Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T00:37:24.509Z Has data issue: false hasContentIssue false

5 - Integrating ectomycorrhizal fungi into quantitative frameworks of forest carbon and nitrogen cycling

Published online by Cambridge University Press:  10 December 2009

Erik A. Hobbie
Affiliation:
Complex Systems Research Center, University of New Hampshire, USA
Håkan Wallander
Affiliation:
Department of Microbial Ecology, Ecology Building, Lund University, Sweden
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Ecosystem ecologists have calculated carbon and nitrogen budgets for a variety of forest ecosystems. Despite a growing awareness of the importance of mycorrhizal fungi in nitrogen uptake, as carbon sinks for photosynthate and as conduits for carbon from plants to the below-ground community, few ecosystem ecologists have incorporated mycorrhizal fungi in their conceptual models of how forests function. Longstanding difficulties in assessing the presence and quantity of mycorrhizal fungi in soil, in identifying mycorrhizal fungi to species, and in assessing the mycorrhizal role in carbon and nitrogen cycling, have probably limited the willingness and ability of ecosystem ecologists to incorporate mycorrhizal fungi into their research. In particular, ecosystem models have not yet included mycorrhizal fungi, despite the key role of mycorrhizal fungi at the interface of plants, the soil and microbial communities below-ground.

In this review we will focus on ectomycorrhizal fungi that form symbioses with many of the dominant trees of temperate and boreal forests, particularly in trees of the Pinaceae, Fagaceae, Betulaceae and Salicaceae. Ectomycorrhizal fungi also form symbioses with many tropical trees, including the Dipterocarpaceae of southeast Asia and Eucalyptus of Australia. We will lay out the current state of knowledge of the functioning of ectomycorrhizal fungi in carbon and nitrogen cycling of forest ecosystems as inferred from field and laboratory studies. Finally, we will discuss progress in integrating mycorrhizal fungi into quantitative frameworks of forest ecosystem function.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abuzinadah, R. A. & Read, D. J. (1986a). The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea, and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytologist, 103, 507–14.CrossRefGoogle Scholar
Abuzinadah, R. A. & Read, D. J. (1986b). The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytologist, 103, 481–93.CrossRefGoogle Scholar
Ågren, G. I., Axelsson, B., Flower-Ellis, J. G. K. et al. (1980). Annual carbon budget for a young Scots pine. In Ecological Bulletin Vol. 32. Structure and Function of Northern Coniferous Forests – An Ecosystem Study, ed.Persson, T.. Stockholm: Swedish Natural Science Research, pp. 307–13.Google Scholar
Aldén, L., Demoling, F. & Bååth, E. (2001). Rapid method of determining factors limiting bacterial growth in soil. Applied and Environmental Microbiology, 67, 1830–8.CrossRefGoogle ScholarPubMed
Alexander, I. J. (1981). Picea sitchensis and Lactarius rufus mycorrhizal association and its effects on seedling growth and development. Transactions of the British Mycological Society, 76, 417–23.CrossRefGoogle Scholar
Andersson, S. & Söderström, B. (1995). Effects of lime (CaCO3) on ectomycorrhizal colonization of Picea abies (L.) Karst. seedlings planted in a spruce forest. Scandinavian Journal of Forest Research, 10, 149–54.CrossRefGoogle Scholar
Axelsson, E. & Axelsson, B. (1986). Changes in carbon allocation patterns in spruce and pine trees following irrigation and fertilization. Tree Physiology, 2, 189–204.CrossRefGoogle ScholarPubMed
Baar, J., Comini, B., Elferink, M. O. & Kuyper, T. W. (1997). Performance of four ectomycorrhizal fungi on organic and inorganic nitrogen sources. Mycological Research, 101, 523–9.CrossRefGoogle Scholar
Bååth, E., Nilsson, L. O., Göransson, H. & Wallander, H. (2004). Can the extent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil?Soil Biology and Biochemistry, 36, 2105–9.CrossRefGoogle Scholar
Beets, P. N. & Whitehead, D. (1996). Carbon partitioning in Pinus radiata in relation to foliage nitrogen status. Tree Physiology, 16, 131–8.CrossRefGoogle ScholarPubMed
Bending, G. D. & Read, D. J. (1995). The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytologist, 130, 401–9.CrossRefGoogle Scholar
Bhupinderpal-Singh, Nordgren A., Ottoson-Löfvenius, M.et al. (2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant, Cell and Environment, 26, 1287–96.CrossRefGoogle Scholar
Bidartondo, M. I., Ek, H., Wallander, H. & Söderström, B. (2001). Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi?New Phytologist, 151, 543–50.CrossRefGoogle Scholar
Blagodatskiy, S. A., Larionova, A. A. & Yevdokimov, I. V. (1993). Effect of mineral nitrogen on the respiration rate and growth efficiency of soil microorganisms. Eurasian Soil Science, 25, 85–95.Google Scholar
Buchmann, N., Gebauer, G. & Schulze, E.-D. (1996). Partioning of 15N-labeled ammonium and nitrate among soil, litter, below- and above-ground biomass of trees and understory in a 15-year-old Picea abies plantation. Biogeochemistry, 33, 1–23.CrossRefGoogle Scholar
Chapin, F. S. III. (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233–60.CrossRefGoogle Scholar
Coleman, D. C., Crossley, D. A. Jr & Hendrix, P. F. (2004). Fundamentals of Soil Ecology, 2nd edn. Boston: Elsevier.Google Scholar
Coleman, J. O. D. & Harley, J. L. (1976). Mitochondria of mycorrhizal roots of Fagus sylvatica. New Phytologist, 76, 317–30.CrossRefGoogle Scholar
Colpaert, J. V. & Laere, A. (1996). A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytologist, 134, 133–41.CrossRefGoogle Scholar
Colpaert, J., Assche, J. A. & Luijtens, K. (1992). The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestris L. New Phytologist, 120, 127–35.CrossRefGoogle Scholar
Colpaert, J., Laere, A. & Assche, J. A. (1996). Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiology, 16, 787–93.CrossRefGoogle ScholarPubMed
Davidson, E. A., Savage, K., Bolstad, P.et al. (2002). Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 113, 39–51.CrossRefGoogle Scholar
Dighton, J., Thomas, E. D. & Latter, P. M. (1987). Interactions between tree roots, mycorrhizas, a saprotrophic fungus and the decomposition of organic substrates in a microcosm. Biology and Fertility of Soils, 4, 145–50.CrossRefGoogle Scholar
Dosskey, M. G., Linderman, R. G. & Boersma, L. (1990). Carbon-sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas. New Phytologist, 115, 269–74.CrossRefGoogle Scholar
Durall, D. M., Jones, M. D. & Tinker, P. B. (1994). Allocation of 14C-carbon in ectomycorrhizal willow. New Phytologist, 128, 109–14.CrossRefGoogle Scholar
Dutton, M. V. & Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–95.CrossRefGoogle Scholar
Ek, H. (1997). The influence of nitrogen fertilization on the carbon economy of Paxillus involutus in ectomycorrhizal association with Betula pendula. New Phytologist, 135, 133–42.CrossRefGoogle Scholar
Ek, H., Sjögren, M., Arnebrant, K. & Söderström, B. (1994). Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Applied Soil Ecology, 1, 155–69.CrossRefGoogle Scholar
Ekblad, A., Wallander, H., Carlsson, R. & Huss-Danell, K. (1995). Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytologist, 131, 443–51.CrossRefGoogle Scholar
Eltrop, L. & Marschner, H. (1996). Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture. II. Carbon partitioning in plants supplied with ammonium or nitrate. New Phytologist, 133, 479–86.CrossRefGoogle Scholar
Ericsson, T. (1995). Growth and shoot:root ratio of seedlings in relation to nutrient availability. Plant and Soil, 169, 205–14.CrossRefGoogle Scholar
Erland, S. & Taylor, A. F. S. (2002). Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. In Mycorrhizal Ecology, Ecological Studies, 157, ed. Heijden, M. G. A. & Sanders, I.. Berlin: Springer-Verlag, pp. 163–224.Google Scholar
Erland, S., Finlay, R. & Söderström, B. (1991). The influence of substrate pH on carbon translocation in ectomycorrhizal and non-mycorrhizal pine seedlings. New Phytologist, 119, 235–42.CrossRefGoogle Scholar
Finlay, R. D. & Söderström, B. (1992). Mycorrhiza and carbon flow to the soil. In Mycorrhizal Functioning, ed. Allen, M. F.. New York: Chapman and Hall, pp. 134–60.Google Scholar
Finlay, R. D., Ek, H., Odham, G. & Söderström, B. (1989). Uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytologist, 113, 47–55.CrossRefGoogle Scholar
Fogel, R. & Hunt, G. (1979). Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Canadian Journal of Forest Research, 9, 245–56.CrossRefGoogle Scholar
Fogel, R. & Hunt, G. (1983). Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Canadian Journal of Forest Research, 13, 219–32.CrossRefGoogle Scholar
Fransson, P. M. A. (2002). Responses of ectomycorrhizal fungi to changes in carbon and nutrient availability. Unpublished Ph.D. thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Fransson, P. M. A., Taylor, A. F. S. & Finlay, R. D. (2001). Elevated atmospheric CO2 alters root symbiotic community structure in forest trees. New Phytologist, 152, 431–42.CrossRefGoogle Scholar
Gadgil, R. L. & Gadgil, P. D. (1975). Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. New Zealand Journal of Forest Science, 5, 33–41.Google Scholar
Giesler, R., Högberg, M. & Högberg, P. (1998). Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology, 79, 119–37.CrossRefGoogle Scholar
Hagerberg, D. & Wallander, H. (2002). The impact of forest residue removal and wood ash amendment on the growth of the ectomycorrhizal external mycelium. FEMS Microbiology Ecology, 39, 139–46.CrossRefGoogle ScholarPubMed
Hagerberg, D., Thelin, G. & Wallander, H. (2003). The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant and Soil, 252, 279–90.CrossRefGoogle Scholar
Harley, J. L. & Smith, S. E. (1983). Mycorrhizal Symbiosis. Oxford: Academic Press.Google Scholar
Hart, S. C., Nason, G. E., Maryold, D. D. & Perry, D. A. (1994). Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology, 75, 880–91.CrossRefGoogle Scholar
Henn, M. R. & Chapela, I. H. (2000). Differential C isotope discrimination by fungi during decomposition of C3- and C4-derived sucrose. Applied and Environmental Microbiology, 66, 4180–6.CrossRefGoogle Scholar
Ho, I. & Trappe, J. M. (1980). Nitrate reductase activity of nonmycorrhizal Douglas-fir rootlets and some associated mycorrhizal fungi. Plant and Soil, 54, 395–8.CrossRefGoogle Scholar
Hobbie, E. A. & Colpaert, J. V. (2003). Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytologist, 157, 115–26.CrossRefGoogle Scholar
Hobbie, E. A., Macko, S. A. & Shugart, H. H. (1999). Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia, 118, 353–60.CrossRefGoogle ScholarPubMed
Högberg, M. N. & Högberg, P. (2002). Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist, 154, 191–5.CrossRefGoogle Scholar
Högberg, M. N., Bååth, E., Nordgren, A., Arnebrant, K. & Högberg, P. (2003). Field evidence of opposing effects of nitrogen availability on carbon supply to ectomycorrhizal fungi and decomposers in boreal forest. New Phytologist, 160, 225–38.CrossRefGoogle Scholar
Högberg, P., Högbom, L., Schinkel, H.et al. (1996). 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia, 108, 207–14.CrossRefGoogle ScholarPubMed
Högberg, P., Plamboeck, A. H., Taylor, A. F. S. & Fransson, P. M. A. (1999). Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Sciences of the United States of America, 96, 8534–9.CrossRefGoogle Scholar
Högberg, P., Nordgren, A., Buchmann, N.et al. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789–92.CrossRefGoogle ScholarPubMed
Högberg, P., Nordgren, A. & Ågren, G. I. (2002). Carbon allocation between tree root growth and root respiration in a boreal pine forest. Oecologia, 132, 579–81.CrossRefGoogle Scholar
Ingestad, T. (1979). Mineral nutrient requirements of Pinus sylvestris and Picea abies seedlings. Physiologia Plantarum, 45, 373–80.CrossRefGoogle Scholar
Ingestad, T., Arveby, A. S. & Kähr, M. (1986). The influence of ectomycorrhiza on nitrogen nutrition and growth of Pinus sylvestris seedlings. Physiologia Plantarum, 68, 575–82.CrossRefGoogle Scholar
Janssens, I. A., Sampson, D. A., Curiel-Yuste, J., Carrara, A. & Ceulemans, R. (2002). The carbon cost of fine root turnover in a Scots pine forest. Forest Ecology and Management, 168, 231–40.CrossRefGoogle Scholar
Jennings, D. H. (1995). The Physiology of Fungal Nutrition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Jones, M. D. & Hutchinson, T. C. (1988). Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. I. Effects on growth, photosynthesis, respiration and transpiration. New Phytologist, 108, 451–9.CrossRefGoogle Scholar
Jones, M. D., Durall, D. M. & Tinker, P. B. (1998). A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytologist, 140, 125–34.CrossRefGoogle Scholar
Jonsson, L., Dahlberg, A. & Brandrud, T.-E. (2000). Spatiotemporal distribution of an ectomycorrhizal community in an oligotrophic Swedish Picea abies forest subjected to experimental nitrogen addition: above and below-ground views. Forest Ecology and Management, 132, 143–56.CrossRefGoogle Scholar
Kårén, O. & Nylund, J.-E. (1997). Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Canadian Journal of Botany, 75, 1628–43.CrossRefGoogle Scholar
Kielland, K. (1994). Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology, 75, 2373–83.CrossRefGoogle Scholar
Kohzu, A., Yoshioka, T., Ando, T.et al. (1999). Natural 13C and 15N abundance of field-collected fungi and their ecological implications. New Phytologist, 144, 323–30.CrossRefGoogle Scholar
Koide, R. T. & Wu, T. (2003). Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation. New Phytologist, 158, 401–7.CrossRefGoogle Scholar
Komor, E. (2000). Source physiology and assimilate transport: the interaction of sucrose metabolism, starch storage and phloem export in source leaves and the effects on sugar status in phloem. Australian Journal of Plant Physiology, 27, 497–505.Google Scholar
Krznaric, E. (2004). Uptake of amino acids and oligopeptides in mycorrhizal Pinus sylvestris. Unpublished MS thesis, Katholieke Hogeschool Limburg.
Kubiske, M. E. & Godbold, D. L. (2001). Influence of CO2 on the growth and function of roots and root systems. In The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems, ed. Karnovsky, D. F., Ceulemans, R., Scarascia-Mugnozza, G. & Innes, J. L.. Wallingford, UK: CAB International, pp. 147–91.Google Scholar
Lamhamedi, M. S., Godbout, C. & Fortin, J. A. (1994). Dependence of Laccaria bicolor basidiome development on current photosynthesis of Pinus strobus seedlings. Canadian Journal of Forest Research, 24, 1797–804.CrossRefGoogle Scholar
Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W. & Breemen, N. (2001). Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology and Evolution, 16, 248–54.CrossRefGoogle ScholarPubMed
Landsberg, J. J. & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95, 209–28.CrossRefGoogle Scholar
Langley, J. A. & Hungate, B. A. (2003). Mycorrhizal controls on belowground litter quality. Ecology, 84, 2302–12.CrossRefGoogle Scholar
Last, F. T., Pelham, J., Mason, P. A. & Ingleby, K. (1979). Influence of leaves on sporophore production by fungi forming sheathing mycorrhizas with Betula spp. Nature, 280, 168–9.CrossRefGoogle Scholar
Lekkerkerk, L., Lundkvist, H., Ågren, G. I., Ekbohm, G. & Bosatta, E. (1990). Decomposition of heterogeneous substrates: an experimental investigation of a hypothesis on substrate and microbial properties. Soil Biology and Biochemistry, 22, 161–7.CrossRefGoogle Scholar
Lewis, D. H. & Harley, J. L. (1965). Carbohydrate physiology of mycorrhizal roots of beech. II. Utilization of exogenous sugars by uninfected and mycorrhizal roots. New Phytologist, 64, 238–55.CrossRefGoogle Scholar
Lilleskov, E. A., Fahey, T. J., Horton, T. R. & Lovett, G. M. (2002a). Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology, 83, 104–15.CrossRefGoogle Scholar
Lilleskov, E. A., Hobbie, E. A. & Fahey, T. J. (2002b). Ectomycorrizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytologist, 154, 219–31.CrossRefGoogle Scholar
Lindahl, B. O., Taylor, A. F. S. & Finlay, R. D. (2002). Defining nutritional constraints on carbon cycling in boreal forests-towards a less ‘phytocentric’ perspective. Plant and Soil, 242, 123–35.CrossRefGoogle Scholar
Lindeberg, G. & Lindeberg, M. (1977). Pectinolytic ability of some mycorrhizal and saprophytic hymenomycetes. Archives of Microbiology, 115, 9–12.CrossRefGoogle ScholarPubMed
Lipson, D. & Näsholm, T. (2001). The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia, 128, 305–16.CrossRefGoogle ScholarPubMed
McKane, R. B., Johnson, L. C., Shaver, G. R.et al. (2002). Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 415, 68–71.CrossRefGoogle ScholarPubMed
Majdi, H., Damm, E. & Nylund, J.-E. (2001). Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytologist, 150, 195–202.CrossRefGoogle Scholar
Marmeisse, R., Guidot, A., Gay, G.et al. (2004). Hebeloma cylindrosporum – a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytologist, 163, 481–98.CrossRefGoogle Scholar
Moore, J. C., Ruiter, P. C., Hunt, H. W., Coleman, D. C. & Freckman, D. W. (1996). Microcosms and soil ecology: critical linkages between field studies and modelling food webs. Ecology, 77, 694–705.CrossRefGoogle Scholar
Näsholm, T., Ekblad, A., Nordin, A.et al. (1998). Boreal forest plants take up organic nitrogen. Nature, 392, 914–16.CrossRefGoogle Scholar
Nilsson, L. O. (2004). External mycelia of mycorrhizal fungi – responses to elevated N in forest ecosystems. Unpublished Ph.D. thesis, Lund University, Sweden.Google Scholar
Nilsson, L. O. & Wallander, H. (2003). Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytologist, 158, 409–16.CrossRefGoogle Scholar
Nilsson, L. O., Giesler, R., Bååth, E. & Wallander, H. (2005). Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytologist, 165, 613–22.CrossRefGoogle ScholarPubMed
Nylund, J.-E. & Wallander, H. (1989). Effects of ectomycorrhiza on host growth and carbon balance in a semi-hydroponic cultivation system. New Phytologist, 112, 389–98.CrossRefGoogle Scholar
Olsson, P. A., Chalot, M., Bååth, E., Finlay, R. D. & Söderström, B. (1996). Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiology Ecology, 21, 77–86.CrossRefGoogle Scholar
Paris, F., Bonnaud, P., Ranger, J., Robert, M. & Lapeyrie, F. (1995). Weathering of ammonium- or calcium-saturated 2:1 phyllosilicates by ectomycorrhizal fungi in vitro. Soil Biology and Biochemistry, 27, 1237–44.CrossRefGoogle Scholar
Parmelee, R. W., Ehrenfeld, J. G. & Tate, R. L. III. (1993). Effects of pine roots on micro-organisms, fauna, and nitrogen availability in two soil horizons of a coniferous forest spodosol. Biology and Fertility of Soils, 15, 113–19.CrossRefGoogle Scholar
Perez-Moreno, J. & Read, D. J. (2001). Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network. Plant, Cell and Environment, 24, 1219–26.CrossRefGoogle Scholar
Persson, J., Högberg, P., Ekblad, A.et al. (2003). Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia, 137, 252–7.CrossRefGoogle ScholarPubMed
Peter, M., Ayer, F. & Egli, S. (2001). Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and below-ground ectomycorrhizal species composition. New Phytologist, 149, 311–25.CrossRefGoogle Scholar
Plassard, C., Barry, D., Eltrop, L. & Moussin, D. (1994). Nitrate uptake in maritime pine (Pinus sylvestris Soland in Ait.) and the ectomycorrhizal fungus Hebeloma cylindrosporum: effect of ectomycorrhizal symbiosis. Canadian Journal of Botany, 72, 189–97.CrossRefGoogle Scholar
Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–91.CrossRefGoogle Scholar
Read, D. J. & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?New Phytologist, 157, 475–92.CrossRefGoogle Scholar
Reid, C. P. P., Kidd, F. A. & Ekwebelam, S. A. (1983). Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant and Soil, 71, 415–32.CrossRefGoogle Scholar
Rouhier, H. & Read, D. J. (1998). Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pinus sylvestris. Environmental and Experimental Botany, 40, 237–46.CrossRefGoogle Scholar
Ryan, M. G., Hubbard, R. M., Pongracic, S., Raison, R. J. & McMurtrie, R. E. (1996). Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology, 16, 333–44.CrossRefGoogle ScholarPubMed
Ryan, M. G., Lavigne, M. B. & Gower, S. T. (1997). Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. Journal of Geophysical Research, 102, 28 871–83.CrossRefGoogle Scholar
Rygiewicz, P. T. & Andersen, C. P. (1994). Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature, 369, 58–60.CrossRefGoogle Scholar
Rygiewicz, P. T., Bledsoe, C. S. & Zasoski, R. J. (1984). Effects of ectomycorrhizae and solution pH on 15N-nitrate uptake by coniferous seedlings. Canadian Journal of Forest Research, 14, 893–9.CrossRefGoogle Scholar
Sangtiean, T. & Schmidt, S. (2002). Growth of subtropical ECM fungi with different nitrogen sources using a new floating culture technique. Mycological Research, 16, 74–85.CrossRefGoogle Scholar
Schimel, J. & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591–602.CrossRefGoogle Scholar
Simard, S. W., Durall, D. & Jones, M. (2002). Carbon and nutrient fluxes within and between mycorrhizal plants. In Mycorrhizal Ecology, ed. Heijden, M. G. A. & Sanders, I. R.. Berlin: Springer-Verlag, pp. 33–74.Google Scholar
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis, 2nd edn. New York: Academic Press.Google Scholar
Söderström, B. & Read, D. J. (1987). Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilised soil. Soil Biology and Biochemistry, 19, 231–236.CrossRefGoogle Scholar
Tamm, C.-O. (1991). Nitrogen in Terrestrial Ecosystems. Questions of Productivity. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Taylor, A. F. S., Martin, F. & Read, D. J. (2000). Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) along North-South transects in Europe. In Carbon and Nitrogen Cycling in European Forest Ecosystems, Ecological Studies 142, ed. Schulze, E. D.. Berlin: Springer-Verlag, pp. 343–65.CrossRefGoogle Scholar
Tierney, G. L. & Fahey, T. J. (2002). Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research, 32, 1692–7.CrossRefGoogle Scholar
Tinker, P. B., Jones, M. D. & Durall, D. M. (1990). Phosphorus and carbon relationships in willow ectomycorrhizae. Symbiosis, 9, 43–9.Google Scholar
Treseder., K. K. & Allen, M. F. (2000). Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytologist, 147, 189–200.CrossRefGoogle Scholar
Treseder, K. K., Masiello, C. A., Lansing, J. L. & Allen, M. F. (2004). Species-specific measurements of ectomycorrhizal turnover under N-fertilization: combining isotopic and genetic approaches. Oecologia, 138, 419–25.CrossRefGoogle ScholarPubMed
Vogt, K. A., Grier, C., Meier, C. E. & Edmonds, R. L. (1982). Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology, 63, 370–80.CrossRefGoogle Scholar
Wallander, H. (1995). A new hypothesis to explain allocation of dry matter between ectomycorrhizal fungi and pine seedlings. Plant and Soil, 168–169, 243–8.CrossRefGoogle Scholar
Wallander, H. & Nylund, J-E. (1992). Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytologist, 120, 495–503.CrossRefGoogle Scholar
Wallander, H., Nilsson, L. O., Hagerberg, D. & Bååth, E. (2001). Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist, 151, 753–60.CrossRefGoogle Scholar
Wallander, H., Nilsson, L.-O., Hagerberg, D. & Rosengren, U. (2003). Direct estimates of C:N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biology and Biochemistry, 35, 997–9.CrossRefGoogle Scholar
Wallander, H., Göransson, H. & Rosengren, U. (2004). Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia, 139, 89–97.CrossRefGoogle ScholarPubMed
Wallenda, T. & Kottke, I. (1998). N deposition and ectomycorrhizas. New Phytologist, 139, 169–87.CrossRefGoogle Scholar
Wallenda, T., Stober, C., Högbom, L. et al. (2000). Nitrogen uptake processes in roots and mycorrhizas. In Carbon and Nitrogen Cycling in European Forest Ecosystems, Ecological Studies 142, ed. Schulze, E. D.. Berlin: Springer-Verlag, pp. 122–43.CrossRefGoogle Scholar
Waring, R. H. & Running, S. W. (1998). Forest Ecosystems: Analysis at Multiple Scales. New York: Academic Press.Google Scholar
Waring, R. H. & Schlesinger, W. H. (1985). Forest Ecosystems: Concepts and Management. New York: Academic Press.Google Scholar
Wiklund, K., Nilsson, L.-O. & Jacobsson, S. (1995). Effect of irrigation, fertilization, and drought on basidioma production in a Norway spruce stand. Canadian Journal of Botany, 73, 200–8.CrossRefGoogle Scholar
Zeller, B., Colin-Belgrand, M., Dambrine, E., Martin, F. & Bottner, P. (2000). Decomposition of 15N-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia, 123, 550–9.CrossRefGoogle Scholar
Zeller, B., Colin-Belgrand, M., Dambrine, E. & Martin, F. (2001). Fate of nitrogen released from 15N-labeled litter in European beech forests. Tree Physiology, 21, 153–62.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×