Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T07:27:40.668Z Has data issue: false hasContentIssue false

19 - Angular momentum transport in stars: From short to long time scales

from Part V - Interdisciplinary research involving planetary and astrophysical sciences

Published online by Cambridge University Press:  05 July 2015

A. S. Brun
Affiliation:
Université Paris Diderot
S. Mathis
Affiliation:
Université Paris Diderot
Vincent C. H. Tong
Affiliation:
Birkbeck College, University of London
Rafael A. García
Affiliation:
Centre Commissariat à l'Energie Atomique (CEA), Saclay
Get access

Summary

In this chapter we briefly summarize how angular momentum is being transported and exchanged between convective and radiative zones in stars. We discuss what physical processes influence the internal rotation history of stars on short to long (secular) time scales.

The astrophysical context

Stars are rotating magnetic bodies with complex internal and external dynamics. Observations using helioseismology (e.g., García et al., 2007), asteroseismology (e.g., Deheuvels et al., 2014), and spectropolarimetry (e.g., Donati and Land street, 2009) techniques put more and more constraints on this intricate dynamics. To get a complete and coherent picture of dynamical processes in stars and of the associated transport of angular momentum that goes beyond the “standard” modeling of stellar structure and evolution (Maeder, 2009) one needs to develop new models by introducing an improved physical description of these time-dependent processes. However, to simulate such processes in a star in full detail requires treating spatial and temporal scales spanning about 10 orders of magnitude. This is clearly not yet feasible, even with the most powerful computers available today. Therefore, one can choose to describe what occurs on a dynamical time scale (such as a convective turnover time or stellar magnetic cycles) or on the long-term evolution where the typical characteristic time scale is the dominant nuclear reactions. The same applies for spatial scales. One has to choose which relevant scale one needs to model in order to accurately describe the spatial dependence of the physical processes (convection motions, MHD instabilities, transport and mixing processes, surface dynamics).This is the reason why it is nowadays necessary to use and couple 1D, 2D, and 3D models to get a global picture of macroscopic MHD transport processes in stars over short to secular time scales.

In this chapter, we report on the state of the art of the modeling of the transport of angular momentum in stars both in convection and in radiation zones and we present our main contributions to this field of research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×