elevation and climate variation. Global Change Biology, 25, 985996.Google Scholar
Schano, C., Niffenegger, C., Jonas, T. & Korner-Nievergelt, F. (2021) Hatching phenology is lagging behind an advancing snowmelt pattern in a high-alpine bird. Scientific Reports, 11, 111.Google Scholar
Schickhoff, U., Bobrowski, M., Böhner, J., et al. (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6, 245265.Google Scholar
Schumm, M., White, A.E., Supriya, K. & Price, T.D. (2020) Ecological limits as the driver of bird species richness patterns along the east Himalayan elevational gradient. American Naturalist, 195, 802817.Google Scholar
Scridel, D., Brambilla, M., Martin, K., et al. (2018) A review and meta‐analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis, 160, 489515.Google Scholar
Scridel, D., Brambilla, M., de Zwaan, D.R., et al. (2021) A genus at risk: predicted current and future distribution of all three Lagopus species reveal sensitivity to climate change and efficacy of protected areas. Diversity and Distributions, 27, 17591774.Google Scholar
Seeholzer, G.F., Claramunt, S. & Brumfield, R.T. (2017) Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution, 71, 702715.Google Scholar
Severinghaus, L.L., Ding, T.-S., Fang, W.-H., et al. (2012) The Avifauna of Taiwan. Version 2. Taipei, Taiwan: Forestry Bureau, Council of Agriculture.Google Scholar
Sevillano-Ríos, C.S., Rodewald, A.D. & Morales, L.V. (2018) Ecología y conservación de las aves asociadas con Polylepis: qué sabemos de esta comunidad cada vez más vulnerable? Ecología Austral, 28, 216228.Google Scholar
Sevillano-Ríos, C.S., Rodewald, A.D. & Morales, L.V. (2020) Alpine birds of South America. In Encyclopedia of the World’s Biomes. Goldstein, M.I. & DellaSala, D.A. (eds.). Amsterdam, Netherlands: Elsevier, pp. 492504.Google Scholar
Skutch, A.F. (1985) Clutch size, nesting success and predation on nests of neotropical birds, reviewed. Ornithological Monographs, 36, 575594.Google Scholar
Smith, J.M. (1980) The vegetation of the summit zone of Mount Kinabalu. New Phytologist, 84, 547573.Google Scholar
Sohmer, S.H. & Gustafson, R. (1987) Plants and Flowers of Hawai’i. Honolulu: University of Hawaii Press.Google Scholar
Steinmann, V.W., Arredondo-Amezcua, L., Hernández-Cárdenas, R.A. & Ramírez-Amezcua, Y. (2021) Diversity and origin of the Central Mexican alpine flora. Diversity, 13, 31.CrossRefGoogle Scholar
Strinella, E., Scridel, D., Brambilla, M., Schano, C. & Korner-Nievergelt, F. (2020) Potential sex-dependent effects of weather on apparent survival of a high-elevation specialist. Scientific Reports, 10, 113.Google Scholar
Summers-Smith, D. (2020) White-rumped Snowfinch (Montifringilla taczanowskii) & Rufous-necked Snowfinch (Montifringilla ruficollis). In Birds of the World. Version 1.0. Billerman, S.M. (ed.). Ithaca: Cornell Lab of Ornithology.Google Scholar
Testolin, R., Attorre, F. & Jiménez‐Alfaro, B. (2020) Global distribution and bioclimatic characterization of alpine biomes. Ecography, 43, 779788.Google Scholar
Thompson, L.G., Brecher, H.H., Mosley-Thompson, E., Hardy, D.R. & Mark, B.G. (2009) Glacier loss on Kilimanjaro continues unabated. Proceedings of the National Academy of Sciences, 106, 19770–19775.Google Scholar
Tomkovich, P.S. (1997) Breeding distribution, migrations and conservation status of the Great Knot Calidris tenuirostris in Russia. Emu, 97, 265282.Google Scholar
Tsai, P.‐Y., Ko, C.‐J., Chia, S.Y., Lu, Y.‐J. & Tuanmu, M.‐N. (2021) New insights into the patterns and drivers of avian altitudinal migration from a growing crowdsourcing data source. Ecography, 44, 7586.Google Scholar
Turner, A. (2020) Montane Blue Swallow (Hirundo atrocaerulea). In Birds of the World. Version 1.0. Billerman, S.M. (ed.). Ithaca: Cornell Lab of Ornithology.Google Scholar
UNESCO, IUCN (2022) World Heritage Glaciers: Sentinels of Climate Change. Paris, UNESCO & Gland, IUCN.Google Scholar
Valencia, B.G., Bush, M.B., Coe, A.L., Orren, E. & Gosling, W.D. (2018) Polylepis woodland dynamics during the last 20,000 years. Journal of Biogeography, 45, 10191030.Google Scholar
van der Hoek, Y., Sirami, C., Faida, E., Musemakweli, V. & Tuyisingize, D. (2021) Elevational distribution of birds in an Eastern African montane environment as governed by temperature, precipitation and habitat availability. Biotropica, 54, 334345.Google Scholar
Vargas, G. & Sánchez, J.J. (2005) Plantas con flores de los páramos de Costa Rica y Panamá: El páramo ístmico. In Páramos de Costa Rica. Kappelle, M. & Horn, S.P. (eds.). San José, Costa Rica: Instituto Nacional de Biodiversidad, pp. 397435.Google Scholar
Visinoni, L., Pernollet, C.A., Desmet, J.F., Korner-Nievergelt, F. & Jenni, L. (2015) Microclimate and microhabitat selection by the Alpine Rock Ptarmigan (Lagopus muta helvetica) during summer. Journal of Ornithology, 156, 407417.Google Scholar
Walther, B.A., Chen, J.R.J., Lin, H.S. & Sun, Y.H. (2017) The effects of rainfall, temperature and wind on a community of montane birds in Shei-Pa National Park, Taiwan. Zoological Studies, 56, e23.Google Scholar
White, A.E., Dey, K.K., Mohan, D., Stephens, M. & Price, T.D. (2019) Regional influences on community structure across the tropical-temperate divide. Nature Communications, 10, 18.Google Scholar
Williamson, J.L. & Witt, C.C. (2021) Elevational niche-shift migration: why the degree of elevational change matters for the ecology, evolution and physiology of migratory birds. Auk, 138, ukaa087.Google Scholar
Wilson, S. & Martin, K. (2008) Breeding habitat selection of sympatric White-tailed, Rock and Willow Ptarmigan in the southern Yukon Territory, Canada. Journal of Ornithology, 149, 629637.Google Scholar
Woods, S. & Ramsay, P. M. (2001) Variability in nectar supply: implications for high-altitude hummingbirds. In The Ecology of Volcán Chiles: High-altitude Ecosystems on the Ecuador-Colombia Border. Ramsay, P.M. (ed.). Plymouth: Pebble & Shell, pp. 209217.Google Scholar
Yoshino, M.M. (1978) Altitudinal vegetation belts of Japan with special reference to climatic conditions. Arctic and Alpine Research, 10, 449456.Google Scholar
Zheng, Z. (1983) The Avifauna of Xizang: The Comprehensive Scientific Expedition to Qinghai-Xizang Plateau. Beijing: Academia Sinica.Google Scholar
Zheng, G.M.A. (2011) Checklist on the Classification and Distribution of the Birds of China. Beijing: Science Press.Google Scholar
Zwickel, F.C. & Bendell, J.F. (2020) Dusky Grouse (Dendragapus obscurus). In Birds of the World. Version 1.0. Rodewald, P.G. (ed.). Ithaca: Cornell Lab of Ornithology.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×