Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T20:58:47.987Z Has data issue: false hasContentIssue false

Chap. 4 - IMMUNOMODULATORS AND THE “BIOLOGICS” IN CUTANEOUS EMERGENCIES

Published online by Cambridge University Press:  07 September 2011

Batya B. Davidovici
Affiliation:
Kaplan Medical Center
Ronni Wolf
Affiliation:
Hebrew University–Hadassah Medical School
Ronni Wolf
Affiliation:
Kaplan Medical Center, Rehovot, Israel
Batya B. Davidovici
Affiliation:
Kaplan Medical Center, Rehovot, Israel
Jennifer L. Parish
Affiliation:
Jefferson Medical College of Thomas Jefferson University
Lawrence Charles Parish
Affiliation:
Jefferson Medical College of Thomas Jefferson University
Get access

Summary

BIOLOGIC AGENTS are proteins or antibodies engineered to target specific molecules. They are derived from the products of living organisms. In recent years, numerous drugs of this type have been added to the therapeutic armamentarium in various disciplines of medicine. In dermatology, psoriasis is so far the only entity for which various drugs of this type are approved. Two main groups of biologic agents are used in psoriasis: The first is tumor necrosis factor (TNF) blockers, and the second group consists of inhibitors of T lymphocytes or antigen-presenting cells. Drugs from the anti-TNF group, as well as additional biological agents from other specialties, have been used off-label in numerous skin diseases – some of them are dermatologic emergencies. No doubt, the increasing development and use of these drugs will also extend the number of possible indications in numerous skin diseases. This chapter reviews the current reports on these agents and their use in various dermatologic emergencies (Table 4.1).

INFLIXIMAB

Infliximab (Remicade; Centocor, Inc., Horsham, PA) is a chimeric immunoglobulin G1 (IgG1) monoclonal antibody containing human constant regions and murine variable regions. It binds and inhibits both soluble and transmembrane TNF-α and activates lysis of cells that express transmembrane TNF-α via antibody-dependent and complement-dependent cytotoxic mechanisms.

Indications

Indications for treating are rheumatoid arthritis (RA), psoriatic arthritis, ankylosing spondylitis, Crohn disease, ulcerative colitis, and moderate to severe plaque type psoriasis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rapp, SR, Feldman, SR, Exum, ML, et al. Psoriasis causes as much disability as other major medical diseases. J Am Acad Dermatol. 1999;41:401–7.CrossRefGoogle ScholarPubMed
Henseler, T, Christophers, E. Disease concomitance in psoriasis. J Am Acad Dermatol. 1995;32:982–6.CrossRefGoogle ScholarPubMed
Graves, JE, Nunley, K, Heffernan, MP. Off-label uses of biologics in dermatology: rituximab, omalizumab, infliximab, etanercept, adalimumab, efalizumab, and alefacept (part 2 of 2). J Am Acad Dermatol. 2007;56:55–79.CrossRefGoogle Scholar
Wasserman, MJ, Weber, DA, Guthrie, JA, et al. Infusion-related reactions to infliximab in patients with rheumatoid arthritis in a clinical practice setting: relationship to dose, antihistamine pretreatment, and infusion number. J Rheumatol. 2004;31:1912–17.Google Scholar
Cheifetz, A, Smedley, M, Martin, S, et al. The incidence and management of infusion reactions to infliximab: a large center experience. Am J Gastroenterol. 2003;98:1315–24.CrossRefGoogle ScholarPubMed
Bendtzen, K, Geborek, P, Svenson, M, et al. Treatment of rheumatoid arthritis (RA) with anti-TNF-alpha antibody (Remicade). Individual monitoring of bioavailability and immunogenicity–secondary publication. Ugeskr Laeger. 2007;169:420–3.Google Scholar
Baert, F, Vermeire, S, Noman, M, et al. Management of ulcerative colitis and Crohn's disease. Acta Clin Belg. 2004;59:304–14.CrossRefGoogle ScholarPubMed
Baert, F, Noman, M, Vermeire, S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. N Engl J Med. 2003;348:601–8.CrossRefGoogle ScholarPubMed
Bendtzen, K, Geborek, P, Svenson, M, et al. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab. Arthritis Rheum. 2006;54:3782–9.CrossRefGoogle ScholarPubMed
Vermeire, S, Noman, M, Assche, G, et al. Autoimmunity associated with anti-tumor necrosis factor alpha treatment in Crohn's disease: prospective cohort study. Gastroenterology. 2003;125:32–9.CrossRefGoogle ScholarPubMed
Farrell, RJ, Alsahli, M, Jeen, YT, et al. Intravenous hydrocortisone premedication reduces antibodies to infliximab in Crohn's disease: a randomized controlled trial. Gastroenterology. 2003;124:917–24.CrossRefGoogle ScholarPubMed
Hamilton, CD. Infectious complications of treatment with biologic agents. Curr Opin Rheumatol. 2004;16:393–8.CrossRefGoogle ScholarPubMed
Enayati, PJ, Papadakis, KA. Association of anti-tumor necrosis factor therapy with the development of multiple sclerosis. J Clin Gastroenterol. 2005;39:303–6.CrossRefGoogle ScholarPubMed
Mohan, N, Edwards, ET, Cupps, TR, et al. Demyelination occurring during anti tumor necrosis factor alpha therapy for inflammatory arthritides. Arthritis Rheum. 2001;44:2862–9.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Thomas, CW., Weinshenker, BG, Sandborn, WJ. Demyelination during anti-tumor necrosis factor alpha therapy with infliximab for Crohn's disease. Inflamm Bowel Dis. 2004;10:28–31.CrossRefGoogle ScholarPubMed
Tran, TH, Milea, D, Cassoux, N, et al. Optic neuritis associated with infliximab. J Fr Ophtalmol. 2005;28:201–4.CrossRefGoogle ScholarPubMed
Wolfe, F, Michaud, K. Lymphoma in rheumatoid arthritis: the effect of methotrexate and anti-tumor necrosis factor therapy in 18 572 patients. Arthritis Rheum. 2004;50:1740–51.CrossRefGoogle ScholarPubMed
Chakravarty, EF, Michaud, K, Wolfe, F.Skin cancer, rheumatoid arthritis, and tumor necrosis factor inhibitors. J Rheumatol. 2005;32:2130–5.Google ScholarPubMed
Askling, J, Fored, CM, Brandt, L, et al. Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann Rheum Dis. 2005;64:1421–6.CrossRefGoogle ScholarPubMed
Cush, JJ. Unusual toxicities with TNF inhibition: heart failure and drug-induced lupus. Clin Exp Rheumatol. 2004;22:Suppl 35:S141–7.Google ScholarPubMed
Wolfe, F, Michaud, K. Heart failure in rheumatoid arthritis: rates, predictors, and the effect of anti-tumor necrosis factor therapy. Am J Med. 2004;116:305–11.CrossRefGoogle ScholarPubMed
Jacobi, A, Shuler, G, Hertl, M. Rapid control of therapy refractory pemphigus vulgaris by treatment with the tumour necrosis factor-alpha inhibitor infliximab. Br J Dermatol. 2005;153:448–9.CrossRefGoogle ScholarPubMed
Pardo, J, Mercader, P, Mahiques, L, et al. Infliximab in the management of severe pemphigus vulgaris. Br J Dermatol. 2005;153:222–3.CrossRefGoogle ScholarPubMed
Lee, SJ, Li, Z, Sherman, B, Foster, CS. Serum levels of tumor necrosis factor-alpha and interleukin-6 in ocular cicatricial pemphigoid. Invest Ophthalmol Vis Sci. 1993;34:3522–5.Google ScholarPubMed
Heffernan, MP, Bentley, DD. Successful treatment of mucous membrane pemphigoid with infliximab. Arch Dermatol. 2006;142:1268–70.CrossRefGoogle ScholarPubMed
Jacobsohn, DA. Novel therapeutics for the treatment of graft versus host disease. Expert Opin Investig Drugs. 2002;11:1271–80.CrossRefGoogle ScholarPubMed
Couriel, D, Saliba, R, Hicks, K, et al. Tumor necrosis factor-alpha blockade for the treatment of acute GVHD. Blood. 2004;104:649–54.CrossRefGoogle ScholarPubMed
Couriel, D, Hicks, K, Ipolotti, C. Infliximab for the treatment of graft-versus-host disease in allogenic transplant recipients: an update. Blood. 2000;46:400a.Google Scholar
Ross, WA. Treatment of gastrointestinal acute graft versus host disease. Curr Treat Options Gastroenterol. 2005;8:249–58.CrossRefGoogle ScholarPubMed
Patriarca, F, Sperotto, A, Damiani, D, et al. Infliximab treatment for steroid-refractory acute graft-versus-host disease. Haematologica. 2004;89:1352–9.Google ScholarPubMed
Jacobsohn, DA, Hallick, J, Anders, V, et al. Infliximab for steroid-refractory acute GVHD: a case series. Am J Hematol. 2003;74:119–24.CrossRefGoogle ScholarPubMed
Kobbe, G, Schneider, P, Rohr, U, et al. Treatment of severe steroid refractory acute graft versus host disease with infliximab, a chimeric human/mouse anti TNF alpha antibody. Bone Marrow Transplant. 2001;28:47–9.CrossRefGoogle Scholar
Yamane, T, Yamamura, R, Aoyama, Y, et al. Infliximab for the treatment of severe steroid refractory acute graft-versus-host disease in three patients after allogeneic hematopoietic transplantation. Leuk Lymphoma. 2003;44:2095–7.CrossRefGoogle ScholarPubMed
Magalhaes-Silverman, M, Lee, CK, Hohl, R, et al. Treatment of steroid refractory acute graft versus host disease with infliximab. Blood. 2001;98:5208a.Google Scholar
Rodriguez, V, Anderson, PM, Trotz, BA, et al. Use of infliximab-daclizumab combination for the treatment of acute and chronic graft-versus-host disease of the liver and gut. Pediatr Blood Cancer. 2007;49:212–15.CrossRefGoogle ScholarPubMed
Antin, JH, Chen, AR, Couriel, DR, et al. Novel approaches to the therapy of steroid-resistant acute graft-versus-host disease. Biol Blood Marrow Transplant. 2004;10:655–68.CrossRefGoogle ScholarPubMed
Chiang, KY, Abhyankar, S, Bridges, K, et al. Recombinant human tumor necrosis factor receptor fusion protein as complementary treatment for chronic graft-versus-host disease. Transplantation. 2002;73:665–7.CrossRefGoogle ScholarPubMed
Reidi, I, Knoche, J, Tanner, AR, et al. Salvage therapy with infliximab for patients with severe acute and chronic GVHD abstract. Blood. 2001;98(Suppl):399a.Google Scholar
Marty, FM, Lee, SJ, Fahey, MM, et al. Infliximab use in patients with severe graft-versus-host disease and other emerging risk factors of non-Candida invasive fungal infections in allogeneic hematopoietic stem cell transplant recipients: a cohort study. Blood. 2003;102:2768–76.CrossRefGoogle ScholarPubMed
Correia, O, Delgado, L, Barbosa, IL, et al. Increased interleukin 10, tumor necrosis factor alpha, and interleukin 6 levels in blister fluid of toxic epidermal necrolysis. J Am Acad Dermatol. 2002;47:58–62.CrossRefGoogle ScholarPubMed
Paquet, P, Nikkels, A, Arrese, JE, et al. Macrophages and tumor necrosis factor alpha in toxic epidermal necrolysis. Arch Dermatol. 1994;130:605–8.CrossRefGoogle ScholarPubMed
Paquet, P, Pierard, GE. Soluble fractions of tumor necrosis factor-alpha, interleukin-6 and of their receptors in toxic epidermal necrolysis: a comparison with second-degree burns. Int J Mol Med. 1998;1:459–62.Google ScholarPubMed
Paquet, P, Paquet, F, Al Saleh, W, et al. Immunoregulatory effector cells in drug-induced toxic epidermal necrolysis. Am J Dermatopathol. 2000;22:413–17.CrossRefGoogle ScholarPubMed
Paul, C, Wolkenstein, P, Adle, H, et al. Apoptosis as a mechanism of keratinocyte death in toxic epidermal necrolysis. Br J Dermatol. 1996;134:710–14.CrossRefGoogle ScholarPubMed
Nassif, A, Moslehi, H, Gouvello, S, et al. Evaluation of the potential role of cytokines in toxic epidermal necrolysis. J Invest Dermatol. 2004;123:850–5.CrossRefGoogle ScholarPubMed
Wolkenstein, P, Latarjet, J, Roujeau, JC, et al. Randomised comparison of thalidomide versus placebo in toxic epidermal necrolysis. Lancet. 1998;352:1586–9.CrossRefGoogle ScholarPubMed
Klausner, JD, Kaplan, G, Haslett, PA. Thalidomide in toxic epidermal necrolysis. Lancet. 1999;353:324.CrossRefGoogle ScholarPubMed
Fischer, M, Fiedler, E, Marsch, WC, Wohlrab, J.Antitumour necrosis factor-alpha antibodies (infliximab) in the treatment of a patient with toxic epidermal necrolysis. Br J Dermatol. 2002;146:707–9.CrossRefGoogle ScholarPubMed
Al-Shouli, S, Abouchala, N, Bogusz, MJ, et al. Toxic epidermal necrolysis associated with high intake of sildenafil and its response to infliximab. Acta Derm Venereol. 2005;85:534–5.Google Scholar
Hunger, RE, Hunziker, T, Buettiker, U, et al. Rapid resolution of toxic epidermal necrolysis with anti-TNF-alpha treatment. J Allergy Clin Immunol. 2005;116:923–4.CrossRefGoogle ScholarPubMed
Meiss, F, Helmbold, P, Meykadeh, N, et al. Overlap of acute generalized exanthematous pustulosis and toxic epidermal necrolysis: response to antitumour necrosis factor-alpha antibody infliximab: report of three cases. J Eur Acad Dermatol Venereol. 2007;21:717–19.Google ScholarPubMed
Mohler, KM, Torrance, DS, Smith, CA, et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol. 1993;151:1548–61.Google ScholarPubMed
Yamauchi, PS, Gindi, V, Lowe, NJ. The treatment of psoriasis and psoriatic arthritis with etanercept: practical considerations on monotherapy, combination therapy, and safety. Dermatol Clin. 2004;22:449–59, ix.CrossRefGoogle ScholarPubMed
Bathon, JM, Martin, RW, Fleischmann, RM, et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med. 2000;343:1586–93.CrossRefGoogle ScholarPubMed
Nanda, S, Bathon, JM. Etanercept: a clinical review of current and emerging indications. Expert Opin Pharmacother. 2004;5:1175–86.CrossRefGoogle ScholarPubMed
Weinblatt, ME, Kremer, JM, Bankhurst, AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med. 1999;340:253–9.CrossRefGoogle ScholarPubMed
Sacher, C, Rubbert, A, Konig, C, et al. Hunzelmann, N. Treatment of recalcitrant cicatricial pemphigoid with the tumor necrosis factor alpha antagonist etanercept. J Am Acad Dermatol. 2002;46:113–15.CrossRefGoogle ScholarPubMed
Ameglio, F, D'Auria, L, Bonifati, C, et al. Cytokine pattern in blister fluid and serum of patients with bullous pemphigoid: relationships with disease intensity. Br J Dermatol. 1998;138:611–14.CrossRefGoogle ScholarPubMed
D'Auria, L, Cordiali Fei, P, Ameglio, F. Cytokines and bullous pemphigoid. Eur Cytokine Netw. 1999;10:123–34.Google ScholarPubMed
D'Auria, L, Mussi, A, Bonifati, C, et al. Increased serum IL-6, TNF-alpha and IL-10 levels in patients with bullous pemphigoid: relationships with disease activity. J Eur Acad Dermatol Venereol. 1999;12:11–15.CrossRefGoogle ScholarPubMed
Giacalone, B, D'Auria, L, Bonifati, C, et al. Decreased interleukin-7 and transforming growth factor-beta1 levels in blister fluids as compared to the respective serum levels in patients with bullous pemphigoid. Opposite behavior of TNF-alpha, interleukin-4 and interleukin- 10. Exp Dermatol. 1998;7:157–61.Google ScholarPubMed
Rhodes, , Hashim, IA, McLaughlin, PJ, Friedmann, PS. Blister fluid cytokines in cutaneous inflammatory bullous disorders. Acta Derm Venereol. 1999;79:288–90.Google ScholarPubMed
Yamauchi, PS, Lowe, NJ, Gindi, V. Treatment of coexisting bullous pemphigoid and psoriasis with the tumor necrosis factor antagonist etanercept. J Am Acad Dermatol. 2006;54 Suppl:S121–2.CrossRefGoogle ScholarPubMed
Andolina, M, Rabusin, M, Maximova, N, Di Leo, G. Etanercept in graft-versus-host disease. Bone Marrow Transplant. 2000;26:929.CrossRefGoogle ScholarPubMed
Wolff, D, Roessler, V, Steiner, B, et al. Treatment of steroid-resistant acute graft-versus-host disease with daclizumab and etanercept. Bone Marrow Transplant. 2005;35:1003–10.CrossRefGoogle ScholarPubMed
Uberti, JP, Ayash, L, Ratanatharathorn, V, et al. Pilot trial on the use of etanercept and methylprednisolone as primary treatment for acute graftversus-host disease. Biol Blood Marrow Transplant. 2005;11:680–7.CrossRefGoogle Scholar
Reff, ME, Carner, K, Chambers, KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435–45.Google ScholarPubMed
Johnson, PW, Glennie, MJ. Rituximab: mechanisms and applications. Br J Cancer. 2001;85:1619–23.CrossRefGoogle ScholarPubMed
Olszewski, AJ, Grossbard, ML. Empowering targeted therapy: lessons from rituximab Oncology (Williston Park). 2005;19:297–306; discussion 306, 308, 317–33.
Looney, RJ, Anolik, J, Sanz, I. B cells as therapeutic targets for rheumatic diseases. Curr Opin Rheumatol. 2004;16:180–5.CrossRefGoogle ScholarPubMed
Silverman, GJ, Weisman, S. Rituximab therapy and autoimmune disorders: prospects for anti-B cell therapy. Arthritis Rheum. 2003;48:1484–92.CrossRefGoogle ScholarPubMed
Grillo-Lopez, AJ. Rituximab: an insider's historical perspective. Semin Oncol. 2000;27 Suppl:9–16.Google ScholarPubMed
Stashenko, P, Nadler, LM, Hardy, R, Schlossman, SF. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125:1678–85.Google ScholarPubMed
Maloney, DG, Grillo-Lopez, AJ, White, CA, et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood. 1997;90:2188–95.Google ScholarPubMed
Maloney, DG, Liles, TM, Czerwinski, DK, et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood. 1994;84:2457–66.Google ScholarPubMed
Hainsworth, JD. Safety of rituximab in the treatment of B cell malignancies: implications for rheumatoid arthritis. Arthritis Res Ther. 2003;Suppl 4;S12–16.CrossRefGoogle ScholarPubMed
Emery, P, Fleischmann, R, Filipowicz-Sosnowska, A, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose ranging trial. Arthritis Rheum. 2006;54:1390–400.CrossRefGoogle ScholarPubMed
McLaughlin, P, Grillo-Lopez, AJ, Link, BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16:2825–33.CrossRefGoogle ScholarPubMed
Looney, RJ, Anolik, JH, Campbell, D, et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trialrituximab. Arthritis Rheum. 2004;50:2580–9.CrossRefGoogle Scholar
Salopek, TG, Logsetty, S, Tredget, EE. Anti-CD20 chimeric monoclonal antibody (rituximab) for the treatment of recalcitrant, life-threatening pemphigus vulgaris with implications in the pathogenesis of the disorder. J Am Acad Dermatol. 2002;47:785–8.CrossRefGoogle ScholarPubMed
Dupuy, A, Viguier, M, Bedane, C, et al. Treatment of refractory pemphigus vulgaris with rituximab (anti-CD20 monoclonal antibody). Arch Dermatol. 2004;140:91–6.CrossRefGoogle Scholar
Goebeler, M, Herzog, S, Brocker, EB, Zillikens, D.Rapid response of treatment-resistant pemphigus foliaceus to the anti-CD20 antibody rituximab. Br J Dermatol. 2003;149:899–901.CrossRefGoogle ScholarPubMed
Herrmann, G, Hunzelmann, N, Engert, A.Treatment of pemphigus vulgaris with anti-CD20 monoclonal antibody (rituximab). Br J Dermatol. 2003;148:602–3.CrossRefGoogle Scholar
Cooper, HL, Healy, E, Theaker, JM, Friedmann, PS. Treatment of resistant pemphigus vulgaris with an anti-CD20 monoclonal antibody (Rituximab). Clin Exp Dermatol. 2003;28:366–8.CrossRefGoogle Scholar
Espana, A, Fernandez-Galar, M, Lloret, P, et al. Long-term complete remission of severe pemphigus vulgaris with monoclonal anti-CD20 antibody therapy and immunophenotype correlations. J Am Acad Dermatol. 2004;50:974–6.CrossRefGoogle ScholarPubMed
Virgolini, L, Marzocchi, V.Anti-CD20 monoclonal antibody (rituximab) in the treatment of autoimmune diseases. Successful result in refractory pemphigus vulgaris: report of a case. Haematologica. 2003;88:ELT24.Google ScholarPubMed
Arin, MJ, Engert, A, Krieg, T, Hunzelmann, N. Anti-CD20 monoclonal antibody (rituximab) in the treatment of pemphigus. Br J Dermatol. 2005;153:620–5.CrossRefGoogle ScholarPubMed
Belgi, AS, Azeez, M, Hoyle, C, Williams, RE. Response of pemphigus vulgaris to anti-CD20 antibody therapy (rituximab) may be delayed. Clin Exp Dermatol. 2006;31:143.CrossRefGoogle Scholar
Esposito, M, Capriotti, E, Giunta A, et al. Long lasting remission of pemphigus vulgaris treated with rituximab. Acta Derm Venereol. 2006;86:87–9.Google ScholarPubMed
Kong, HH, Prose, NS, Ware, RE, Hall, RP 3rd. Successful treatment of refractory childhood pemphigus vulgaris with anti-CD20 monoclonal antibody (rituximab). Pediatr Dermatol. 2005;22:461–4.CrossRefGoogle Scholar
Morrison, LH. Therapy of refractory pemphigus vulgaris with monoclonal anti-CD20 antibody (rituximab). J Am Acad Dermatol. 2004;51:817–19.CrossRefGoogle Scholar
Niedermeier, A, Worl, P, Barth, S, et al. Delayed response of oral pemphigus vulgaris to rituximab treatment. Eur J Dermatol. 2006;16:266–70.Google ScholarPubMed
Schmidt, E, Herzog, S, Brocker, EB, et al. Long-standing remission of recalcitrant juvenile pemphigus vulgaris after adjuvant therapy with rituximab. Br J Dermatol. 2005;153:449–51.CrossRefGoogle ScholarPubMed
Wenzel, J, Bauer, R, Bieber, T, Tuting, T.Successful rituximab treatment of severe pemphigus vulgaris resistant to multiple immunosuppressants. Acta Derm Venereol. 2005;85:185–6.Google ScholarPubMed
Ahmed, AR, Avram, MM, Duncan, LM. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 23–2003. A 79-year-old woman with gastric lymphoma and erosive mucosal and cutaneous lesions. N Engl J Med. 2003;349:382–91.CrossRefGoogle ScholarPubMed
Borradori, L, Lombardi, T, Samson, J, et al. Anti-CD20 monoclonal antibody (rituximab) for refractory erosive stomatitis secondary to CD20(+) follicular lymphoma-associated paraneoplastic pemphigus. Arch Dermatol. 2001;137:269–72.Google ScholarPubMed
Heizmann, M, Itin, P, Wernli, M, et al. Successful treatment of paraneoplastic pemphigus in follicular NHL with rituximab: report of a case and review of treatment for paraneoplastic pemphigus in NHL and CLL. Am J Hematol. 2001;66:142–4.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Rossum, MM, Verhaegen, NT, Jonkman, MF, et al. Follicular non-Hodgkin's lymphoma with refractory paraneoplastic pemphigus: case report with review of novel treatment modalities. Leuk Lymphoma. 2004;45:2327–32.CrossRefGoogle ScholarPubMed
Schadlow, MB, Anhalt, GJ, Sinha, AA. Using rituximab (anti-CD20 antibody) in a patient with paraneoplastic pemphigus. J Drugs Dermatol. 2003;2:564–7.Google Scholar
Barnadas, M, Roe, E, Brunet, S, et al. Therapy of paraneoplastic pemphigus with rituximab: a case report and review of literature. J Eur Acad Dermatol Venereol. 2006;20:69–74.CrossRefGoogle ScholarPubMed
Cutler, C, Miklos, D, Kim, HT, et al. Rituximab for steroid-refractory chronic graft-vs.-host disease. Blood. 2006;108:756–62.CrossRefGoogle Scholar
Canninga-van Dijk, MR, Straaten, HM, Fijnheer, R, et al. Anti-CD20 monoclonal antibody treatment in 6 patients with therapy-refractory chronic graft-versus-host disease. Blood. 2004;104:2603–6.CrossRefGoogle ScholarPubMed
Okamoto, M, Okano, A, Akamatsu, S, et al. Rituximab is effective for steroid-refractory sclerodermatous chronic graft-versus-host disease. Leukemia. 2006;20:172–3.CrossRefGoogle ScholarPubMed
Ratanatharathorn, V, Ayash, L, Reynolds, C, et al. Treatment of chronic graft-versus-host disease with anti-CD20 chimeric monoclonal antibody. Biol Blood Marrow Transplant. 2003;9:505–11.CrossRefGoogle ScholarPubMed
Gilliam, AC.Update on graft versus host disease. J Invest Dermatol. 2004;123:251–7.CrossRefGoogle ScholarPubMed
Murphy, WJ. Revisiting graft-versus-host disease models of autoimmunity: new insights in immune regulatory processes. J Clin Invest. 2000;106:745–7.CrossRefGoogle ScholarPubMed
Shustov, A, Luzina, I, Nguyen, P, et al. Role of perforin in controlling B-cell hyperactivity and humoral autoimmunity. J Clin Invest. 2000;106:R39–47.CrossRefGoogle ScholarPubMed
Saito, E, Fujimoto, M, Hasegawa, M, et al. CD19-dependent B lymphocyte signaling thresholds influence skin fibrosis and autoimmunity in the tight-skin mouse. J Clin Invest. 2002;109:1453–62.CrossRefGoogle ScholarPubMed
Rouquette-Gally, AM, Boyeldieu, D, Prost, AC, Gluckman, E. Autoimmunity after allogeneic bone marrow transplantation. A study of 53 long-term-surviving patients. Transplantation. 1988;46:238–40.CrossRefGoogle ScholarPubMed
Miklos, DB, Kim, HT, Miller, KH, et al. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood. 2005;105:2973–8.CrossRefGoogle Scholar
Miklos, DB, Kim, HT, Zorn, E, et al. Antibody response to DBY minor histocompatibility antigen is induced after allogeneic stem cell transplantation and in healthy female donors. Blood. 2004;103:353–9.CrossRefGoogle ScholarPubMed
Rossi, F, Kazatchkine, MD. Anti idiotypes against autoantibodies in pooled normal human polyspecifinc IG. J Immunol. 1989;143:4104–9.Google ScholarPubMed
Dwyer, JM. Manipulating the immune system with immune globulin. N Engl J Med. 1992;326:107–11.Google ScholarPubMed
Yu, Z, Lennon, VA. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med. 1999;340:227–8.CrossRefGoogle ScholarPubMed
Masson, PL. Elimination of infectious antigens and increase of IgG catabolism as possible modes of action of IVIg. J Autoimmun. 1993;6:683–9.CrossRefGoogle ScholarPubMed
Hurez, V, Kaveri, SV, Mouhoub, A, et al. Anti-CD4 activity of normal human immunoglobulin G for therapeutic use (intravenous immunoglobulin, IVIg). Ther Immunol. 1994;1:269–77.Google Scholar
Toyoda, M, Zhang, XM, Petrosian, A, et al. Inhibition of allospecific responses in the mixed lymphocyte reaction by pooled human gamma-globulin. Transpl Immunol. 1994;2:337–41.CrossRefGoogle ScholarPubMed
Basta, M, Fries, LF, Frank, MM. High doses of intravenous immunoglobulin do not affect the recognition phase of the classical complement pathway. Blood. 1991;78:700–2.Google Scholar
Toyoda, M, Zhang, X, Petrosian, A, et al. Modulation of immunoglobulin production and cytokine mRNA expression in peripheral blood mononuclear cells by intravenous immunoglobulin. J Clin Immunol. 1994;14:178–89.CrossRefGoogle ScholarPubMed
Abe, Y, Aesushi, H, Masazumi, M, Kimura, S.Anticytokine nature of natural human immunoglobulin: one possible mechanism of the clinical effect of intravenous immunoglobulin therapy. Immunol Rev. 1994;129:5–19.CrossRefGoogle Scholar
Andersson, UG, Bjork, L, Skansen-Saphir, U, Andersson, JP. Down-regulation of cytokine production and interleukin-2 receptor expression by pooled human IgG. Immunology. 1993;79:211–16.Google ScholarPubMed
Amran, A, Renz, H, Lack, G, et al. Suppression of cytokine-dependent human T-cell proliferation by intravenous immunoglobulin. Clin Immunol Immunopathol. 1994;73:180–6.CrossRefGoogle ScholarPubMed
Ross, C, Svenson, M, Hansen, MB, et al. High avidity IFN-neutralizing antibodies in pharmacologically prepared IgG (intravenous immunoglobulin). Eur J Immunol. 1995;95:1974–8.Google Scholar
Bayry, J, Lacroix-Desmazes, S, Carbonneil, C, et al. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood. 2003;101:758–65.CrossRefGoogle ScholarPubMed
Kazatchkine, MD, Kaveri, SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001;345:747–5.CrossRefGoogle ScholarPubMed
Fazekas, Z, Kantor, I, Lebwohl, M. A patient with pityriasis rubra pilaris responds to therapy with alefacept. J Am Acad Dermatol. 2006;54:AB198 (poster abstract).Google Scholar
Dalakas, MC. The use of intravenous immunoglobulin in the treatment of autoimmune neuromuscular diseases: evidence-based indications and safety profile. Pharmacol Ther. 2004;102:177–93.CrossRefGoogle ScholarPubMed
Vecchietti, G, Kerl, K, Prins, C, et al. Severe eczematous skin reaction after high-dose intravenous immunoglobulin infusion. Report of 4 cases and review of the literature. Arch Dermatol. 2006;142:213–17.CrossRefGoogle ScholarPubMed
Ahmed, AR, Dahl, MV. Consensus statement on the use of intravenous immunoglobulin therapy in the treatment of autoimmune mucocutaneous blistering diseases. Arch Dermatol. 2003;139:1051–9.CrossRefGoogle ScholarPubMed
Matsuda, M, Hosoda, W, Sekijima, Y, et al. Neutropenia as a complication of high-dose intravenous immunoglobulin therapy in adult patients with neuroimmunologic disorders. Clin Neuropharmacol. 2003;26:306–11.CrossRefGoogle ScholarPubMed
Berkovitch, M, Dolinski, G, Tauber, T, et al. Neutropenia as a complication of intravenous immunoglobulin (IVIG) therapy in children with immune thrombocytopenic purpura: common and non-alarming. Int J Immunopharmacol. 1999;21;411–15.CrossRefGoogle ScholarPubMed
Niebanck, AE, Kwiatkowski, JL, Raffini, LJ. Neutropenia following IVIG therapy in pediatric patients with immune-mediated thrombocytopenia. J Pediatr Hematol Oncol. 2005;27:145–7.CrossRefGoogle ScholarPubMed
Jolles, S, Hill, H.Management of aseptic meningitis secondary to intravenous immunoglobulin. BMJ. 1998;316:936.CrossRefGoogle ScholarPubMed
Dahl, MV, Bridges, AG. Intravenous immune globulin: fighting antibodies with antibodies. J Am Acad Dermatol. 2001;45:775–83.CrossRefGoogle ScholarPubMed
Sati, HI, Ahya, R, Watson, HG. Incidence and associations of acute renal failure complicating high-dose intravenous immunoglobulin therapy. Br J Haematol. 2001;113:556–7.CrossRefGoogle ScholarPubMed
Roifman, CM, Schroeder, H, Berger, M, et al. Comparison of the efficacy of IGIV-C, 10% (caprylate/chromatography) and IGIV-SD, 10% as replacement therapy in primary immune deficiency: a randomized double-blind trial. Int Immunopharmacol. 2003;3:1325–33.CrossRefGoogle ScholarPubMed
Yap, PL. The viral safety of intravenous immune globulin. Clin Exp Immunol. 1996;104 Suppl:35–42.Google ScholarPubMed
Herzog, S, Schmidt, E, Goebeler, M, et al. Serum levels of autoantibodies to desmoglein 3 in patients with therapy-resistant pemphigus vulgaris successfully treated with adjuvant intravenous immunoglobulins. Acta Derm Venereol. 2004;84:48–52.Google ScholarPubMed
Sami, N, Bhol, KC, Ahmed, RA. Influence of intravenous immunoglobulin therapy on autoantibody titers to desmoglein 3 and desmoglein 1 in pemphigus vulgaris. Eur J Dermatol. 2003;13:377–81.Google ScholarPubMed
Sami, N, Qureshi, A, Ruocco, E, Ahmed, AR. Corticosteroid-sparing effect of intravenous immunoglobulin therapy in patients with pemphigus vulgaris. Arch Dermatol. 2002;138:1158–62.CrossRefGoogle ScholarPubMed
Ahmed, AR. Intravenous immunoglobulin therapy in the treatment of patients with pemphigus vulgaris unresponsive to conventional immunosuppressive treatment. J Am Acad Dermatol. 2001;45:679–90.CrossRefGoogle ScholarPubMed
Bystryn, JC, Jiao, D, Natow, S. Treatment of pemphigus with intravenous immunoglobulin. J Am Acad Dermatol. 2002;47:358–63.CrossRefGoogle ScholarPubMed
Sami, N, Bhol, KC, Beutner, EH, et al. Diagnostic features of pemphigus vulgaris in patients with bullous pemphigoid: molecular analysis of autoantibody profile. Dermatology. 2002;204:108–17.CrossRefGoogle ScholarPubMed
Harman, KE, Black, MM. High-dose intravenous immune globulin for the treatment of autoimmune blistering diseases: an evaluation of its use in 14 cases. Br J Dermatol. 1999;140:865–74.CrossRefGoogle ScholarPubMed
Sibaud, V, Beylot-Barry, M, Doutre, MS, Beylot, C.Successful treatment of corticoid-resistant pemphigus with high-dose intravenous immunoglobulins. Ann Dermatol Venereol. 2000;127:408–10.Google ScholarPubMed
Colonna, L, Cianchini, G, Frezzolini, A, et al. Intravenous immunoglobulins for pemphigus vulgaris: adjuvant or first choice therapy. Br J Dermatol. 1998;138:1102–3.CrossRefGoogle ScholarPubMed
Wever, S, Zillikenz, D, Broker, EB. Successful treatment of pemphigus vulgaris by pulsed intravenous immunoglobulin therapy. Br J Dermatol. 1996;135:862–3.CrossRefGoogle Scholar
Beckers, RC, Brand, A, Vermeer, BJ, Boom, BW. Adjuvant high-dose intravenous gammaglobulin in the treatment of pemphigus and bullous pemphigoid: experience in six patients. Br J Dermatol. 1995;133:289–93.CrossRefGoogle ScholarPubMed
Humbert, P, Derancourt, C, Aubin, F, Agache, P. Effects of intravenous gammaglobulin in pemphigus. J Am Acad Dermatol. 1990;22:326.CrossRefGoogle Scholar
Bewley, AP, Keefe, M.Successful treatment of pemphigus vulgaris by pulsed intravenous immunoglobulin therapy. Br J Dermatol. 1996;135:128–9.CrossRefGoogle ScholarPubMed
Szep, Z, Danilla, T, Buchvald, D. Treatment of juvenile pemphigus vulgaris with intravenous immunoglobulins. Cas Lek Cesk. 2005;144:700–3.Google ScholarPubMed
Levy, A, Doutre, MS, Lesage, FX, et al. Treatment of pemphigus with intravenous immunoglobulin. Ann Dermatol Venereol. 2004;131:957–61.CrossRefGoogle ScholarPubMed
Nieves Renteria, A, Ochoa Fierro, JG, Martinez Ordaz, VA, Fernández del Castillo, MA. Treatment with high doses of intravenous immunoglobulin in a case of complicated pemphigus vulgaris. Rev Alerg Mex. 2005;52:39–41.Google Scholar
Jolles, S, Hughes, J, Rustin, M. Therapeutic failure of high-dose intravenous immunoglobulin in pemphigus vulgaris. J Am Acad Dermatol. 1999;40:499–500.CrossRefGoogle ScholarPubMed
Messer, G, Sizmann, N, Feucht, H, Meurer, M.High-dose intravenous immunoglobulins for immediate control of severe pemphigus vulgaris. Br J Dermatol. 1995;133:1014–16.CrossRefGoogle ScholarPubMed
Tappeiner, G, Steiner, A. High-dosage intravenous gamma globulin: therapeutic failure in pemphigus and pemphigoid. J Am Acad Dermatol. 1989;20:684–5.CrossRefGoogle ScholarPubMed
Wetter, DA, Davis, MD, Yiannias, JA, et al. Effectiveness of intravenous immunoglobulin therapy for skin disease other than toxic epidermal necrolysis: a retrospective review of Mayo Clinic experience. Mayo Clin Proc. 2005;80:41–7.CrossRefGoogle ScholarPubMed
Sami, N, Bhol, KC, Ahmed, AR. Influence of IVIg therapy on auto antibody titers to desmoglein 1 in patients with pemphigus foliaceus. Clin Immunol. 2002;105:192–8.CrossRefGoogle Scholar
Ahmed, AR, Sami, N. Intravenous immunoglobulin therapy for patients with pemphigus foliaceus unresponsive to conventional therapy. J Am Acad Dermatol. 2002;46:42–9.CrossRefGoogle ScholarPubMed
Sami, N, Qureshi, A, Ahmed, AR. Steroid sparing effect of intravenous immunoglobulin therapy in patients with pemphigus foliaceus. Eur J Dermatol. 2002;12:174–8.Google ScholarPubMed
Toth, GG, Jonkman, MF. Successful treatment of recalcitrant penicillamine-induced pemphigus foliaceus by low-dose intravenous immunoglobulins. Br J Dermatol. 1999;141:583–5.CrossRefGoogle ScholarPubMed
Godard, W, Roujeau, JC, Guillot, B, et al. Bullous pemphigoid and intravenous gammaglobulin. Ann Intern Med. 1985;103:964–5.CrossRefGoogle ScholarPubMed
Daoud, YJ, Foster, CS, Ahmed, R. Eyelid skin involvement in pemphigus foliaceus. Ocul Immunol Inflamm. 2005;13:389–94.CrossRefGoogle ScholarPubMed
Sami, N, Ali, S, Bhol, KC, Ahmed, AR. Influence of intravenous immunoglobulin therapy on autoantibody titres to BP Ag1 and BP Ag2 in patients with bullous pemphigoid. J Eur Acad Dermatol Venereol. 2003;17:641–5.CrossRefGoogle Scholar
Yeh, SW, Usman, AQ, Ahmed, AR. Profile of autoantibody to basement membrane zone proteins in patients with mucous membrane pemphigoid: long-term follow up and influence of therapy. Clin Immunol. 2004;112:268–72.CrossRefGoogle Scholar
Sami, N, Bhol, KC, Ahmed, AR. Treatment of oral pemphigoid with intravenous immunoglobulin as monotherapy. Long-term follow-up: influence of treatment on antibody titers to human alpha6 integrin. Clin Exp Immunol. 2002;129:533–40.CrossRefGoogle Scholar
Foster, CS, Ahmed, AR. Intravenous immunoglobulin therapy for ocular cicatricial pemphigoid: a preliminary study. Ophthalmology. 1999;106:2136–43.CrossRefGoogle ScholarPubMed
Jolles, S. High-dose intravenous immunoglobulin (hdIVIg) in the treatment of autoimmune blistering disorders. Clin Exp Immunol. 2002;129:385–9.CrossRefGoogle ScholarPubMed
Urcelay, ML, McQueen, A, Douglas, WS. Cicatricial pemphigoid treated with intravenous immunoglobulin. Br J Dermatol. 1997;137:477–8.CrossRefGoogle ScholarPubMed
Letko, E, Bhol, K, Foster, SC, Ahmed, RA. Influence of intravenous immunoglobulin therapy on serum levels of anti-beta 4 antibodies in ocular cicatricial pemphigoid: a correlation with disease activity: a preliminary study. Curr Eye Res. 2000;21:646–54.CrossRefGoogle ScholarPubMed
Ahmed, AR, Colon, JE. Comparison between intravenous immunoglobulin and conventional immunosuppressive therapy regimens in patients with severe oral pemphigoid: effects on disease progression in patients nonresponsive to dapsone therapy. Arch Dermatol. 2001;137:1181–9.CrossRefGoogle ScholarPubMed
Leverkus, M, Gerogi, M, Nie, Z, et al. Cicatricial pemphigoid with circulating IgA and IgG autoantibodies to the central portion of the BP180 ectodomain: beneficial effect of adjuvant therapy with high-dose intravenous immunoglobulin. J Am Acad Dermatol. 2002;46:116–22.CrossRefGoogle ScholarPubMed
Sami, N, Letko, E, Androudi, S, et al. Intravenous immunoglobulin therapy in patients with ocular-cicatricial pemphigoid: a long-term follow-up. Ophthalmology. 2004;111:1380–2.CrossRefGoogle ScholarPubMed
Daoud, Y, Amin, KG, Mohan, K, Ahmed, AR. Cost of intravenous immunoglobulin therapy versus conventional immunosuppressive therapy in patients with mucous membrane pemphigoid: a preliminary study. Ann Pharmacother. 2005;39:2003–8.CrossRefGoogle ScholarPubMed
Kumari, S, Bhol, KC, Rehman, F, et al. Interleukin 1 components in cicatricial pemphigoid: role in intravenous immunoglobulin therapy. Cytokine. 2001;14:218–24.CrossRefGoogle ScholarPubMed
Letko, E, Miserocchi, E, Daoud, YJ, et al. A nonrandomized comparison of the clinical outcome of ocular involvement in patients with mucous membrane (cicatricial) pemphigoid between conventional immunosuppressive and intravenous immunoglobulin therapies. Clin Immunol. 2004;111:303–10.CrossRefGoogle ScholarPubMed
Revuz, J, Penso, D, Roujeau, JC, et al. Toxic epidermal necrolysis: clinical findings and prognosis factors in 87 patients. Arch Dermatol. 1987;123:1160–5.CrossRefGoogle ScholarPubMed
Roujeau, JC, Guillaume, JC, Fabre, JP, et al. Toxic epidermal necrolysis (Lyell syndrome): incidence and drug etiology in France, 1981–1985. Arch Dermatol. 1990;126:37–42.CrossRefGoogle Scholar
Schopf, E, Stuhmer, A, Rzany, B, et al. Toxic epidermal necrolysis and Stevens-Johnson syndrome: an epidemiologic study from West Germany. Arch Dermatol. 1991;127:839–42.CrossRefGoogle ScholarPubMed
Bastuji-Garin, S, Zahedi, M, Guillaume, JC, Roujeau, JC. Toxic epidermal necrolysis (Lyell syndrome) in 77 elderly patients. Age Ageing. 1993;22:450–6.CrossRefGoogle Scholar
Mockenhaupt, M, Norgauer, J.Cutaneous adverse drug reactions. Stevens-Johnson syndrome and toxic epidermal necrolysis. ACI International. 2002;14:143–50.Google Scholar
Viard, I, Wehrli, P, Bullani, R, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282:490–3.CrossRefGoogle ScholarPubMed
Prins, C, Kerdel, FA, Padilla, RS, et al. TEN-IVIG Study Group, et al. Treatment of toxic epidermal necrolysis with high-dose intravenous immunoglobulins: multicenter retrospective analysis of 48 consecutive cases. Arch Dermatol. 2003;139:26–32.CrossRefGoogle Scholar
Bachot, N, Revuz, J, Roujeau, JC. Intravenous immunoglobulin treatment for Stevens-Johnson syndrome and toxic epidermal necrolysis: a prospective noncomparative study showing no benefit on mortality or progression. Arch Dermatol. 2003;139:33–6.CrossRefGoogle ScholarPubMed
Trent, JT, Kirsner, RS, Romanelli, P, Kerdel, FA. Analysis of intravenous immunoglobulin for the treatment of toxic epidermal necrolysis using SCORTEN: the University of Miami experience. Arch Dermatol. 2003;139:39–43.Google ScholarPubMed
Shortt, R, Gomez, M, Mittman, N, Cartotto, R. Intravenous immunoglobulin does not improve outcome in toxic epidermal necrolysis. J Burn Care Rehabil. 2004;25:246–55.CrossRefGoogle Scholar
Stella, M, Cassano, P, Bollero, D, et al. Toxic epidermal necrolysis treated with intravenous high-dose immunoglobulins: our experience. Dermatology. 2001;203:45–9.CrossRefGoogle ScholarPubMed
Campione, E, Marulli, GC, Carrozzo, AM, et al. High-dose intravenous immunoglobulin for severe drug reactions: efficacy in toxic epidermal necrolysis. Acta Derm Venereol. 2003;83:430–2.Google ScholarPubMed
Tristani-Firouzi, P, Petersen, MF, Saffle, JR, et al. Treatment of toxic epidermal necrolysis with intravenous immunoglobulin in children. J Am Acad Dermatol. 2002;47:548–52.CrossRefGoogle ScholarPubMed
Kim, KJ, Lee, DP, Suh, HS, et al. Toxic epidermal necrolysis: analysis of clinical course and SCORTEN-based comparison of mortality rate and treatment modalities in Korean patients. Acta Derm Venereol. 2005;85:497–502.Google ScholarPubMed
Al-Mutairi, N, Arun, J, Osama, NE, et al. Prospective, noncomparative open study from Kuwait of the role of intravenous immunoglobulin in the treatment of toxic epidermal necrolysis. Int J Dermatol. 2004;43:847–51.CrossRefGoogle ScholarPubMed
Brown, KM, Siliver, GM, Halerz, M, et al. Toxic epidermal necrolysis: does immunoglobulin make a difference? J Burn Care Rehabil. 2004;25:81–8.CrossRefGoogle Scholar
Morici, MV, Galen, WK, Shetty, AK, et al. Intravenous immunoglobulin therapy for children with Stevens-Johnson syndrome. J Rheumatol. 2000;27:2494–7.Google ScholarPubMed
Metry, DW, Jung, P, Levy, ML. Use of intravenous immunoglobulin in children with Stevens-Johnson syndrome and toxic epidermal necrolysis: seven cases and review of the literature. Pediatrics. 2003;112:1430–6.CrossRefGoogle ScholarPubMed
Yip, LW, Thong, BY, Tan, AW, et al. High-dose intravenous immunoglobulin in the treatment of toxic epidermal necrolysis: a study of ocular benefits. Eye. 2005;19:846–53.CrossRefGoogle ScholarPubMed
Amato, GM, Travia, A, Ziino, O.The use of intravenous high-dose immunoglobulins (IVIG) in a case of Stevens-Johnson syndrome. Pediatr Med Chir. 1992;14:555–6.Google Scholar
Moudgil, A, Porat, S, Brunnel, P, Jordan, SC. Treatment of Stevens-Johnson syndrome with pooled human intravenous immuneglobulin. Clin Pediatr. 1995;34:48–51.CrossRefGoogle Scholar
Sanwo, M, Nwadiuko, R, Beall, G. Use of intravenous immunoglobulin in the treatment of severe cutaneous drug reactions in patients with AIDS. J Allergy Clin Immunol. 1996;98:1112–5.CrossRefGoogle ScholarPubMed
Phan, TG, Wong, RC, Crotty, K, Adelstein, S.Toxic epidermal necrolysis in acquired immunodeficiency syndrome treated with intravenous gammaglobulin. Australas J Dermatol. 1999;40:153–7.CrossRefGoogle ScholarPubMed
Magina, S, Lisboa, C, Goncalves, E, et al. A case of toxic epidermal necrolysis treated with intravenous immunoglobin. Br J Dermatol. 2000;142:191–2.CrossRefGoogle ScholarPubMed
Straussberg, R, Harel, L, Ben-Amitai, D, et al. Carbamazepine-induced Stevens-Johnson syndrome treated with IV steroids and IVIG. Pediatr Neurol. 2000;22:231–3.CrossRefGoogle ScholarPubMed
Brett, AS, Philips, D, Lynn, AW. Intravenous immunoglobulin therapy for Stevens-Johnson syndrome. South Med J. 2001;94:342–3.CrossRefGoogle ScholarPubMed
Samimi, SS, Siegfried, E.Stevens-Johnson syndrome developing in a girl with systemic lupus erythematosus on high-dose corticosteroid therapy. Pediatr Dermatol. 2002;19:52–5.CrossRefGoogle Scholar
Simeone, F, Rubio, ER. Treatment of toxic epidermal necrolysis with intravenous immunoglobulin. J La State Med Soc. 2003;155:266–9.Google ScholarPubMed
Sidwell, RU, Swift, S, Yan, CL, et al. Treatment of toxic epidermal necrolysis with intravenous immunoglobulin. Int J Clin Pract. 2003;57:643–5.Google ScholarPubMed
Tan, A, Tan, HH, Lee, CC, Ng, SK. Treatment of toxic epidermal necrolysis in AIDS with intravenous immunoglobulins. Clin Exp Dermatol. 2003;28:269–71.CrossRefGoogle ScholarPubMed
Mayorga, C, Torres, MJ, Corzo, JL, et al. Improvement of toxic epidermal necrolysis after the early administration of a single high dose of intravenous immunoglobulin. Ann Allergy Asthma Immunol. 2003;91:86–91.CrossRefGoogle ScholarPubMed
Kalyoncu, M, Cimsit, G, Cakir, M, Okten, A. Toxic epidermal necrolysis treated with intravenous immunoglobulin and granulocyte colony-stimulating factor. Indian Pediatr. 2004;41:392–5.Google ScholarPubMed
Arca, E, Kose, O, Erbil, AH, et al. A 2-year-old girl with Stevens-Johnson syndrome toxic epidermal necrolysis treated with intravenous immunoglobulin. Pediatr Dermatol. 2005;22:317–20.CrossRefGoogle ScholarPubMed
Hebert, AA, Bogle, MA. Intravenous immunoglobulin prophylaxis for recurrent Stevens-Johnson syndrome. J Am Acad Dermatol. 2004;50:286–8.CrossRefGoogle ScholarPubMed
Lissia, M, Figus, A, Rubino, C. Intravenous immunoglobulins and plasmapheresis combined treatment in patients with severe toxic epidermal necrolysis: preliminary report. Br J Plast Surg. 2005;58:504–10.CrossRefGoogle ScholarPubMed
Tan, AW, Thong, BY, Yip, LW, et al. High-dose intravenous immunoglobulins in the treatment of toxic epidermal necrolysis: an Asian series. J Dermatol. 2005;32:1–6.CrossRefGoogle ScholarPubMed
Nasser, M, Bitterman-Deutsch, O, Nassar, F.Intravenous immunoglobulin for treatment of toxic epidermal necrolysis. Am J Med Sci. 2005;329:95–8.CrossRefGoogle ScholarPubMed
Neff, P, Meuli-Simmen, C, Kempf, W, et al. Lyell syndrome revisited: analysis of 18 cases of severe bullous skin disease in a burns unit. Br J Plast Surg. 2005;58:73–80.CrossRefGoogle Scholar
Spornraft-Ragaller, P, Theilen, H, Gottschlich, GS, Ragaller, M. Treatment of toxic epidermal necrolysis experience with 9 patients with consideration of intravenous immunoglobulin. Hautarzt. 2006;57:185–94.CrossRefGoogle ScholarPubMed
Mangla, K, Rastogi, S, Goyal, P, et al. Efficacy of low dose intravenous immunoglobulins in children with toxic epidermal necrolysis: open uncontrolled study. Indian J Dermatol Venereol Leprol. 2005;71:398–400.Google ScholarPubMed
Faye, O, Roujeau, JC. Treatment of epidermal necrolysis with high dose intravenous immunoglobulins (IVIg): clinical experience to date. Drugs. 2005;65:2085–90.CrossRefGoogle ScholarPubMed
French, , Trent, JT, Kerdel, FA. Use of intravenous immunoglobulin in toxic epidermal necrolysis and Stevens-Johnson syndrome: our current understanding. Int Immunopharmacol. 2006;6:543–9.CrossRefGoogle ScholarPubMed
Wolff, K, Tappeiner, G.Treatment of toxic epidermal necrolysis: the uncertainty persists but the fog is dispersing. Arch Dermatol. 2003;139:85–6.CrossRefGoogle ScholarPubMed
Orson, FM. Intravenous immunoglobulin therapy suppresses manifestations of the angioedema with hypereosinophilia syndrome. Am J Med Sci. 2003;326:94–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×