Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T02:16:42.530Z Has data issue: false hasContentIssue false

11 - Ecosystem-based fisheries management in the face of climate change

Published online by Cambridge University Press:  05 June 2012

William W. L. Cheung
Affiliation:
University of East Anglia, UK, and University of British Columbia, Canada
Jessica J. Meeuwig
Affiliation:
University of Western Australia, Australia
Vicky W. Y. Lam
Affiliation:
University of British Columbia, Canada
Villy Christensen
Affiliation:
University of British Columbia, Vancouver
Jay Maclean
Affiliation:
Fisheries Consultant
Get access

Summary

INTRODUCTION

Climate change can have direct and indirect impacts on marine fisheries (Brander, 2007). Impacts of overfishing and other human factors, such as habitat destruction and pollution, on marine ecosystems and fisheries resources, are generally well known. Overfishing causes large-scale depletion of fish biomass in the ocean and structural changes in ecosystems (Pauly et al., 1998; Jackson et al., 2001; Pauly et al., 2002; Christensen et al., 2003; Myers and Worm, 2003). Simultaneously, other human activities disturb natural habitats and disrupt the ecology and biodiversity of marine ecosystems (Lotze et al., 2006; Worm et al., 2006; Halpern et al., 2008).

In contrast, impacts of global climate change on marine ecosystems are just starting to be recognized, lagging behind such recognition in terrestrial systems (Rosenzweig et al., 2008). Theory and empirical evidence show that climate change is an important factor affecting marine organisms, ecosystems, and the services they provide (Costanza et al., 1999; Roessig et al., 2004; Pörtner and Knust, 2007; Munday et al., 2008; Rosenzweig et al., 2008). For example, distributions of exploited marine fish and invertebrates have shifted as temperature and other ocean conditions change. Observations from the North Sea (Perry et al., 2005) and the Bering Sea (Mueter and Litzow, 2008) show that the average rate of latitudinal range shift has been around 30 km per decade over the last few decades. Fish assemblages in the North Sea are also found to have moved deeper at an average rate of 3.6 m per decade (Dulvy et al., 2008).

Type
Chapter
Information
Ecosystem Approaches to Fisheries
A Global Perspective
, pp. 171 - 188
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, E., Perry, A., Badjeck, M. N., Adger, W., Brown, K., Conway, D., Halls, A., Pilling, G., Reynolds, J. and Andrew, N. (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries, 10, 173–196.CrossRefGoogle Scholar
Brander, K. M. (2007) Global fish production and climate change. Proceedings of the National Academy of Sciences, 105, 19709–19714.CrossRefGoogle Scholar
Carpenter, K., Abrar, M., Aeby, G., Aronson, R., Banks, S., Bruckner, A., Chiriboga, A., Cortes, J., Delbeek, J. and Devantier, L. (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science, 321, 560.CrossRefGoogle ScholarPubMed
Cheung, W. W. L., Close, C., Lam, V., Watson, R. and Pauly, D. (2008a) Application of macroecological theory to predict effects of climate change on global fisheries potential. Marine Ecology Progress Series, 365, 187–197.CrossRefGoogle Scholar
Cheung, W. W. L., Lam, V. W. Y. and Pauly, D., eds. (2008b) Modelling Present and Climate-Shifted Distribution of Marine Fishes and Invertebrates. Fisheries Centre Research Reports 16 (3). Vancouver, Canada: Fisheries Centre, University of British Columbia.
Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R. and Pauly, D. (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10, 235–251.CrossRefGoogle Scholar
Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D. and Pauly, D. (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1), 24–35.CrossRefGoogle Scholar
Christensen, V., Guénette, S., Heymans, J. J., Walters, C. J., Watson, R., Zeller, D. and Pauly, D. (2003) Hundred-year decline of North Atlantic predatory fishes. Fish and Fisheries, 4, 1–24.CrossRefGoogle Scholar
Christensen, V., Walters, C. J., Ahrens, R., Alder, J., Buszowski, J., Christensen, L. B., Cheung, W. W. L., Dunne, J., Froese, R., Karpouzi, V., Kaschner, K., Kearney, K., Lai, S., Lam, V., Palomares, M. L. D., Peters-Mason, A., Piroddi, C., Sarmiento, J. L., Steenbeek, J., Sumaila, R., Watson, R., Zeller, D. and Pauly, D. (2009) Database-driven models of the world's large marine ecosystems. Ecological Modelling, 220, 1984–1996.CrossRefGoogle Scholar
Close, C., Cheung, W. W. L., Hodgson, L., Lam, V. and Watson, R. (2006) Distribution ranges of commercial fishes and invertebrates. In Palomares, M. L. D., Stergiou, K. I. and Pauly, D., eds., Fishes in Databases and Ecosystems. Fisheries Centre Research Reports 14(4). Vancouver, Canada: Fisheries Centre, University of British Columbia, pp. 27–37.Google Scholar
Costanza, R., Andrade, F., Antunes, P., Belt, M., Boesch, D., Boersma, D., Caatarino, F., Hanna, S., Limburg, K., Low, B., Molitor, M., Pereira, J. G., Rayner, S., Santos, R. and Wilson, J. (1999) Ecological economics and sustainable governance of the oceans. Ecological Economics, 31, 171–187.CrossRefGoogle Scholar
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhorst, A. R., Lee, H. C., Lin, S. J., Lu, J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, F. and Zhang, R. (2006) GFDL's CM2 global coupled climate models. Part I: formulation and simulation characteristics. Journal of Climate, 19, 643–674.CrossRefGoogle Scholar
Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M. and Hoegh-Guldberg, O. (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biology, 11, 2251–2265.CrossRefGoogle Scholar
Drinkwater, K. F. (2005) The response of Atlantic cod (Gadus morhua) to future climate change. ICES Journal of Marine Science, 62, 1327–1337.CrossRefGoogle Scholar
Dulvy, N. K., Rogers, S. I., Jennings, S., Dye, S. R. and Skjoldal, H. R. (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology, 45, 1029–1039.CrossRefGoogle Scholar
Dulvy, N. K., Sadovy, Y. and Reynolds, J. D. (2003) Extinction vulnerability in marine populations. Fish and Fisheries, 4, 25–64.CrossRefGoogle Scholar
Fletcher, W. J. and Santoro, K., eds. (2007) State of the Fisheries Report 2006/07, Western Australia: Department of Fisheries.
Garcia, S. and Cochrane, K. (2005) Ecosystem approach to fisheries: a review of implementation guidelines. ICES Journal of Marine Science, 62, 311.CrossRefGoogle Scholar
Gaughan, D. J. (2007) Potential mechanisms of influence of the Leeuwin Current eddy system on teleost recruitment to the Western Australian continental shelf. Deep Sea Research, 54, 1129–1140.CrossRefGoogle Scholar
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R. and Watson, R. (2008) A global map of human impact on marine ecosystems. Science, 319, 948–952.CrossRefGoogle ScholarPubMed
Harley, C., Hughes, A. R., Hultgren, K. M., Miner, B. G., Sorte, C. J. B., Thornber, C. S., Rodriguez, L. F., Tomanek, L. and Williams, S. L. (2006) The impacts of climate change in coastal marine systems. Ecology Letters, 9, 228–241.CrossRefGoogle ScholarPubMed
Harvey, E. S., Cappo, M., Butler, J. J., Hall, N. and Kendrick, G. A. (2007) Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Marine Ecology Progress Series, 350, 245–254.CrossRefGoogle Scholar
Havenhand, J. N., Buttler, F. R., Thorndyke, M. C. and Williamson, J. E. (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Current Biology, 18, 651–652.CrossRefGoogle Scholar
Hiddink, J. G. and Hofstede, R. T. (2008) Climate induced increases in species richness of marine fishes. Global Change Biology, 14, 453–460.CrossRefGoogle Scholar
Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J. and Warner, R. R. (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–638.CrossRefGoogle ScholarPubMed
Jennings, S., Mélin, F., Blanchard, J. L., Forster, R. M., Dulvy, N. K. and Wilson, R. W. (2008) Global-scale predictions of community and ecosystem properties from simple ecological theory. Proceedings of the Royal Society B, Biological Sciences, 275, 1375–1383.CrossRefGoogle ScholarPubMed
Kolding, J., Haug, L. and Stefansson, S. (2008) Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Canadian Journal of Fisheries and Aquatic Sciences, 65, 1413–1424.CrossRefGoogle Scholar
Link, J. S., Brodziak, J. K. T., Edwards, S. F., Overholtz, W. J., Mountain, D., Jossi, J. W., Smith, T. D. and Fogarty, M. J. (2002) Marine ecosystem assessment in a fisheries management context. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1429–1440.CrossRefGoogle Scholar
Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H. and Jackson, J. B. C. (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312, 1806–1809.CrossRefGoogle ScholarPubMed
Macpherson, E. (2002) Large-scale species-richness gradients in the Atlantic Ocean. Proceedings of the Royal Society B, Biological Sciences, 269, 1715–1720.CrossRefGoogle ScholarPubMed
Mueter, F. J. and Litzow, M. A. (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecological Applications, 18, 309–320.CrossRefGoogle ScholarPubMed
Munday, P. L., Jones, G. P., Pratchett, M. S. and Williams, A. J. (2008) Climate change and the future for coral reef fishes. Fish and Fisheries, 9, 261–285.CrossRefGoogle Scholar
Myers, R. A. and Worm, B. (2003) Rapid worldwide depletion of predatory fish communities. Nature, 423, 280–283.CrossRefGoogle ScholarPubMed
Naeem, S. and Li, S. (1997) Biodiversity enhances ecosystem reliability. Nature, 390, 507–509.CrossRefGoogle Scholar
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y. and Yool, A. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681–686.CrossRefGoogle ScholarPubMed
Pauly, D. (1981) The relationships between gill surface area and growth performance in fish: a generalization of von Bertalanffy's theory of growth. Meeresforschung, 28, 251–282.Google Scholar
Pauly, D. (1984) A mechanism for the juvenile-to-adult transition in fishes. Journal du Conseil International pour l'Exploration de la Mer, 41, 280–284.CrossRefGoogle Scholar
Pauly, D. (1998) Why squid, though not fish, may be better understood by pretending they are. South African Journal of Marine Science/Suid-Afrikaanse Tydskrif vir Seewetenskap, 20, 47–58.CrossRefGoogle Scholar
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. and Torres, F. (1998) Fishing down marine food webs. Science, 279, 860–863.CrossRefGoogle ScholarPubMed
Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., Watson, R. and Zeller, D. (2002) Towards sustainability in world fisheries. Nature, 418, 689–695.CrossRefGoogle ScholarPubMed
Pauly, D. and Watson, R. (2005) Background and interpretation of the “Marine Trophic Index” as a measure of biodiversity. Philosophical Transactions of the Royal Society, Biological Sciences, 360, 415–423.CrossRefGoogle Scholar
Pearce, A. and Feng, M. (2007) Observations of warming on the Western Australian continental shelf. Marine and Freshwater Research, 58, 914–920.CrossRefGoogle Scholar
Pearce, A. F. and Phillips, B. F. (1988) ENSO events, the Leeuwin Current, and larval recruitment of the western rock lobster. ICES Journal of Marine Science, 45, 13–21.CrossRefGoogle Scholar
Perry, A. L., Low, P. J. and Ellis, J. R. (2005) Climate change and distribution shifts in marine fishes. Science, 308, 1912–1915.CrossRefGoogle ScholarPubMed
Pörtner, H. O., Berdal, B., Blust, R., Brix, O., Colosimo, A., Wachter, B. D., Giuliani, A., Johansen, T., Fischer, T., Knust, R., Lannig, G., Naevdal, G., Nedenes, A., Nyhammer, G., Sartoris, F. J., Serendero, I., Sirabella, P., Thorkildsen, S. and Zakhartsev, M. (2001) Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparous). Continental Shelf Research, 21, 1975–1997.CrossRefGoogle Scholar
Pörtner, H. O. and Knust, R. C. (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95–97.CrossRefGoogle ScholarPubMed
Rahel, F. J. and Olden, J. D. (2008) Assessing the effects of climate change on aquatic invasive species. Conservation Biology, 22, 521–533.CrossRefGoogle ScholarPubMed
Roessig, J. M., Woodley, C. M., Cech, J. J. and Hansen, L. J. (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Reviews in Fish Biology and Fisheries, 14, 251–275.CrossRefGoogle Scholar
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S. and Imeson, A. (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353–357.CrossRefGoogle ScholarPubMed
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S. A. and Stouffer, R. (2004) Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles, 18, doi:1029/2003GB002134.CrossRefGoogle Scholar
Solman, S. and Nuñez, M. N. (1999) Local estimates of global climate change: a statistical downscaling approach. International Journal of Climatology, 19, 835–861.3.0.CO;2-E>CrossRefGoogle Scholar
Stoner, A. W. (2004) Effects of environmental variables on fish feeding ecology: implications for the performance of baited fishing gear and stock assessment. Journal of Fish Biology, 65, 1445–1471.CrossRefGoogle Scholar
Teal, L. R., Leeuw, J. J., Veer, H. W. and Rijnsdorp, A. D. (2008) Effects of climate change on growth of 0-group sole and plaice. Marine Ecology Progress Series, 358, 219–230.CrossRefGoogle Scholar
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend-Peterson, A., Phillips, O. L., and Williams, S. E. (2004) Extinction risk from climate change. Nature, 427, 145.CrossRefGoogle ScholarPubMed
Watson, R., Kitchingman, A., Gelchu, A. and Pauly, D. (2004) Mapping global fisheries: sharpening our focus. Fish And Fisheries, 5, 168–177.CrossRefGoogle Scholar
Wilby, R. L. and Wigley, T. M. L. (1997) Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography, 21, 530–548.CrossRefGoogle Scholar
Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., Jackson, J. B. C., Lotze, H. K., Micheli, F., Palumbi, S. R., Sala, E., Selkoe, K. A., Stachowicz, J. J. and Watson, R. (2006) Impacts of biodiversity loss on ocean ecosystem services. Science, 314, 787–790.CrossRefGoogle ScholarPubMed
Worm, B. and Duffy, J. E. (2003) Biodiversity, productivity and stability in real food webs. Trends in Ecology and Evolution, 18, 628–632.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×