Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T02:32:11.928Z Has data issue: false hasContentIssue false

10 - Implications of functional neurosurgery and deep-brain stimulation for free will and decision-making

from Part IV - Neural circuitry and modification of the will

Published online by Cambridge University Press:  05 October 2015

Walter Glannon
Affiliation:
University of Calgary
Get access
Type
Chapter
Information
Free Will and the Brain
Neuroscientific, Philosophical, and Legal Perspectives
, pp. 191 - 204
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience 9:357–81.CrossRefGoogle ScholarPubMed
Anderson, R. J., Frye, M. A., Abulseoud, O. A., Lee, K. H., McGillivray, J. A., Berk, M., and Tye, S. J. (2012). Deep brain stimulation for treatment-resistant depression: efficacy, safety and mechanisms of action. Neuroscience & Biobehavioural Reviews 36(8):1920–33.CrossRefGoogle ScholarPubMed
Ballanger, B., van Eimeren, T., Moro, E., Lozano, A. M., Hamani, C., Boulinguez, P., Pellecchia, G., Houle, S., Poon, Y. Y., Lang, A. E., and Strafella, A. P. (2009). Stimulation of the subthalamic nucleus and impulsivity: release your horses. Annals of Neurology 66(6):817–24.CrossRefGoogle ScholarPubMed
Chabardès, S., Polosan, M., Krack, P., Bastin, J., Krainik, A., David, O., Bougerol, T., and Benabid, A. L. (2012). Deep Brain Stimulation for Obsessive-Compulsive Disorder: Subthalamic Nucleus Target. World Neurosurg. Mar 30 [Epub ahead of print].Google ScholarPubMed
Clark, D. L., Boutros, N. N., and Mendez, M. F. (2005). The Brain and Behavior. 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Collins, K. L., Lehmann, E. M., and Patil, P. G. (2010). Deep brain stimulation for movement disorders. Neurobiology of Disease 38(3):338–45.CrossRefGoogle ScholarPubMed
Como, P. G., LaMarsh, J., and O'Brien, K. A. (2005). Obsessive-compulsive disorder in Tourette's syndrome. Advances in Neurology 96:249–61.Google ScholarPubMed
Desmurget, M., Reilly, K. T., Richard, N., Szathmari, A,, Mottolese, C., and Sirigu, A. (2009). Movement intention after parietal cortex stimulation in humans. Science 324(5928):811–13.CrossRefGoogle ScholarPubMed
Desmurget, M., and Sirigu, A. (2012). Conscious motor intention emerges in the inferior parietal lobule. Current Opinion in Neurobiology 22(6):1004–11.CrossRefGoogle ScholarPubMed
Eusebio, A., and Brown, P. (2007). Oscillatory activity in the basal ganglia. Parkinsonism & Related Disorders 13 Suppl 3:S434–36.Google Scholar
Fried, I., Katz, A., McCarthy, G., Sass, K. J., Williamson, P., Spencer, S. S., and Spencer, D. D. (1991). Functional organization of human supplementary motor cortex studied by electrical stimulation. Journal of Neuroscience 11(11):3656–66.CrossRefGoogle ScholarPubMed
Fried, I., Mukamel, R., and Kreiman, G. (2011). Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69(3):548–62.CrossRefGoogle ScholarPubMed
Giacobbe, P., Mayberg, H. S., and Lozano, A. M. (2009). Treatment resistant depression as a failure of brain homeostatic mechanisms: implications for deep brain stimulation. Experimental Neurology 219(1):4452.CrossRefGoogle ScholarPubMed
Hälbig, T. D., Tse, W., Frisina, P. G., Baker, B. R., Hollander, E., Shapiro, H., Tagliati, M., Koller, W. C., and Olanow, C .W. (2000). Subthalamic deep brain stimulation and impulse control in Parkinson's disease. European Journal of Neurology 16(4):493–97.Google Scholar
Holtzheimer, P. E., and Mayberg, H. S. (2011). Deep brain stimulation for psychiatric disorders. Annual Review of Neuroscience 34:289307.CrossRefGoogle ScholarPubMed
Johansen-Berg, H., Gutman, D. A., Behrens, T. E., Matthews, P. M., Rushworth, M. F., Katz, E., Lozano, A. M., and Mayberg, H. S. (2008). Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cerebral Cortex 18(6):1374–83.CrossRefGoogle ScholarPubMed
Kennedy, S. H., Evans, K. R., Krüger, S., Mayberg, H. S., Meyer, J. H., McCann, S., Arifuzzman, A. I., Houle, S., and Vaccarino, F. J. (2001). Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. American Journal of Psychiatry 158(6):899905.CrossRefGoogle ScholarPubMed
Kostelecki, W., Mei, Y., Garcia Dominguez, L., and Pérez Velázquez, J. L. (2012). Patterns of brain activity distinguishing free and forced actions: contribution from sensory cortices. Frontiers in Integrative Neuroscience 6:84.CrossRefGoogle ScholarPubMed
Kühn, A. A., Kempf, F., Brücke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., Trottenberg, T., Kupsch, A., Schneider, G. H., Hariz, M. I., Vandenberghe, W., Nuttin, B., and Brown, P. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. Journal of Neuroscience 28(24):6165–73.CrossRefGoogle ScholarPubMed
Lipsman, N., and Glannon, W. (2013). Brain, mind and machine: what are the implications of deep brain stimulation for perceptions of personal identity, agency and free will? Bioethics 27: 465470.CrossRefGoogle ScholarPubMed
Lozano, A. M., Dostrovsky, J., Chen, R., and Ashby, P. (2002). Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurology 1(4):225–31.CrossRefGoogle ScholarPubMed
Lozano, A. M., Mayberg, H. S., Giacobbe, P., Hamani, C., Craddock, R. C., and Kennedy, S. H. (2008). Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biological Psychiatry 64(6):461–67.CrossRefGoogle ScholarPubMed
Mayberg, H. S. (1997). Limbic-cortical dysregulation: a proposed model of depression. Journal of Neuropsychiatry and Clinical Neuroscience 9(3):471–81.Google ScholarPubMed
Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., Silva, J. A., Tekell, J. L., Martin, C. C., Lancaster, J. L., and Fox, P. T. (1999). Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. American Journal of Psychiatry 156(5):675–82.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., Schwalb, J. M., and Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–60.CrossRefGoogle ScholarPubMed
Mukamel, R., and Fried, I. (2012). Human intracranial recordings and cognitive neuroscience. Annual Review of Psychology 10( 63):511–37.Google Scholar
Penfield, W. (1958). Some mechanisms of consciousness discovered during electrical stimulation of the brain. Proceedings of the National Academy of Sciences USA 44(2):5166.CrossRefGoogle ScholarPubMed
Penfield, W. (1968). Engrams in the human brain: mechanisms of memory. Proceedings of the Royal Society of Medicine 61(8):831–40.Google ScholarPubMed
Rasmussen, T., and Penfield, W. (1947). The human sensorimotor cortex as studied by electrical stimulation. Federation Proceedings 6(1 Pt 2):184.Google ScholarPubMed
Ratiu, P., and Talos, I. F. (2004). Images in clinical medicine: the tale of Phineas Gage, digitally remastered. New England Journal of Medicine 351(23):e21.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition 55(1):1129.CrossRefGoogle ScholarPubMed
Schneider, F., Reske, M., Finkelmeyer, A., Wojtecki, L., Timmermann, L., Brosig, T., Backes, V., Amir-Manavi, A., Sturm, V., Habel, U., and Schnitzler, A. (2010). Predicting acute affective symptoms after deep brain stimulation surgery in Parkinson's disease. Stereotactic Functional Neurosurgery 88(6):367–73.CrossRefGoogle ScholarPubMed
Viskontas, I. V., Possin, K. L., and Miller, B. L. (2007). Symptoms of frontotemporal dementia provide insights into orbitofrontal cortex function and social behavior. Annals of the New York Academy of Sciences 1121:528–45.CrossRefGoogle ScholarPubMed
Weintraub, D., Koester, J., Potenza, M. N., Siderowf, A. D., Stacy, M., Voon, V., Whetteckey, J., Wunderlich, G. R., and Lang, A. E. (2010). Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Archives of Neurology 67(5):589–95.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×