Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T21:53:43.153Z Has data issue: false hasContentIssue false

Chapter Four - Mixtures of plant secondary metabolites

metabolic origins and ecological benefits

Published online by Cambridge University Press:  05 August 2012

Jonathan Gershenzon
Affiliation:
Department of Biochemistry, Max Planck Institute for Chemical Ecology
Anna Fontana
Affiliation:
Department of Biochemistry, Max Planck Institute for Chemical Ecology
Meike Burow
Affiliation:
Department of Plant Biology and Biotechnology, Copenhagen University
Ute Wittstock
Affiliation:
Institute of Pharmaceutical Biology, Technical University of Braunschweig
Joerg Degenhardt
Affiliation:
Institute of Pharmacy, Martin Luther University of Halle-Wittenberg
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen
Marcel Dicke
Affiliation:
Wageningen Universiteit, The Netherlands
Susan E. Hartley
Affiliation:
University of York
Get access

Summary

Introduction

Plants produce a large variety of secondary metabolites which are usually considered to function as defences against herbivores and pathogens, as many other contributions to this volume attest. Among the most characteristic features of these compounds are their vast number and enormous chemical diversity. Reports on plant secondary metabolites (PSMs) are replete with phrases describing their ‘tremendous array’ (Morrissey, 2009), ‘bewildering proliferation’ (Schoonhoven et al., 2005) or ‘extraordinary diversity’ (Howe & Jander, 2008). The diversity of secondary metabolites is apparent not only in their chemical structures, but also in their distribution in plants. The composition of secondary metabolites in plants varies at many levels of organisation, such as among different plant taxa (Wink, 2003), among different populations of the same taxon (Kliebenstein et al., 2001a) and between individuals of the same species (Pakeman et al., 2006). Within a plant, there is also variation among different organs (Brown et al., 2003), developmental stages (Lambdon et al., 2003) and environmental conditions (Engelen-Eigles et al., 2006), as well as the frequent presence of complex mixtures of secondary metabolites in individual organs. Most secondary metabolites, including alkaloids (Waffo et al., 2007), phenolics (Ashihara et al., 2010) and terpenes (Köllner et al., 2004), invariably occur in mixtures rather than as individual, isolated substances. The chemistry and distribution of secondary metabolites is so diverse that being able to explain the patterns of diversity seems an essential requirement for understanding their roles in plants.

This review will consider both the generation of secondary metabolite chemical diversity by the plant’s biosynthetic machinery and the functional importance of such diversity. We focus on the function of secondary metabolites in defence against herbivores, because this has received the most attention from researchers. Since there are so many levels of diversity in secondary metabolites, we will limit ourselves to just one: the occurrence of mixtures of a single class of compounds, such as alkaloids or terpenes, in individual organs.

Type
Chapter
Information
The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 56 - 77
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A. A.Kurashige, N. S. 2003 A role for isothiocyanates in plant resistance against the specialist herbivore Journal of Chemical Ecology 29 1403CrossRefGoogle ScholarPubMed
Akhtar, Y.Isman, M. B. 2003 Binary mixtures of feeding deterrents mitigate the decrease in feeding deterrent response to antifeedants following prolonged exposure in the cabbage looper, (Lepidoptera: Noctuidae)Chemoecology 13 177CrossRefGoogle Scholar
Amirhusin, B.Shade, R. E.Koiwa, H. 2007 Protease inhibitors from several classes work synergistically against Journal of Insect Physiology 53 734CrossRefGoogle ScholarPubMed
Ashihara, H.Deng, W.-W.Mullen, W.Crozier, A. 2010 Distribution and biosynthesis of flavan-3-ols in seedlings and expression of genes encoding biosynthetic enzymesPhytochemistry 71 559CrossRefGoogle ScholarPubMed
Austin, M. B.Noel, J. P. 2003 The chalcone synthase superfamily of type III polyketide synthasesNatural Products Reports 20 79CrossRefGoogle ScholarPubMed
Becerra, J. X. 1997 Insects on plants: macroevolutionary chemical trends in host useScience 276 253CrossRefGoogle ScholarPubMed
Becerra, J. X.Venable, D. L.Evans, P. H.Bowers, W. S. 2001 Interactions between chemical and mechanical defenses in the plant genus and their implications for herbivoresAmerican Zoologist 41 865Google Scholar
Bednarek, P.Pislewska-Bednarek, M.Svatos, A. 2009 A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defenseScience 323 101CrossRefGoogle ScholarPubMed
Berenbaum, M. R. 1985 Brementown revisited: interactions among allelochemicals in plantsCooper-Driver, G. A.Swain, T.Conn, E. E.Chemically Mediated Interactions between Plants and Other OrganismsNew YorkPlenum Press139CrossRefGoogle Scholar
Berenbaum, M. R.Neal, J. J. 1985 Synergism between myristicin and xanthotoxin, a naturally co-occurring plant toxicantJournal of Chemical Ecology 11 1349CrossRefGoogle Scholar
Berenbaum, M. R.Nitao, J. K.Zangerl, A. R. 1991 Adaptive significance of furanocoumarin diversity in (Apiaceae)Journal of Chemical Ecology 17 207CrossRefGoogle Scholar
Berenbaum, M. R.Zangerl, A. R. 1993 Furanocoumarin metabolism in : biochemistry, genetic variability, and ecological significanceOecologia 95 370CrossRefGoogle ScholarPubMed
Berenbaum, M. R.Zangerl, A. R. 1996 Phytochemical diversity: adaptation or random variation?Romeo, J. T.Saunders, J. A.Barbosa, P.Phytochemical Diversity and Redundancy in Ecological InteractionsNew YorkPlenum Press1Google Scholar
Bolwell, G. P.Bozak, K.Zimmerlin, A. 1994 Plant cytochrome P450Phytochemistry 37 1491CrossRefGoogle ScholarPubMed
Bones, A. M.Rossiter, J. T. 2006 The enzymic and chemically induced decomposition of glucosinolatesPhytochemistry 67 1053CrossRefGoogle ScholarPubMed
Brattsten, L. B. 1992 Metabolic defenses against plant allelochemicalsRosenthal, G. A.Berenbaum, M. R.Herbivores, Their Interactions with Secondary Plant MetabolitesSan Diego, CAAcademic Press176Google Scholar
Brown, P. D.Tokuhisa, J. G.Reichelt, M.Gershenzon, J. 2003 Variation of glucosinolate accumulation among different organs and developmental stages of Phytochemistry 62 471CrossRefGoogle Scholar
Buchanan, B. B.Gruissem, W.Jones, R. L. 2000 Biochemistry and Molecular Biology of PlantsRockville, MDAmerican Society of Plant Physiologists
Burow, M.Müller, R.Gershenzon, J.Wittstock, U. 2006 Altered glucosinolate hydrolysis in genetically engineered and its influence on the larval development of Journal of Chemical Ecology 32 2333CrossRefGoogle ScholarPubMed
Burow, M.Bergner, A.Gershenzon, J.Wittstock, U. 2007 Glucosinolate hydrolysis in – identification of the thiocyanate-forming proteinPlant Molecular Biology 63 49CrossRefGoogle ScholarPubMed
Burow, M.Losansky, A.Müller, R. 2009 The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in ArabidopsisPlant Physiology 149 561CrossRefGoogle ScholarPubMed
Carlton, R. R.Waterman, P. G.Gray, A. I.Deans, S. G. 1992 The antifungal activity of the leaf gland volatile oil of sweet gale () (Myricaceae)Chemoecology 3 55CrossRefGoogle Scholar
Castellanos, I.Espinosa-Garcia, F. J. 1997 Plant secondary metabolite diversity as a resistance trait against insects: a test with (Coleoptera: Curculionidae) and seed secondary metabolitesBiochemical Systematics and Ecology 25 591CrossRefGoogle Scholar
Cole, R. A. 1976 Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in CruciferaePhytochemistry 15 759CrossRefGoogle Scholar
D’Auria, J. C. 2006 Acyltransferases in plants: a good time to be BAHDCurrent Opinion in Plant Biology 9 331CrossRefGoogle ScholarPubMed
de Vos, M.Kriksunov, K. L.Jander, G. 2008 Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Plant Physiology 146 916CrossRefGoogle Scholar
Degenhardt, J.Köllner, T. G.Gershenzon, J. 2009 Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plantsPhytochemistry 70 1621CrossRefGoogle ScholarPubMed
Diawara, M. M.Trumble, J. T.White, K. K.Carson, W. G.Martinez, L. A. 1993 Toxicity of linear furanocoumarins to : evidence for antagonistic interactionsJournal of Chemical Ecology 19 2473CrossRefGoogle ScholarPubMed
Dyer, L. A.Dodson, C. D.Stireman, J. O. 2003 Synergistic effects of three amides on generalist and specialist herbivoresJournal of Chemical Ecology 29 2499CrossRefGoogle ScholarPubMed
Engelen-Eigles, G.Holden, G.Cohen, J. D.Gardner, G. 2006 The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress ( R. Br.)Journal of Agricultural and Food Chemistry 54 328CrossRefGoogle Scholar
Fahey, J. W.Zalcmann, A. T.Talalay, P. 2001 The chemical diversity and distribution of glucosinolates and isothiocyanates among plantsPhytochemistry 56 5CrossRefGoogle ScholarPubMed
Falk, K. L.Gershenzon, J. 2007 The desert locust, , detoxifies the glucosinolates of by desulfationJournal of Chemical Ecology 33 1542CrossRefGoogle ScholarPubMed
Feeny, P. 1992 The evolution of chemical ecology: contributions from the study of herbivorous insectsRosenthal, G. A.Berenbaum, M. R.Herbivores: Their Interactions with Secondary Plant MetabolitesSan Diego, CAAcademic Press1Google Scholar
Feng, R.Isman, M. B. 1995 Selection for resistance to azadirachtin in the green peach aphid, Experientia 51 831CrossRefGoogle Scholar
Fewell, A. M.Roddick, J. G. 1993 Interactive antifungal activity of the glycoalkaloids alpha-solanine and alpha-chaconinePhytochemistry 33 323CrossRefGoogle Scholar
Firn, R. D.Jones, C. G. 1996 An explanation of secondary product ‘redundancy’Romeo, J. T.Saunders, J. A.Barbosa, P.Phytochemical Diversity and Redundancy in Ecological InteractionsNew YorkPlenum Press295CrossRefGoogle Scholar
Firn, R. D.Jones, C. G. 2003 Natural products – a simple model to explain chemical diversityNatural Products Reports 20 382CrossRefGoogle ScholarPubMed
Geervliet, J. B. F.Vet, L. E. M.Dicke, M. 1994 Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Entomologia Experientalis et Applicata 73 289CrossRefGoogle Scholar
Gershenzon, J.Kreis, W. 1999 Biosynthesis of monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponinsWink, M.Biochemistry of Plant Secondary MetabolismSheffieldSheffield Academic Press222Google Scholar
Graser, G.Schneider, B.Oldham, N. J.Gershenzon, J. 2000 The methionine chain elongation pathway in the biosynthesis of glucosinolates in (Brassicaceae)Archives of Biochemistry and Biophysics 378 411CrossRefGoogle Scholar
Grootwassink, J. W. D.Balsevich, J. J.Kolenovsky, A. D. 1990 Formation of sulfatoglucosides from exogenous aldoximes in plant cell cultures and organsPlant Science 66 11CrossRefGoogle Scholar
Grubb, C. D.Zipp, B. J.Ludwig-Müller, J. 2004 Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasisPlant Journal 40 893CrossRefGoogle ScholarPubMed
Guillet, G.Belanger, A.Arnason, J. T. 1998 Volatile monoterpenes in and (Asteraceae): identification, localization and insecticidal synergism with alpha-terthienylPhytochemistry 49 423CrossRefGoogle Scholar
Gunasena, G. H.Vinson, S. B.Williams, H. J.Stipanovic, R. D. 1988 Effects of caryophyllene, caryophyllene oxide, and their interaction with gossypol on the growth and development of (F.) (Lepidoptera: Noctuidae)Journal of Economic Entomology 81 93CrossRefGoogle Scholar
Halkier, B. A.Gershenzon, J. 2006 Biology and biochemistry of glucosinolatesAnnual Review of Plant Biology 57 303CrossRefGoogle ScholarPubMed
Harvey, J. A.Witjes, L. M. A.Benkirane, M.Duyts, H.Wagenaar, R. 2007 Nutritional suitability and ecological relevance of and as foodplants for the cabbage butterfly, Plant Ecology 189 117CrossRefGoogle Scholar
Hertweck, C. 2009 The biosynthetic logic of polyketide diversityAngewandte Chemie, International Edition 48 4688CrossRefGoogle ScholarPubMed
Howe, G. A.Jander, G. 2008 Plant immunity to insect herbivoresAnnual Review of Plant Biology 59 41CrossRefGoogle ScholarPubMed
Hummelbrunner, L. A.Isman, M. B. 2001 Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, (Lep., Noctuidae)Journal of Agricultural and Food Chemistry 49 715CrossRefGoogle Scholar
Ibrahim, R. K.Bruneau, A.Bantignies, B. 1998 Plant O-methyltransferases: molecular analysis, common signature and classificationPlant Molecular Biology 36 1CrossRefGoogle ScholarPubMed
Jones, C. G.Firn, R. D. 1991 On the evolution of plant secondary chemical diversityPhilosophical Transactions of the Royal Society of London B 333 273CrossRefGoogle Scholar
Kang, R.Helms, R.Stout, M. J. 1992 Antimicrobial activity of the volatile constituents of and its synergistic effects with polygodialJournal of Agricultural and Food Chemistry 40 2328CrossRefGoogle Scholar
Kanikkannan, N.Kandimalla, K.Lamba, S. S.Singh, M. 2000 Structure-activity relationship of chemical penetration enhancers in transdermal drug deliveryCurrent Medicinal Chemistry 7 593CrossRefGoogle ScholarPubMed
Kim, J. H.Lee, B. W.Schroeder, F. C.Jander, G. 2008 Identification of indole glucosinolate breakdown products with antifeedant effects on (green peach aphid)Plant Journal 54 1015CrossRefGoogle Scholar
Klein, M.Papenbrock, J. 2009 Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Physiologia Plantarum 135 140CrossRefGoogle Scholar
Kliebenstein, D. J.Kroymann, J.Brown, P. 2001 Genetic control of natural variation in Arabidopsis glucosinolate accumulationPlant Physiology 126 811CrossRefGoogle ScholarPubMed
Kliebenstein, D. J.Lambrix, V. M.Reichelt, M.Gershenzon, J.Mitchell-Olds, T. 2001 Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in ArabidopsisPlant Cell 13 681CrossRefGoogle ScholarPubMed
Köllner, T. G.Schnee, C.Gershenzon, J.Degenhardt, J. 2004 The sesquiterpene hydrocarbons of maize () form five groups with distinct developmental and organ-specific distributionsPhytochemistry 65 1895CrossRefGoogle ScholarPubMed
Lambdon, P. W.Hassall, M.Boar, R. R.Mithen, R. 2003 Asynchrony in the nitrogen and glucosinolate leaf-age profiles of : is this a defensive strategy against generalist herbivores?Agriculture, Ecosystems and Environment 97 205CrossRefGoogle Scholar
Lambrix, V. M.Reichelt, M.Mitchell-Olds, T.Kliebenstein, D. J.Gershenzon, J. 2001 The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences herbivoryPlant Cell 13 2793CrossRefGoogle ScholarPubMed
McKey, D. 1979 The distribution of secondary compounds within plantsRosenthal, G. A.Janzen, D. H.Herbivores: Their Interactions with Plant Secondary MetabolitesNew YorkAcademic Press56Google Scholar
Morant, A. V.Jørgensen, K.Jørgensen, C. 2008 β-Glucosidases as detonators of plant chemical defensePhytochemistry 69 1795CrossRefGoogle ScholarPubMed
Morrissey, J. P. 2009 Biological activity of defence-related plant secondary metabolitesOsbourn, A. E.Lanzotti, V.Plant-derived Natural Products, Synthesis, Function and ApplicationDordrechtSpringer283CrossRefGoogle Scholar
Müller, R.de Vos, M.Sun, J. Y. 2010 Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivoresJournal of Chemical Ecology 36 905CrossRefGoogle ScholarPubMed
Mumm, R.Hilker, M. 2005 The significance of background odour for an egg parasitoid to detect plants with host eggsChemical Senses 30 337CrossRefGoogle ScholarPubMed
Mumm, R.Burow, M.Bukovinszkine’Kiss, G. 2008 Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Journal of Chemical Ecology 34 1311CrossRefGoogle Scholar
Nomura, T.Quesada, A. L.Kutchan, T. M. 2008 The new beta-D-glucosidase in terpenoid-isoquinoline alkaloid biosynthesis in Journal of Biological Chemistry 283 34650CrossRefGoogle Scholar
Pakeman, R. J.Beaton, J. K.Thoss, V. 2006 The extended phenotype of Scots pine structures the understorey assemblageEcography 29 451CrossRefGoogle Scholar
Pfalz, M.Vogel, H.Kroymann, J. 2009 The gene controlling the quantitative trait locus alters indole glucosinolate structures and aphid resistance in Plant Cell 21 985CrossRefGoogle Scholar
Phillips, M. A.Croteau, R. B. 1999 Resin-based defenses in conifersTrends in Plant Science 4 184CrossRefGoogle ScholarPubMed
Prescott, A. G.Lloyd, M. D. 2000 The iron(II) and 2-oxoacid-dependent dioxygenases and their role in metabolismNatural Products Reports 17 367CrossRefGoogle ScholarPubMed
Rasmann, S.Agrawal, A. A. 2009 Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traitsCurrent Opinion in Plant Biology 12 473CrossRefGoogle ScholarPubMed
Reichelt, M.Brown, P. D.Schneider, B. 2002 Benzoic acid glucosinolate esters and other glucosinolates from Phytochemistry 59 663CrossRefGoogle Scholar
Riffell, J. A.Lei, H.Christensen, T. A.Hildebrand, J. G. 2009 Characterization and coding of behaviorally significant odor mixturesCurrent Biology 19 335CrossRefGoogle ScholarPubMed
Schnee, C.Köllner, T. G.Held, M. 2006 The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivoresProceedings of the National Academy of Sciences USA 103 1129CrossRefGoogle Scholar
Schoonhoven, L. M.van Loon, J. J. A.Dicke, M 2005 Insect–Plant BiologyOxfordOxford University PressGoogle Scholar
Schwab, W. 2003 Metabolome diversity: too few genes, too many metabolites?Phytochemistry 62 837CrossRefGoogle ScholarPubMed
Segura, A.Moreno, M.Madueno, F.Molina, A.Garcia-Olmedo, F. 1999 Snakin-1, a peptide from potato that is active against plant pathogensMolecular Plant–Microbe Interactions 12 16CrossRefGoogle ScholarPubMed
Seo, S. T.Tang, C. S. 1982 Hawaiian fruit-flies (Diptera: Tephritidae) – toxicity of benzyl isothiocyanate against eggs or 1st instars of three speciesJournal of Economic Entomology 75 1132CrossRefGoogle Scholar
Springob, K.Kutchan, T. M. 2009 Introduction to the different classes of natural productsOsbourn, A. E.Lanzotti, V.Plant-derived Natural Products, Synthesis, Function and ApplicationDordrechtSpringerGoogle Scholar
Stark, J. D.Walter, J. F. 1995 Neem oil and neem oil components affect the efficacy of commercial neem insecticidesJournal of Agricultural and Food Chemistry 43 507CrossRefGoogle Scholar
Steppuhn, A.Baldwin, I. T. 2007 Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitorsEcology Letters 10 499CrossRefGoogle Scholar
Stermitz, F. R.Lorenz, P.Tawara, J. N.Zenewicz, L. A.Lewis, K. 2000 Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitorProceedings of the National Academy of Sciences USA 97 1433CrossRefGoogle Scholar
Taiz, L.Zeiger, E. 2002 Plant PhysiologySunderland, MASinauer Associates
Tholl, D. 2006 Terpene synthases and the regulation, diversity and biological roles of terpene metabolismCurrent Opinion in Plant Biology 9 297CrossRefGoogle ScholarPubMed
Turlings, T. C. J.Davison, A. C.Tamo, C. 2004 A six-arm olfactometer permitting simultaneous observation of insect attraction and odour trappingPhysiological Entomology 29 45CrossRefGoogle Scholar
Voukou, D.Douvli, P.Blionis, G. J.Halley, J. M. 2003 Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growthJournal of Chemical Ecology 29 2281CrossRefGoogle Scholar
Waffo, A. F. K.Coombes, P. H.Crouch, N. R. 2007 Acridone and furoquinoline alklaoids from (Rutaceae: Toddalioideae) of southern AfricaPhytochemistry 68 663CrossRefGoogle Scholar
Williams, D. J.Critchley, C.Pun, S.Chaliha, M.O’Hare, T. J. 2009 Differing mechanisms of simple nitrile formation on glucosinolate degradation in and seedsPhytochemistry 70 1401CrossRefGoogle ScholarPubMed
Wink, M. 2003 Evolution of secondary metabolites from an ecological and molecular phylogenetic perspectivePhytochemistry 64 3CrossRefGoogle ScholarPubMed
Wittstock, U.Kliebenstein, D. J.Lambrix, V. M.Reichelt, M.Gershenzon, J. 2003 Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivoresRomeo, J. T.Integrative Phytochemistry: From Ethnobotany to Molecular EcologyAmsterdamPergamon101CrossRefGoogle Scholar
Wittstock, U.Agerbirk, N.Stauber, E. J. 2004 Successful herbivore attack due to metabolic diversion of a plant chemical defenseProceedings of the National Academy of Sciences USA 101 4859CrossRefGoogle ScholarPubMed
Zhao, J.-Z.Cao, J.Li, Y. 2003 Transgenic plants expressing two toxins delay insect resistance evolutionNature Biotechnology 21 1493CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×