Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T19:25:05.556Z Has data issue: false hasContentIssue false

Chapter Four - Recent changes in tropical forest biomass and dynamics

Published online by Cambridge University Press:  05 June 2014

Oliver L. Phillips
Affiliation:
University of Leeds
Simon L. Lewis
Affiliation:
University of Leeds
David A. Coomes
Affiliation:
University of Cambridge
David F. R. P. Burslem
Affiliation:
University of Aberdeen
William D. Simonson
Affiliation:
University of Cambridge
Get access

Summary

Introduction

There is a major planet-wide experiment under way. Anthropogenic changes to the atmosphere–biosphere system mean that all ecosystems on Earth are now affected by our activities. While outright deforestation is physically obvious, other subtler processes, such as hunting and surface fires, also affect forests in ways that are less evident to the casual observer (cf. Estes et al. 2011; Lewis, Malhi & Phillips 2004a; Malhi & Phillips 2004). Similarly, anthropogenic atmospheric change is intensifying. By the end of the century, carbon dioxide concentrations may reach levels unprecedented for at least 20 million years (e.g. Retallack 2001) and climates may move beyond Quaternary envelopes (Meehl et al. 2007). Moreover, the rate of change in these basic ecological drivers may be unprecedented in the evolutionary span of most species on Earth today. Additionally, these atmospheric changes are coinciding with the greatest global upheaval in vegetation cover and species’ distributions since at least the last mass extinction at ~65 million years ago (Ellis et al. 2011). Collectively, the evidence points to conditions with no clear past analogue. We have entered the Anthropocene, a new geological epoch dominated by human action (Crutzen 2002; Steffen et al. 2011).

In this chapter we focus on the changes occurring within remaining tropical forests. Most forest vegetation carbon stocks lie within the tropics. Tropical forests store 460 billion tonnes of carbon in their biomass and soil (Pan et al. 2011), equivalent to more than half the total atmospheric stock, and annually process 40 billion tonnes (Beer et al. 2010). They have other planetary influences via the hydrological cycle, and emit aerosols and trace gases, and they are also characterised by their exceptional variety and diversity of life.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidar, M. P. M., Martinez, C. A.Costa, A. C. et al. (2002) Effect of atmospheric CO2 enrichment on the establishment of seedlings of Jatobá, Hymenaea courabil L. (Leguminosae, Caesalpinioideae). Biota Neotropica 2, BN01602012002.CrossRefGoogle Scholar
Aragao, L. E. O. C., Malhi, Y., Roman-Cuesta, R. M. et al. (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters, 34.CrossRefGoogle Scholar
Baker, T. R., Phillips, O. L., Malhi, Y. et al. (2004a) Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society, Series B, 359, 353–365.CrossRefGoogle ScholarPubMed
Baker, T. R., Phillips, O. L., Malhi, Y. et al. (2004b) Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10, 545–562.CrossRefGoogle Scholar
Beer, C., Reichstein, M., Tomelleri, E. et al. (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329, 834–838.CrossRefGoogle ScholarPubMed
Bonal, D., Ponton, S., Le Thiec, D. et al. (2011) Leaf functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species: a historical delta 13C and delta 18O approach using herbarium samples. Plant, Cell and Environment, 34, 1332–1344.CrossRefGoogle Scholar
Bunker, D., De Clerck, F., Bradford, J. et al. (2005) Carbon sequestration and biodiversity loss in a tropical forest. Science, 310, 1029–1031.CrossRefGoogle Scholar
Chambers, J. Q., Santos, J., Ribeiro, R. J. & Higuchi, N. (2001a) Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecology and Management, 152, 73–84.CrossRefGoogle Scholar
Chambers, J. Q., Higuchi, N., Tribuzy, E. S. & Trumbore, S. E. (2001b) Carbon sink for a century. Nature, 410, 429.CrossRefGoogle Scholar
Chao, K.-J., Phillips, O. L., Gloor, E. et al. (2008) Growth and wood density predicts tree mortality in Amazon forests. Journal of Ecology, 96, 281–292.CrossRefGoogle Scholar
Chave, J., Condit, R., Aguilar, S. et al. (2004) Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society, Series B, 359, 409–420.CrossRefGoogle ScholarPubMed
Chave, J., Andalo, C., Brown, S. et al. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99.CrossRefGoogle ScholarPubMed
Chave, J., Condit, R., Muller-Landau, H. C. et al. (2008a) Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biology, 6, e45.CrossRefGoogle ScholarPubMed
Chave, J., Olivier, J., Bongers, F. et al. (2008b) Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology, 24, 355–366.CrossRefGoogle Scholar
Clark, D. A. (2002) Are tropical forests an important carbon sink? Reanalysis of the long-term plot data. Ecological Applications, 12, 3–7.CrossRefGoogle Scholar
Clark, D. B., Clark, D. A. & Oberbauer, S. F. (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Global Change Biology 16, 747–759.CrossRefGoogle Scholar
Clark, D. A., Piper, S. C., Keeling, C. D. & Clark, D. B. (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Sciences USA, 100, 5852–5857.CrossRefGoogle ScholarPubMed
Coomes, D. A. & Allen, R. B. (2007) Mortality and tree-size distributions in natural mixed-age forests. Journal of Ecology, 95, 27–40.CrossRefGoogle Scholar
Coomes, D. A. & Grubb, P. J. (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecological Monographs, 200, 171–207.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Collins, M. et al. (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137–156.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRefGoogle Scholar
Cox, P. M., Harris, P. P., Huntingford, C. et al. (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453, 212–215.CrossRefGoogle ScholarPubMed
Cramer, W., Bondeau, A., Woodward, F. I. et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357–373.CrossRefGoogle Scholar
Crutzen, P. J. (2002) Geology of mankind. Nature, 415, 23.CrossRefGoogle ScholarPubMed
Denman, K. L., Brasseur, G., Chidthaisong, A. et al. (2007) Couplings between changes in the climate system and biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M. et al.), Cambridge, United Kingdom and New York: Cambridge University Press.Google Scholar
Doughty, C. E. & Goulden, M. L. (2008) Are tropical forests near a high temperature threshold?Journal of Geophysical Research-Biogeosciences, 113, G00B07.CrossRefGoogle Scholar
Ellis, E. C. (2011) Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society, Series A, 369, 1010–1035.CrossRefGoogle ScholarPubMed
Engelstaedter, S., Tegen, I. & Washington, R. (2006). North African dust emissions and transport. Earth-Science Reviews, 79, 73–100.CrossRefGoogle Scholar
Enquist, B. J. & Niklas, K. J. (2001) Invariant scaling relations across tree-dominated communities. Nature, 410, 655–660.CrossRefGoogle ScholarPubMed
Espirito-Santo, F. D. B., Keller, M., Braswell, B. et al. (2010) Storm intensity and old-growth forest disturbances in the Amazon region. Geophysical Research Letters, 37, L11403.CrossRefGoogle Scholar
Estes, J. A., Terborgh, J., Brashares, J. S. et al. (2011) Trophic downgrading of Planet Earth. Science, 333, 301–306.CrossRefGoogle ScholarPubMed
Fauset, S., Baker, T. R, Lewis, S. L. et al. (2012) Drought induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters, 15, 1120–1129.CrossRefGoogle ScholarPubMed
Feeley, K. J., Wright, S. J., Supardi, M. N. N., Kassim, A. R. & Davies, S. J. (2007) Decelerating growth in tropical forest trees. Ecology Letters, 10, 461–469.CrossRefGoogle ScholarPubMed
Feldpausch, T. R., Lloyd, J., Lewis, S. L. et al. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9, 3381–3403.CrossRefGoogle Scholar
Fisher, J. I., Hurtt, G. C., Thomas, R. Q. & Chambers, J. Q. (2008) Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecology Letters, 11, 554–563.CrossRefGoogle ScholarPubMed
Friedlingstein, P., Cox, P., Betts, R. et al. (2006) Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison. Journal of Climate, 19, 3337–3353.CrossRefGoogle Scholar
Galbraith, D., Levy, P. E., Sitch, S. et al. (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 187, 647–665.CrossRefGoogle ScholarPubMed
Gentry, A. H. (1988a) Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Sciences USA, 85, 156–159.CrossRefGoogle ScholarPubMed
Gentry, A. H. (1988b) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1–34.CrossRefGoogle Scholar
Gloor, M., Phillips, O. L., Lloyd, J. et al. (2009) Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data?Global Change Biology, 15, 2418–2430.CrossRefGoogle Scholar
Granados, J. & Körner, C. (2002) In deep shade, elevated CO2 increases the vigour of tropical climbing plants. Global Change Biology, 8, 1109–1117.CrossRefGoogle Scholar
Groombridge, B. & Jenkins, M. D. (2003) World Atlas of Biodiversity. University of California Press.Google Scholar
Hamilton, J. G., DeLucia, E. H., George, K. et al. (2002) Forest carbon balance under elevated CO2. Oecologia, 131, 250–260.CrossRefGoogle ScholarPubMed
Haxeltine, A. & Prentice, I. C. (1996) A general model for the light-use efficiency of primary production. Functional Ecology, 10, 551–561.CrossRefGoogle Scholar
Hember, R. A., Kurz, W. A., Metsaranta, J. M. et al. (2012) Accelerating regrowth of temperate-maritime forests due to environmental change. Global Change Biology, 18, 2026–2040.CrossRefGoogle Scholar
Higuchi, N., dos Santos, J., Ribeiro, J. R., Minette, L. & Biot, Y. (1998) Biomassa da parte aérea da floresta tropical úmida de terra firme da Amazônia Brasileira. Acta Amazonica, 28, 153–166.CrossRefGoogle Scholar
Ichii, K., Hashimoto, H., Nemani, R. & White, M. (2005) Modeling the interannual variability and trends in gross and net primary productivity of tropical forests from 1982 to 1999. Global and Planetary Change, 48, 274–286.CrossRefGoogle Scholar
Kerstiens, G. (2001) Meta-analysis of the interaction between shade-tolerance, light environment and growth response of woody species to elevated CO2. Acta Oecologica, 22, 61–69.CrossRefGoogle Scholar
Körner, C. (2003) Slow in, rapid out – carbon flux studies and Kyoto targets. Science, 300, 1242–1243.CrossRefGoogle Scholar
Körner, C. (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philosophical Transactions of the Royal Society, Series B, 359, 493–498.CrossRefGoogle ScholarPubMed
Laurance, W. F. (2004) Forest–climate interactions in fragmented tropical landscapes. Philosophical Transactions of the Royal Society, Series B, 359, 345–352.CrossRefGoogle ScholarPubMed
Laurance, W. F., Oliveira, A. A., Laurance, S. G. et al. (2004) Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature, 428, 171–174.CrossRefGoogle ScholarPubMed
Le Quéré, C., Raupach, M. R., Canadell, J. G. et al. (2009) Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–836.CrossRefGoogle Scholar
Lewis, S. L. (2006) Tropical forests and the changing earth system. Philosophical Transactions of the Royal Society of London, Series B, 361, 195–210.CrossRefGoogle ScholarPubMed
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. (2011) The 2010 Amazon drought. Science, 331, 554–555.CrossRefGoogle ScholarPubMed
Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A. & Laurance, W. F. (2009b) Changing ecology of tropical forests: evidence and drivers. Annual Review of Ecology Evolution and Systematics, 40, 529–549.CrossRefGoogle Scholar
Lewis, S. L., Lopez-Gonzalez, G.Sonké, B. et al. (2009a) Increasing carbon storage in intact African tropical forests. Nature, 477, 1003–1006.CrossRefGoogle Scholar
Lewis, S. L., Malhi, Y. & Phillips, O. L. (2004a) Fingerprinting the impacts of global change on tropical forests. Philosophical Transactions of the Royal Society, Series B, 359, 437–462.CrossRefGoogle ScholarPubMed
Lewis, S. L., Phillips, O. L. & Baker, T. R. (2006) Impacts of global atmospheric change on tropical forests. Trends in Ecology & Evolution, 21, 173–174.CrossRefGoogle ScholarPubMed
Lewis, S. L., Phillips, O. L., Baker, T. R. et al. (2004b) Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society, Series B, 359, 421–436.CrossRefGoogle ScholarPubMed
Lloyd, J. & Farquhar, G. D. (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with plant nutrient status. Functional Ecology, 10, 4–32.CrossRefGoogle Scholar
Lloyd, J. & Farquhar, G. D. (2008) Effects of rising temperatures and (CO2) on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society, Series B, 363, 1811–1817.CrossRefGoogle ScholarPubMed
Lloyd, J., Gloor, M. & Lewis, S. L. (2009) Are the dynamics of tropical forests dominated by large and rare disturbance events?Ecology Letters, 12, E19–21.CrossRefGoogle ScholarPubMed
Lloyd, J., Grace, J., Miranda, A. C. et al. (1995) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant Cell & Environment, 18, 1129–1145.CrossRefGoogle Scholar
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. (2011) ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science, 22, 610–613.CrossRefGoogle Scholar
Luyssaert, S., Schulze, E.-D., Börner, A. et al. (2008) Old-growth forests as global carbon sinks. Nature, 455, 213–215.CrossRefGoogle ScholarPubMed
Malhi, Y., Baker, T. R., Phillips, O. L. et al. (2004) The above-ground coarse woody productivity of 104 neotropical forest plots. Global Change Biology, 10, 563–591.CrossRefGoogle Scholar
Malhi, Y. & Phillips, O. L. (2004) Tropical forests and global atmospheric change: a synthesis. Philosophical Transactions of the Royal Society, Series B, 359, 549–555.CrossRefGoogle ScholarPubMed
Malhi, Y. & Phillips, O. L. (2005) Tropical Forests and Global Atmospheric Change. Oxford University Press.CrossRefGoogle Scholar
Malhi, Y., Phillips, O. L., Baker, T. R. et al. (2002) An international network to understand the biomass and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 13, 439–450.CrossRefGoogle Scholar
Meehl, G. A., Stocker, T. F.Collins, W. D. et al. (2007) Global Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M. et al.), Cambridge and New York: Cambridge University Press.Google Scholar
Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H. et al. (2009) Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36, L23401.CrossRefGoogle Scholar
Nelson, B. W., Kapos, V., Adams, J. B., Oliveira, W. J. & Braun, O. P. (1994) Forest disturbance by large blowdowns in the Brazilian Amazon. Ecology, 75, 853–858.CrossRefGoogle Scholar
Nemani, R. R., Keeling, C. D.Hashimoto, H. et al. (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563.CrossRefGoogle ScholarPubMed
Norby, R. J., Hanson, P. J., O’Neill, E. G. et al. (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications, 12, 1261–1266.Google Scholar
Norby, R. J. & Zak, D. R. (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution and Systematics, 42, 181–203.CrossRefGoogle Scholar
Oliveira, P. H. F., Artaxo, P., Pires, C. et al. (2007) The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus, 59B, 338–349.CrossRefGoogle Scholar
Paeth, H., Born, K., Girmes, R., Podzun, R. & Jacob, D. (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land use changes. Journal of Climate, 22, 114–132.CrossRefGoogle Scholar
Pan, Y., Birdsey, R., Fang, J. et al. (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.CrossRefGoogle ScholarPubMed
Peacock, J., Baker, T., Lewis, S. L. et al. (2007) The RAINFOR database: Monitoring forest biomass and dynamics. Journal of Vegetation Science, 18, 535–542.CrossRefGoogle Scholar
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L. et al. (2009) Drought sensitivity of the Amazon rainforest. Science, 323, 1344–1347.CrossRefGoogle ScholarPubMed
Phillips, O. L., Baker, T. R.Arroyo, L. et al. (2004) Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society, Series B, 359, 381–407.CrossRefGoogle ScholarPubMed
Phillips, O. L. & Gentry, A. H. (1994) Increasing turnover through time in tropical forests. Science, 263, 954–958.CrossRefGoogle ScholarPubMed
Phillips, O. L., Hall, P.Gentry, A. H., Sawyer, S. A. & Vásquez, R. (1994) Dynamics and species richness of tropical forests. Proceedings of the National Academy of Sciences USA, 91, 2805–2809.CrossRefGoogle Scholar
Phillips, O. L., Malhi, Y., Higuchi, N. et al. (1998) Changes in the carbon balance of tropical forest: evidence from long-term plots. Science, 282, 439–442.CrossRefGoogle ScholarPubMed
Phillips, O. L., Malhi, Y., Vinceti, B. et al. (2002a) Changes in the biomass of tropical forests: evaluating potential biases. Ecological Applications, 12, 576–587.CrossRefGoogle Scholar
Phillips, O. L., Martínez, R. V., Arroyo, L. et al. (2002b) Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770–774.CrossRefGoogle ScholarPubMed
Phillips, O. L., Vásquez Martínez, R., Monteagudo, A., Baker, T. & Núñez, P. (2005) Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology, 86, 1250–1258.CrossRefGoogle Scholar
Phillips, O. L., van der Heijden, G., López-González, G. et al. (2010) Drought mortality relationships for tropical forests. New Phytologist, 187, 631–646.CrossRefGoogle ScholarPubMed
Purves, D. & Pacala, S. (2008) Predictive models of forest dynamics. Science, 320, 1452–1453.CrossRefGoogle ScholarPubMed
Quesada, C. A., Phillips, O. L., Schwarz, M. et al. (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246.CrossRefGoogle Scholar
Rammig, A., Jupp, T., Thonicke, K. et al. (2010) Estimating the risk of Amazonian forest dieback. New Phytologist, 187, 694–706.CrossRefGoogle ScholarPubMed
Retallack, G. J. (2001) A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 411, 287–290.CrossRefGoogle ScholarPubMed
Salzmann, U. & Hoelzmann, P. (2005) The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene, 15, 190–199.CrossRefGoogle Scholar
Schnitzer, S. A. & Bongers, F. (2002) The ecology of lianas and their role in forests. Trends in Ecology & Evolution, 17, 223–230.CrossRefGoogle Scholar
Schnitzer, S. A. & Bongers, F. (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters, 14, 397–406.CrossRefGoogle ScholarPubMed
ter Steege, H., Pitman, N. C. A., Phillips, O. L. et al. (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443, 444–447.CrossRefGoogle ScholarPubMed
Staver, A. C., Archibald, S. & Levin., S. A. (2011) The global extent and determinants of savanna and forest as alternative states. Science, 334, 230–232.CrossRefGoogle Scholar
Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. (2011) The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society, Series A, 369, 842–867.CrossRefGoogle ScholarPubMed
Stephens, B. B., Gurney, K. R., Tans, P. P. et al. (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316, 1732–1735.CrossRefGoogle ScholarPubMed
Trenberth, K. E., Jones, P. D., Ambenje, P. et al. (2007) Observations: surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M. et al.). Cambridge and New York: Cambridge University Press.Google Scholar
Van der Heijden, G., Healey, J. & Phillips, O. L. (2008) Infestation of trees by lianas in a tropical forest in Amazonian Peru. Journal of Vegetation Science, 19, 747–756.CrossRefGoogle Scholar
Vieira, S., Trumbore, S., Camargo, P. B. et al. (2005) Slow growth rates of Amazonian trees: consequences for carbon cycling. Proceedings of the National Academy of Sciences USA, 102, 18502–18507.CrossRefGoogle ScholarPubMed
West, G. B., Brown, J. H. & Enquist, B. J. (1999) A general model for the structure and allometry of vascular plant systems. Nature, 400, 664–667.CrossRefGoogle Scholar
Wong, T., Wielicki, B. A., Lee, R. B. III et al. (2006) Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data. Journal of Climate, 19, 4028–4040.CrossRefGoogle Scholar
Worbes, M. (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. Journal of Ecology, 87, 391–403.CrossRefGoogle Scholar
Wright, S. J. (2005) Tropical forests in a changing environment. Trends in Ecology & Evolution, 20, 553–560.CrossRefGoogle Scholar
Zelazowski, P., Malhi, Y., Huntingford, C.Sitch, S. & Fisher, J. B. (2011) Changes in the potential distribution of humid tropical forests on a warmer planet. Philosophical Transactions of the Royal Society, Series A, 369, 137–160.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×