Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T20:27:35.341Z Has data issue: false hasContentIssue false

18 - Prospecting Crop Wild Relatives for Beneficial Endophytes

from Part V - Application and Commercialisation of Endophytes in Crop Production

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

The wild relatives of agricultural crops represent a largely untapped source of beneficial microbial endophytes that have potential for agricultural applications. Much of the research into the effects of endophytes on crop species has focused on a relatively small selection of well-characterised bacterial or fungal strains. However, many of these strains can have inconsistent and even unpredictable agronomic effects depending on the complex relationship between host, endophyte, microbiota and environment. We argue that a more focused approach to endophyte selection and application to crop production can generate more predictable results. We show that the appropriate identification of novel fungal endophyte strains from defined source host populations along with the consideration of the target crop species, cultivar and site can improve the chances of a successful endophyte-induced benefit. We discuss the implications for agriculture and suggest further research that will provide more robust support for this approach.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, N. A. and Taga, M. E. (2016). Decoding molecular interactions in microbial communities. FEMS Microbiology Reviews, 40, 648663.CrossRefGoogle ScholarPubMed
Achatz, B., Rüden, S., Andrade, D. et al. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and Soil, 333, 5970.CrossRefGoogle Scholar
Adame-Álvarez, R.-M., Mendiola-Soto, J. and Heil, M. (2014). Order of arrival shifts endophyte-pathogen interactions in bean from resistance induction to disease facilitation. FEMS Microbiology Letters, 355, 100107.CrossRefGoogle ScholarPubMed
Ali, S. S., Gunupuru, L. R., Kumar, G. B. S. et al. (2014). Plant disease resistance is augmented in uzu barley lines modified in the brassinosteroid receptor BRI1. BMC Plant Biology, 14, 227.CrossRefGoogle ScholarPubMed
Ames, N., Dreiseitl, A., Steffenson, B. and Muehlbauer, G. (2015). Mining wild barley for powdery mildew resistance. Plant Pathology, 6, 13961406.CrossRefGoogle Scholar
Ansari, M. W., Trivedi, D. K., Sahoo, R. K., Gill, S. S. and Tuteja, N. (2013). A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiology and Biochemistry, 70, 403410.CrossRefGoogle ScholarPubMed
Assuero, S. G. and Tognetti, J. A. (2010). Tillering regulation by endogenous and environmental factors and its agricultural management. The American Journal of Plant Science and Biotechnology, 2010, 114.Google Scholar
Atkinson, N. J. and Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63, 35233543.CrossRefGoogle ScholarPubMed
Bayman, P. (2006). Diversity, scale and variation of endophytic fungi in leaves of tropical plants. In Microbial Ecology of Aerial Plant Surfaces, ed. Bailey, M.. Wallingford, UK: CABI, pp. 3750.CrossRefGoogle Scholar
Bedada, G., Westerbergh, A., Müller, T. et al. (2014). Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics, 15, 995.CrossRefGoogle ScholarPubMed
Behie, S. W. and Bidochka, M. J. (2014). Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Applied and Environmental Microbiology, 80, 15531560.CrossRefGoogle ScholarPubMed
Belesky, D. P. and West, C. P. (2009). Abiotic stresses and endophyte effects. In Tall Fescue for the 21st Century, ed. Fribourg, H., Hannaway, D. and West, C.. Madison, WI: American Society of Agronomy, pp. 4964.Google Scholar
Berg, G. and Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 113.CrossRefGoogle ScholarPubMed
Brenner, K., You, L. and Arnold, F. H. (2008). Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology, 26, 483489.CrossRefGoogle ScholarPubMed
Bulgarelli, D., Rott, M., Schlaeppi, K. et al. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488, 9195.CrossRefGoogle ScholarPubMed
Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. and Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807838.CrossRefGoogle ScholarPubMed
Bulgarelli, D., Garrido-Oter, R., McHardy, A. C. and Schulze-Lefert, P. (2015). Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host and Microbe, 17, 392403.CrossRefGoogle ScholarPubMed
Busby, P. E., Ridout, M. and Newcombe, G. (2015). Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90, 645655.CrossRefGoogle ScholarPubMed
Busby, P. E., Soman, C., Wagner, M. R. et al. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 15, 1–14.CrossRefGoogle ScholarPubMed
Cannon, P. F. and Kirk, P. M. (2007). Fungal Families of the World. London: CABI.CrossRefGoogle Scholar
Card, S., Johnson, L., Teasdale, S. and Caradus, J. (2016). Deciphering endophyte behaviour: The link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92, 119.CrossRefGoogle ScholarPubMed
Chadha, N., Mishra, M., Rajpal, K. et al. (2015). An ecological role of fungal endophytes to ameliorate plants under biotic stress. Archives of Microbiology, 197, 869881.CrossRefGoogle ScholarPubMed
Chagas, F. O., Dias, L. G. and Pupo, M. T. (2013). A mixed culture of endophytic fungi increases production of antifungal polyketides. Journal of Chemical Ecology, 39, 13351342.CrossRefGoogle ScholarPubMed
Clement, S. L., Wilson, A. D., Lester, D. G. and Davitt, C. M. (1997). Fungal endophytes of wild barley and their effects on Diuraphis noxia population development. Entomologia Experimentalis et Applicata, 82, 275281.CrossRefGoogle Scholar
Coleman-Derr, D. and Tringe, S. G. (2014). Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 5, 16.CrossRefGoogle ScholarPubMed
Combès, A., Ndoye, I., Bance, C. et al. (2012). Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PloS One, 7, e47313.CrossRefGoogle ScholarPubMed
Cook, R. J., Hims, M. J. and Vaughan, T. B. (1999). Effects of fungicide spray timing on winter wheat disease control. Plant Pathology, 48, 3350.CrossRefGoogle Scholar
de Souza, R. S. C., Okura, V. K., Armanhi, J. S. L. et al. (2016). Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Nature Scientific Reports, 6, 115.Google ScholarPubMed
Deepika, S. and Kothamasi, D. (2014). Soil moisture-a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza, 25, 6775.CrossRefGoogle ScholarPubMed
Deng, Z. and Cao, L. (2016). Fungal endophytes and their interactions with plants in phytoremediation: A review. Chemosphere, 168, 17.Google ScholarPubMed
Dhingra, O. D., Mizubuti, E. S. G. and Santana, F. M. (2003). Chaetomium globosum for reducing primary inoculum of Diaporthe phaseolorum f. sp. meridionalis in soil-surface soybean stubble in field conditions. Biological Control, 26, 302310.CrossRefGoogle Scholar
Dobermann, A. and Nelson, R. (2013). Solutions for Sustainable Agriculture and Food Systems: Technical Report for Post-2015 Development Agenda. New York: Sustainable Development Solutions Network.Google Scholar
Duffy, B. K., Simon, A. and Weller D. M. (1996). Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology, 86, 188–194.CrossRefGoogle Scholar
Duhamel, M. and Vandenkoornhuyse, P. (2013). Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication. Trends in Plant Science, 18, 597600.CrossRefGoogle ScholarPubMed
FAO (2015). Keeping plant pests and diseases at bay: experts focus on global measures. Rome: FAO. www.fao.org/news/story/en/item/280489/icode/Google Scholar
Fávaro, L. C. D. L., Sebastianes, F. L. D. S. and Araújo, W. L. (2012). Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PloS One, 7, e36826.CrossRefGoogle ScholarPubMed
Germida, J. J. and Siciliano, S. D. (2001). Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biological Fertilisation of Soils, 33, 410415.Google Scholar
Gill, S. S., Gill, R., Trivedi, D. K. et al. (2016). Piriformospora indica: potential and significance in plant stress tolerance. Frontiers in Microbiology, 7, 120.CrossRefGoogle ScholarPubMed
Gopal, M., Gupta, A. and Thomas, G. V. (2013). Bespoke microbiome therapy to manage plant diseases. Frontiers in Microbiology, 4, 355.CrossRefGoogle ScholarPubMed
Haichar, F. el Z., Marol, C., Berge, O. et al. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2, 12211230.CrossRefGoogle ScholarPubMed
Hasan, H. A. H. (2002). Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiologica et Immunologica Hungarica, 49, 105118.CrossRefGoogle ScholarPubMed
Hegazi, N. A., Sarhan, M. S., Fayez, M. et al. (2017). Plant-fed versus chemicals-fed rhizobacteria of Lucerne: plant-only teabags culture media not only increase culturability of rhizobacteria but also recover a previously uncultured Lysobacter sp., Novosphingobium sp. and Pedobacter sp. PLoS One, 12, e0180424.CrossRefGoogle ScholarPubMed
Heijden van der, M. G., Martin, F. M., Selosse, M.-A. and Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 14061423.CrossRefGoogle Scholar
Heng, L. K., Asseng, S., Mejahed, K. and Rusan, M. (2007). Optimizing wheat productivity in two rain-fed environments of the West Asia-North Africa region using a simulation model. European Journal of Agronomy, 26, 121129.CrossRefGoogle Scholar
Hetrick, B. A. D., Wilson, G. W. T. and Cox, T. S. (1992). Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Canadian Journal of Botany, 70, 20322040.CrossRefGoogle Scholar
Hodkinson, T. R. (2018). Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Annual Plant Reviews Online, doi: 10.1002/9781119312994.apr0622.CrossRefGoogle Scholar
Hodkinson, T. R., Jones, M. B., Waldren, S. and Parnell, J. A. N., eds. (2011). Climate Change Ecology and Systematics. Cambridge: Cambrige University Press.CrossRefGoogle Scholar
Hodkinson, T. R. and Murphy, B. R. (2019). Endophytes for a growing world. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 1.CrossRefGoogle Scholar
ISAAA (2012). Beyond Promises: Top 10 Facts about Biotech/GM crops in 2012. Los Baños, Philippines: ISAAA.Google Scholar
Istifadah, N. and McGee, P. A. (2006). Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Australasian Plant Pathology, 35, 411.CrossRefGoogle Scholar
Jakobs-Schönwandt, D., Döring, M. and Patel, A. (2014). Application Techniques of Endophytes. Bielefeld, Germany: F. H. Bielefeld, University of Applied Sciences, pp. 89.Google Scholar
James, C. (2013). Brief 39. Global status of commercialized biotech/GM crops: 2008. ISAAA Briefs, 46, 317.Google Scholar
Johnson, L. J., De Bonth, A. C. M., Briggs, L. R. et al. (2013). The exploitation of Epichloë endophytes for agricultural benefit. Fungal Diversity, 60, 171188.CrossRefGoogle Scholar
Johnson, J. M., Alex, T. and Oelmüller, R. (2014). Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. Journal of Tropical Agriculture, 52, 103122.Google Scholar
Johnson, L. J. and Caradus, J. R. (2019). The science required to deliver Epichloë endophytes to commerce. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 16.Google Scholar
Kabaluk, J. T., Svircev, A. M., Goettel, M. S. and Woo, S. G. (2010). The Use and Regulation of Microbial Pesticides in Representative Jursidictions Worldwide. Lincoln, New Zealand: IOBC Global.Google Scholar
Kecskes, M. L., Kennedy, I., Choudhury, A. et al. (2008). Efficient nutrient use in rice production in Vietnam achieved using inoculant biofertilisers. ACIAR project 130. Hanoi: ACIAR, pp. 4959.Google Scholar
Kedar, A., Rathod, D., Yadav, A., Agarkar, G. and Rai, M. (2014). Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Bioscience, 6, 132139.Google Scholar
Kemen, E., Kemen, A. C., Agler, M. T. and Kemen, E. (2015). Tansley review: host–microbe and microbe–microbe interactions in the evolution of obligate plant parasitism. New Phytologist, 214, 526532.Google Scholar
Kiers, E. T., Hutton, M. G. and Denison, R. F. (2007). Human selection and the relaxation of legume defences against ineffective rhizobia. Proceedings of the Royal Society of London B, 274, 31193126.Google ScholarPubMed
Kogel, K.-H., Franken, P. and Hückelhoven, R. (2006). Endophyte or parasite-what decides? Current Opinion in Plant Biology, 9, 358363.CrossRefGoogle ScholarPubMed
Kõljalg, U., Nilsson, R. H., Abarenkov, K. et al. (2013). Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22, 52715277.CrossRefGoogle ScholarPubMed
Kuldau, G. and Bacon, C. (2008). Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biological Control, 46, 5771.CrossRefGoogle Scholar
Kumar, D. S. S. and Hyde, K. D. (2004). Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Diversity, 17, 6990.Google Scholar
Kusari, S., Singh, S. and Jayabaskaran, C. (2014). Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends in Biotechnology, 32, 297303.CrossRefGoogle ScholarPubMed
Lareen, A., Burton, F. and Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90, 575587.CrossRefGoogle ScholarPubMed
Lindemann, S. R., Bernstein, H. C., Song, H.-S. et al. (2016). Engineering microbial consortia for controllable outputs. The ISME Journal, 10, 20772084.CrossRefGoogle ScholarPubMed
Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting Rhizobacteria. Annual Review of Microbiology, 63, 541556.CrossRefGoogle ScholarPubMed
Lugtenberg, B., Caradus, J. and Johnson, L. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92, 137.CrossRefGoogle ScholarPubMed
Lundberg, D. S., Lebeis, S. L., Paredes, S. H. et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488, 8690.CrossRefGoogle ScholarPubMed
Malusá, E., Sas-Paszt, L. and Ciesielska, J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal, 2012, 491206.Google ScholarPubMed
Mansotra, P., Sharma, P., Sirari, A. and Sharma, S. (2015). Impact of Piriformospora indica, Pseudomonas species and Mesorhizobium cicer on growth of chickpea (Cicer arietinum L.). Journal of Applied and Natural Science, 7, 373380.CrossRefGoogle Scholar
McClung, C. R. (2006). Plant circadian rhythms. The Plant Cell, 18, 792803.CrossRefGoogle ScholarPubMed
McDonald, B. A. (2015). How can research on pathogen population biology suggest disease management strategies? The example of barley scald (Rhynchosporium commune). Plant Pathology, 64, 10051013.CrossRefGoogle Scholar
McMullen, M., Bergstrom, G., De Wolf, E. et al. (2012). Fusarium head blight disease cycle, symptoms, and impact on grain yield and quality frequency and magnitude of epidemics since 1997. Plant Disease, 96, 17121728.CrossRefGoogle Scholar
Minz, D., Ofek, M. and Hadar, Y. (2013). Plant rhizosphere microbial communities. In The Prokaryotes, ed. Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. and Thompson, F.. Berlin: Springe, pp. 5684.CrossRefGoogle Scholar
Mousa, W. K., Shearer, C. R., Limay-Rios, V., Zhou, T. and Raizada, M. N. (2015). Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. Frontiers in Plant Science, 6, 805.CrossRefGoogle ScholarPubMed
Müller, D. B., Vogel, C., Bai, Y. and Vorholt, J. A. (2016). The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics, 50, 211234.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2013). Fungal endophytes of barley roots. The Journal of Agricultural Science, 152, 602615.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2014). Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis, 62, 2939.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2015a). Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis, 65, 17.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2015b). Persistent fungal root endophytes isolated from a wild barley species suppress seed- borne infections in a barley cultivar. Biocontrol, 60, 281292.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015c). Fungal endophytes enhance agronomically important traits in severely drought-stressed barley. Journal of Agronomy and Crop Science, 201, 419427.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015d). Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology, 6, 139150.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2017a). A seed dressing combining fungal endophyte spores and fungicides improves seedling survival and early growth in barley and oat. Symbiosis, 71, 6976.CrossRefGoogle Scholar
Murphy, B. R., Hodkinson, T. R. and Doohan, F. M. (2017b). A fungal endophyte consortium counterbalances the negative effects of reduced nitrogen input on the yield of field-grown spring barley. The Journal of Agricultural Science, 155, 13241331.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi, 4, 24.CrossRefGoogle ScholarPubMed
Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A. and Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429448.CrossRefGoogle ScholarPubMed
Nandwani, D. (2016). Organic Farming for Sustainable Agriculture. Berlin: Springer.CrossRefGoogle Scholar
Nelissen, H., Moloney, M. and Inzé, D. (2014). Translational research: from pot to plot. Plant Biotechnology Journal, 12, 277285.CrossRefGoogle ScholarPubMed
O’Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 100, 57295746.CrossRefGoogle ScholarPubMed
O’Hanlon, K. A., Knorr, K., Jørgensen, L. N., Nicolaisen, M. and Boelt, B. (2012). Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biological Control, 63, 6978.CrossRefGoogle Scholar
Owen, D., Williams, A. P., Griffith, G. W. and Withers, P. J. A. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Applied Soil Ecology, 86, 4154.CrossRefGoogle Scholar
Pérez-Jaramillo, J. E., Mendes, R. and Raaijmakers, J. M. (2016). Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 90, 635644.CrossRefGoogle ScholarPubMed
Porras-Alfaro, A. and Bayman, P. (2011). Hidden fungi,emergent properties: endophytes and microbiomes. Annual Review of Phytopathology, 49, 291315.CrossRefGoogle ScholarPubMed
Prior, R., Görges, K., Yurkov, A. and Begerow, D. (2014). New isolation method for endophytes based on enzyme digestion. Mycological Progress, 13, 849856.CrossRefGoogle Scholar
Rai, M., Rathod, D., Agarkar, G. et al. (2014). Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis, 62, 6379.CrossRefGoogle Scholar
Redman, R. S., Kim, Y. O., Woodward, C. J. D. A. et al. (2011). Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PloS One, 6, e14823.CrossRefGoogle ScholarPubMed
Rho, H., Hsieh, M., Kandel, S. L., Cantillo, J., Doty, S. L. and Kim, S.-H. (2017). Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microbial Ecology, 75, 407418.CrossRefGoogle Scholar
Richards, R. A. (2006). Physiological traits used in the breeding of new cultivars for water-scarce environments. Agricultural Water Management, 80, 197211.CrossRefGoogle Scholar
Rodriguez, R. J., Henson, J., Van Volkenburgh, E. et al. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2, 404416.CrossRefGoogle ScholarPubMed
Rodriguez, R. J., White, J. F., Arnold, A. E. and Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. The New Phytologist, 182, 314330.CrossRefGoogle ScholarPubMed
Rosier, A., Bishnoi, U., Lakshmanan, V., Sherrier, D. J. and Bais, H. P. (2016). A perspective on inter-kingdom signaling in plant-beneficial microbe interactions. Plant Molecular Biology, 90, 537548.CrossRefGoogle ScholarPubMed
Ryan, M. J., Smith, D. and Lane, B. (2000). A decision-based key to determine the most appropriate protocol for the preservation of fungi. World Journal of Microbiology and Biotechnology, 16, 183186.CrossRefGoogle Scholar
Saikkonen, K., Gundel, P. E. and Helander, M. (2013). Chemical ecology mediated by fungal endophytes in grasses. Journal of Chemical Ecology, 39, 962968.CrossRefGoogle ScholarPubMed
Schlaeppi, K. and Bulgarelli, D. (2015). The plant microbiome at work. Molecular Plant-Microbe Interactions, 28, 212217.CrossRefGoogle ScholarPubMed
Schlaeppi, K., Dombrowski, N., Oter, R. G., Ver Loren van Themaat, E. and Schulze-Lefert, P. (2014). Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proceedings of the National Academy of Sciences of the United States of America, 111, 585592.CrossRefGoogle ScholarPubMed
Schulz, B. and Boyle, C. (2006). What are endophytes? In Microbial Root Endophytes, Soil Biology, Vol. 9, ed. Schulz, B., Boyle, C. and Sieber, T. N.. Berlin: Springer-Verlag, pp. 114.Google Scholar
Selosse, M.-A. and Rousset, F. (2011). The plant-fungal marketplace. Science, 333, 828829.CrossRefGoogle ScholarPubMed
Shehata, H. R., Lyons, E. M., Jordan, K. S. and Raizada, M. N. (2016). Bacterial endophytes from wild and ancient maize are able to suppress the fungal pathogen Sclerotinia homoeocarpa. Journal of Applied Microbiology, 120, 756769.CrossRefGoogle ScholarPubMed
Sherameti, I., Tripathi, S., Varma, A. and Oelmüller, R. (2008). The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Molecular Plant-Microbe Interactions, MPMI, 21, 799807.CrossRefGoogle ScholarPubMed
Singh, B. K. and Trivedi, P. (2017). Microbiome and the future for food and nutrient security. Microbial Biotechnology, 10, 5053.CrossRefGoogle ScholarPubMed
Singh, L. P., Gill, S. S. and Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling and Behavior, 6, 175–91.CrossRefGoogle ScholarPubMed
Sinha, R. K. (1997). Embarking on the second green revolution for sustainable agriculture in India: a judicious mix of traditional wisdom and modern knowledge in ecological farming. Journal of Agricultural and Environmental Ethics, 10, 183197.CrossRefGoogle Scholar
Soares, M. A, Li, H. Y., Kowalski, K. P. et al. (2016). Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biological Invasions, 18, 26892702.CrossRefGoogle Scholar
Sun, C., Johnson, J. M., Cai, D. et al. (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology, 167, 10091017.CrossRefGoogle ScholarPubMed
Sun, X. and Guo, L. (2012). Endophytic fungal diversity: review of traditional and molecular techniques. Mycology, 3, 6576.Google Scholar
Tkacz, A. and Poole, P. (2015). Role of root microbiota in plant productivity. Journal of Experimental Botany, 66, 21672175.CrossRefGoogle ScholarPubMed
Tuteja, N. and Sopory, S. K. (2008). Chemical signaling under abiotic stress environment in plants. Plant Signaling and Behavior, 3, 525536.CrossRefGoogle ScholarPubMed
Vandegrift, R., Roy, B. A., Pfeifer-Meister, L., Johnson, B. R. and Bridgham, S. D. (2015). The herbaceous landlord: integrating the effects of symbiont consortia within a single host. PeerJ, 3, e1379.CrossRefGoogle ScholarPubMed
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. and Dufresne, A. (2015). Tansley Review: the importance of the microbiome of the plant holobiont. New Phytologist, 206, 11961206.CrossRefGoogle Scholar
Varma, A., Bajaj, R., Agarwal, A. et al. (2012). Memoirs of ‘Rootonic’: The Magic Fungus. Noida, India: Amity Institute of Microbial Technology.Google Scholar
Waller, F., Achatz, B., Baltruschat, H. et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 13386–13391.Google ScholarPubMed
Waqas, M., Khan, A. L., Kamran, M. et al. (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules (Basel, Switzerland), 17, 10754–10773.CrossRefGoogle ScholarPubMed
Weiss, M., Sýkorová, Z., Garnica, S. et al. (2011). Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PloS One, 6, e16793.CrossRefGoogle ScholarPubMed
Weller, D. M. and Cook, R. J. (1983). Supression of take-all of wheat by seed treatmetns with fluorescent pseudomonads. Phytopathology, 73, 463469.CrossRefGoogle Scholar
Wemheuer, B. and Wemheuer, F. (2017). Assessing Bacterial and Fungal Diversity in the Plant Endosphere. In Metagenomics, Methods in Molecular Biology, vol 1539, ed. Streit, W. and Daniel, R.. New York, NY: Humana Press, pp. 7584.Google Scholar
Wiewióra, B., Żurek, G. and Żurek, M. (2015). Endophyte-mediated disease resistance in wild populations of perennial ryegrass (Lolium perenne). Fungal Ecology, 15, 18.CrossRefGoogle Scholar
Wissuwa, M., Mazzola, M. and Picard, C. (2009). Novel approaches in plant breeding for rhizosphere-related traits. Plant and Soil, 321, 409430.CrossRefGoogle Scholar
Xing, X., Koch, A. M., Jones, A. M. et al. (2012). Mutualism breakdown in breadfruit domestication. Proceedings of the Royal Society B, 22, 11221130.CrossRefGoogle Scholar
Yang, M. M., Mavrodi, D. V., Mavrodi, O. V. et al. (2011). Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Phytopathology, 101, 14811491.CrossRefGoogle ScholarPubMed
Yokoya, K., Postel, S., Fang, R. and Sarasan, V. (2017). Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry, along environmental gradients within a small geographical area. PeerJ, 5, e2860.CrossRefGoogle ScholarPubMed
Yuan, Z.-L., Zhang, C.-L., Lin, F.-C. and Kubicek, C. P. (2010). Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Applied and Environmental Microbiology, 76, 16421652.CrossRefGoogle ScholarPubMed
Zaidi, A. and Khan, M. S. (2017). Microbial Strategies for Vegetable Production. Berlin: Springer International Publishing.CrossRefGoogle Scholar
Zhang, H., Mittal, N., Leamy, L. J., Barazani, O. and Song, B.-H. (2017). Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 10, 524.CrossRefGoogle ScholarPubMed
Zhou, Y., Bradshaw, R. E., Johnson, R. D., Hume, D. E., Simpson, W. R. and Schmid, J. (2014). Detection and quantification of three distinct Neotyphodium lolii endophytes in Lolium perenne by real time PCR of secondary metabolite genes. Fungal Biology, 118, 316324.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×