Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:58:53.664Z Has data issue: false hasContentIssue false

Part III - Technology Development and Screening

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 163 - 234
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bae, S, Kweon, J, Kim, HS, Kim, J-S. 2014. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11: 705706.CrossRefGoogle ScholarPubMed
Barbaric, I, Miller, G, Dear, TN. 2007. Appearances can be deceiving: phenotypes of knockout mice. Brief Funct Genomic Proteomic 6: 91103.CrossRefGoogle ScholarPubMed
Bassett, AR, Tibbit, C, Ponting, CP, Liu, J-L. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4: 220228.CrossRefGoogle ScholarPubMed
Bétermier, M, Bertrand, P, Lopez, BS. 2014. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10(1): e1004086.CrossRefGoogle ScholarPubMed
Bishop, KA, Harrington, A, Kouranova, E, et al. 2016. CRISPR/Cas9-mediated insertion of loxP sites in the mouse dock7 gene provides an effective alternative to use of targeted embryonic stem cells. G3 (Bethesda) 6: 20512061.CrossRefGoogle ScholarPubMed
Bolotin, A, Quinquis, B, Sorokin, A, Ehrlich, SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 25512561.CrossRefGoogle ScholarPubMed
Brouns, SJJ, Jore, MM, Lundgren, M, et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960964.CrossRefGoogle ScholarPubMed
Carbery, ID, Ji, D, Harrington, A, et al. 2010. Targeted genome modification in mice using zinc-finger nucleases. Genetics 186: 451459.CrossRefGoogle ScholarPubMed
Cheng, R, Peng, J, Yan, Y, et al. 2014. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett 588: 39543958.CrossRefGoogle ScholarPubMed
Chiruvella, KK, Liang, Z, Wilson, TE. 2013. Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol 5(5): a012757.CrossRefGoogle ScholarPubMed
Chu, VT, Weber, T, Wefers, B, et al. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33: 543548.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819823.CrossRefGoogle ScholarPubMed
Crespan, E, Czabany, T, Maga, G, Hübscher, U. 2012. Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences. Nucleic Acids Res 40(12): 55775590.CrossRefGoogle ScholarPubMed
Davies, B, Davies, G, Preece, C, et al. 2013. Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes. PLoS One 8: e60216.CrossRefGoogle ScholarPubMed
Davis, AJ, Chen, DJ, 2013. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2: 130143.Google ScholarPubMed
Decottignies, A. 2013. Alternative end-joining mechanisms: a historical perspective. Front Genet 4: 48.CrossRefGoogle ScholarPubMed
Deriano, L, Roth, DB. 2013. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47: 433455.CrossRefGoogle ScholarPubMed
Dianov, GL, Hübscher, U. 2013. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 41: 34833490.CrossRefGoogle ScholarPubMed
DiCarlo, JE, Norville, JE, Mali, P, et al. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41: 43364343.CrossRefGoogle ScholarPubMed
Dueva, R, Iliakis, G. 2013. Alternative pathways of non-homologous end joining (NHEJ) in genomic instability and cancer. Transl Cancer Res 2: 163177.Google Scholar
Fujii, W, Kawasaki, K, Sugiura, K, Naito, K. 2013. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res 41: e187.CrossRefGoogle ScholarPubMed
Gao, P, Yang, H, Rajashankar, KR, Huang, Z, Patel, DJ. 2016. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 26: 901913.CrossRefGoogle ScholarPubMed
Griep, AE, John, MC, Ikeda, S, Ikeda, A. 2011. Gene targeting in the mouse. Methods Mol Biol 770: 293312.CrossRefGoogle ScholarPubMed
Guilinger, JP, Thompson, DB, Liu, DR 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32: 577582.CrossRefGoogle ScholarPubMed
Haeussler, M, Schönig, K, Eckert, H. et al. 2016. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17: 148.CrossRefGoogle ScholarPubMed
Hall, B, Limaye, A, Kulkarni, AB. 2009. Overview: generation of gene knockout mice. Curr Protoc Cell Biol Chapter: Unit-19.1217.CrossRefGoogle Scholar
Hara, S, Tamano, M, Yamashita, S, et al. 2015. Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9. Sci Rep 5: 11221.CrossRefGoogle ScholarPubMed
Heckl, D, Kowalczyk, MS, Yudovich, D, et al. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32: 941946.CrossRefGoogle ScholarPubMed
Heyer, W-D, Ehmsen, KT, Liu, J. 2010. Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44: 113139.CrossRefGoogle ScholarPubMed
Hur, JK, Kim, K, Been, KW, et al. 2016. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34(8): 807808.CrossRefGoogle ScholarPubMed
Hwang, WY, Fu, Y, Reyon, D, et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31: 227229.CrossRefGoogle ScholarPubMed
Isken, O, Maquat, LE. 2007. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 21: 18333856.CrossRefGoogle ScholarPubMed
Jasin, M, Rothstein, R. 2013. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5: a012740.CrossRefGoogle ScholarPubMed
Jinek, M, Chylinski, K, Fonfara, I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816821.CrossRefGoogle ScholarPubMed
Kim, D, Kim, J, Hur, JK, et al. 2016. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34: 863868.CrossRefGoogle ScholarPubMed
Kleinstiver, BP, Pattanayak, V, Prew, MS, et al. 2016. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529: 490495.CrossRefGoogle ScholarPubMed
Kleinstiver, BP, Prew, MS, Tsai, SQ, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523: 481485.CrossRefGoogle ScholarPubMed
Lee, AY-F, Lloyd, KCK. 2014. Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice. FEBS Open Bio 4: 637642.CrossRefGoogle Scholar
Lee, CM, Cradick, TJ, Bao, G. 2016. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther J Am Soc Gene Ther 24: 645654.CrossRefGoogle ScholarPubMed
Lieber, MR. 1999. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells Devoted Mol Cell Mech 4: 7785.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339: 823826.CrossRefGoogle ScholarPubMed
Mao, Z, Jiang, Y, Liu, X, Seluanov, A, Gorbunova, V. 2009. DNA repair by homologous recombination, but not by nonhomologous end joining, is elevated in breast cancer cells. Neoplasia N Y N 11: 683691.CrossRefGoogle Scholar
Maruyama, T, Dougan, SK, Truttmann, MC, et al. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33: 538542.CrossRefGoogle ScholarPubMed
Matsuzaki, K, Terasawa, M, Iwasaki, D, Higashide, M, Shinohara, M. 2012. Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by double-strand break resection. Genes Cells Devoted Mol Cell Mech 17: 473493.CrossRefGoogle ScholarPubMed
McVey, M, Lee, SE. 2008. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24: 529538.CrossRefGoogle ScholarPubMed
Mehta, A, Haber, JE. 2014. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6: a016428.CrossRefGoogle ScholarPubMed
Ménoret, S, De Cian, A, Tesson, L, et al. 2015. Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins. Sci Rep 5: 14410.CrossRefGoogle ScholarPubMed
Müller, M, Lee, CM, Gasiunas, G, et al. 2016. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther J Am Soc Gene Ther 24: 636644.CrossRefGoogle ScholarPubMed
Nakagawa, Y, Sakuma, T, Nishimichi, N, et al. 2016. Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice. Biol Open 5(8): 11421148.CrossRefGoogle ScholarPubMed
Nishimasu, H, Ran, FA, Hsu, PD, et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156: 935949.CrossRefGoogle ScholarPubMed
Niu, Y, Shen, B, Cui, Y, et al. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156: 836843.CrossRefGoogle ScholarPubMed
Onuma, A, Fujii, W, Sugiura, K, Naito, K. 2016. Efficient mutagenesis by CRISPR/Cas system during meiotic maturation of porcine oocytes. J Reprod Dev 63(1): 4550.CrossRefGoogle ScholarPubMed
Qin, W, Dion, SL, Kutny, PM, et al. 2015. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200: 423430.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Lin, C-Y, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 13801389.CrossRefGoogle ScholarPubMed
Renaud, J-B, Boix, C, Charpentier, M, et al. 2016. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14: 22632272.CrossRefGoogle ScholarPubMed
Roth, DB, Wilson, JH. 1986. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol 6: 42954304.Google ScholarPubMed
Shen, B, Zhang, J, Wu, H, et al. 2013. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23: 720723.CrossRefGoogle ScholarPubMed
Simsek, D, Jasin, M. 2010. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 17: 410416.CrossRefGoogle ScholarPubMed
Singh, P, Schimenti, JC, Bolcun-Filas, E. 2015. A mouse geneticist’s practical guide to CRISPR applications. Genetics 199: 115.CrossRefGoogle ScholarPubMed
Slaymaker, IM, Gao, L, Zetsche, B, et al. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351: 8488.CrossRefGoogle ScholarPubMed
Sorek, R, Lawrence, CM, Wiedenheft, B. 2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82: 237266.CrossRefGoogle ScholarPubMed
Sternberg, SH, Redding, S, Jinek, M, Greene, EC, Doudna, JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507: 6267.CrossRefGoogle ScholarPubMed
Tesson, L, Usal, C, Ménoret, S, et al. 2011. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29: 695696.CrossRefGoogle ScholarPubMed
Vartak, SV, Raghavan, SC. 2015. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing. FEBS J 282: 42894294.CrossRefGoogle ScholarPubMed
Wang, B, Li, K, Wang, A, et al. 2015. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. BioTechniques 59: 201202, 204, 206208.CrossRefGoogle ScholarPubMed
Wang, H, Yang, H, Shivalila, CS, et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: 910918.CrossRefGoogle ScholarPubMed
Wang, X, Cai, B, Zhou, J, et al. 2016. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One 11: e0164640.CrossRefGoogle ScholarPubMed
Xing, H-L, Dong, L, Wang, Z-P, et al. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14: 327.CrossRefGoogle ScholarPubMed
Yang, H, Wang, H, Jaenisch, R. 2014. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9: 19561968.CrossRefGoogle ScholarPubMed
Yang, H, Wang, H, Shivalila, CS, et al. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas mediated genome engineering. Cell 154: 13701379.CrossRefGoogle ScholarPubMed
Yasue, A, Mitsui, SN, Watanabe, T, et al. 2014. Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems. Sci Rep 4: 5705.CrossRefGoogle ScholarPubMed
Zetsche, B, Gootenberg, JS, Abudayyeh, OO, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759771.CrossRefGoogle ScholarPubMed
Zhang, L, Jia, R, Palange, NJ, et al. 2015. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One 10: e0120396.CrossRefGoogle ScholarPubMed
Zhu, Z, Verma, N, González, F, Shi, Z-D, Huangfu, D. 2015. A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Rep 4: 11031111.CrossRefGoogle ScholarPubMed

References

Bae, S, Kweon, J, Kim, HS, Kim, J-S. 2014. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11(7): 705706.CrossRefGoogle ScholarPubMed
Beumer, KJ, Trautman, JK, Christian, M, et al. 2013. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila. G3 (Bethesda) 3(10): 17171725.CrossRefGoogle ScholarPubMed
Bibikova, M, Carroll, D, Segal, DJ, et al. 2001. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21(1): 289297.CrossRefGoogle ScholarPubMed
Brinkman, EK, Chen, T, Amendola, M, van Steensel, B. 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22): e168.CrossRefGoogle ScholarPubMed
Børresen, AL, Hovig, E, Brøgger, A. 1988. Detection of base mutations in genomic DNA using denaturing gradient gel electrophoresis (DGGE) followed by transfer and hybridization with gene-specific probes. Mutation Res 202(1): 7783.CrossRefGoogle ScholarPubMed
Chen, F, Pruett-Miller, SM, Huang, Y, et al. 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9): 753755.CrossRefGoogle ScholarPubMed
Chen, S, Oikonomou, G, Chiu, CN, et al. 2013. A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res 41(4): 27692778.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121): 819823.CrossRefGoogle ScholarPubMed
Dahlem, TJ, Hoshijima, K, Jurynec, MJ, et al. 2012. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8(8): e1002861.CrossRefGoogle ScholarPubMed
Deriano, L, Roth, DB. 2013. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47: 433455.CrossRefGoogle ScholarPubMed
Doench, JG, Fusi, N, Sullender, M, et al. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34: 112.CrossRefGoogle ScholarPubMed
Doench, JG, Hartenian, E, Graham, DB, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12): 12621267.CrossRefGoogle ScholarPubMed
Eshaghpour, H, Crothers, DM. 1978. Preparative separation of the complementary strands of DNA restriction fragments by alkaline RPC-5 chromatography. Nucleic Acids Res 5(5): 16271637.CrossRefGoogle ScholarPubMed
Foley, JE, Maeder, ML, Pearlberg, J, et al. 2009. Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protocols 4(12): 18551867.CrossRefGoogle ScholarPubMed
Fu, Y, Foden, JA, Khayter, C, et al. 2013. High-frequency off-target mutagenesis induced by CrIsPr-Cas nucleases in human cells. Nat Biotechnol 31(9): 822826.CrossRefGoogle ScholarPubMed
Gao, H, Huang, J, Barany, F, Cao, W. 2007. Switching base preferences of mismatch cleavage in endonuclease V: an improved method for scanning point mutations. Nucleic Acids Res 35(1): 16.Google ScholarPubMed
Geurts, AM, Cost, GJ, Freyvert, Y, et al. 2010. Knockout rats produced using designed zinc finger nucleases. Science 325(5939): 20092011.Google Scholar
Güell, M, Yang, L, Church, G. 2014. Genome editing assessment using CRISPR genome analyzer. Bioinformatics 30(20): 29682970.CrossRefGoogle ScholarPubMed
Huang, MC, Cheong, WC, Lim, LS, Li, M-H. 2012. A simple, high sensitivity mutation screening using Ampligase mediated T7 endonuclease I and Surveyor nuclease with microfluidic capillary electrophoresis. Electrophoresis 33(5): 788796.CrossRefGoogle ScholarPubMed
Inazuka, M, Wenz, H, Sakabe, M, Tahira, T, Hayashi, K. 1997. A streamlined mutation detection system: multicolor post-PCR fluorescence labeling and single-strand conformational polymorphism analysis by capillary electrophoresis. Genome Res 7(11): 10941103.CrossRefGoogle ScholarPubMed
Jinek, M, East, A, Cheng, A, et al. 2013. RNA-programmed genome editing in human cells. eLife 2(3): e00471.CrossRefGoogle ScholarPubMed
Kim, HH, Um, E, Cho, S, Jung, C, Kim, J. 2011. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat Methods 8(11): 941943.CrossRefGoogle ScholarPubMed
Kim, Y, Kweon, J, Kim, J-S. 2013. TALENs and ZFNs are associated with different mutation signatures. Nat Methods 10(3): 185.CrossRefGoogle ScholarPubMed
Kosicki, M, Rajan, SS, Lorenzetti, FC, et al. 2017. Dynamics of indel profiles induced by various CRISPR/Cas9 delivery methods. Prog Mol Biol Trans Sci 152: 4967.CrossRefGoogle ScholarPubMed
Kuan, SF, Byrd, JC, Basbaum, C, Kim, YS. 1989. Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells. J Biol Chem 264(32): 1927119277.CrossRefGoogle ScholarPubMed
Lindsay, H, Burger, A, Biyong, B, et al. 2015. CrispR variants: precisely charting the mutation spectrum in genome engineering experiments. Nat Biotechnol 34(7): 701703.CrossRefGoogle Scholar
Liu, W, Smith, DI, Rechtzigel, KJ, Thibodeau, SN, James, CD. 2002. Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res 26(6): 13961400.CrossRefGoogle Scholar
Liu, X, Homma, A, Sayadi, J, et al. 2016. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep 6: 19675.CrossRefGoogle ScholarPubMed
Lonowski, LA, Narimatsu, Y, Riaz, A, et al. 2017. Genome editing using FACS enrichment of nuclease expressing cells and Indel Detection by Amplicon Analysis (IDAA). Nat Protoc 12(3): 581603.CrossRefGoogle Scholar
Mali, P, Yang, L, Esvelt, KM, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121): 823826.CrossRefGoogle ScholarPubMed
Mashal, RD, Koontz, J, Sklar, J. 1995. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat Genet 2: 177183.CrossRefGoogle Scholar
Miller, JC, Holmes, MC, Wang, J, et al. 2007. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7): 778785.CrossRefGoogle ScholarPubMed
Moscou, MJ, Bogdanove, AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326(5959): 1501.CrossRefGoogle ScholarPubMed
Nakade, S, Tsubota, T, Sakane, Y, et al. 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Comm 5: 5560.CrossRefGoogle ScholarPubMed
Oleykowski, CA, Mullins, CRB, Godwin, AK, Yeung, AT. 1998. Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26(20): 45974602.CrossRefGoogle ScholarPubMed
Pimkin, M, Caretti, E, Canutescu, A, et al. 2007. Recombinant nucleases CEL I from celery and SP I from spinach for mutation detection. BMC Biotechnol 7: 29.CrossRefGoogle Scholar
Pinello, L, Canver, MC, Hoban, MD, et al. 2016. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotech 34(7): 695697.CrossRefGoogle ScholarPubMed
Qiu, P, Shandilya, H, D’Alessio, JM, et al. 2004. Mutation detection using Surveyor nuclease. BioTechniques 36(4): 702707.CrossRefGoogle ScholarPubMed
Sakurai, T, Watanabe, S, Kamiyoshi, A, Sato, M, Shindo, T. 2014. A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice. BMC Biotechnol 14(1): 69.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Hartenian, E, et al. 2013. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166): 8487.CrossRefGoogle ScholarPubMed
Smith, GR. 2004. How homologous recombination is initiated: unexpected evidence for single-strand nicks from v(d)j site-specific recombination. Cell 117(2): 146148.CrossRefGoogle ScholarPubMed
Smith, J, Berg, JM, Chandrasegaran, S. 1999. A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res 27(2): 674681.CrossRefGoogle ScholarPubMed
Smith, J, Bibikova, M, Whitby, FG, et al. 2000. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28(17): 33613369.CrossRefGoogle ScholarPubMed
Stark, JM, Pierce, AJ, Oh, J, Pastink, A, Jasin, M. 2004. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24(21): 93059316.CrossRefGoogle ScholarPubMed
Symington, LS, Gautier, J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247273.CrossRefGoogle ScholarPubMed
Urnov, FD, Miller, JC, Lee, YL, et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042): 646651.CrossRefGoogle ScholarPubMed
Van Overbeek, M, Capurso, D, Carter, MM, et al. 2016. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Molecular Cell 63: 114.Google ScholarPubMed
Vouillot, L, Thelie, A, Pollet, N. 2015. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5(3): 407415.CrossRefGoogle ScholarPubMed
Yang, L, Guell, M, Byrne, S, et al. 2013. Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41(19): 90499061.CrossRefGoogle ScholarPubMed
Yang, Z, Steentoft, C, Hauge, C, et al. 2015. Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 43(9): e59.CrossRefGoogle ScholarPubMed
Yeung, AT, Hattangadi, D, Blakesley, L, Nicolas, E. 2005. Enzymatic mutation detection technologies. BioTechniques 38(5): 749758.CrossRefGoogle ScholarPubMed
Youil, R, Kemper, BW, Cotton, RG. 1995. Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII. Proc Natl Acad Sci USA 92(1): 8791.CrossRefGoogle ScholarPubMed
Yu, C, Zhang, Y, Yao, S, Wei, Y. 2014. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS One 9(6): e98282.CrossRefGoogle ScholarPubMed

References

Antão, JM, Mason, JM, Déjardin, J, Kingston, RE. 2012. Protein landscape at Drosophila melanogaster telomere-associated sequence repeats. Mol Cell Biol 32: 21702182.CrossRefGoogle ScholarPubMed
Bikard, D, Jiang, W, Samai, P, et al. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41: 74297437.CrossRefGoogle ScholarPubMed
Bogdanove, AJ, Voytas, DF. 2011. TAL effectors: customizable proteins for DNA targeting. Science 333: 18431846.CrossRefGoogle ScholarPubMed
Chen, B, Gilbert, LA, Cimini, BA, et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 14791491.CrossRefGoogle ScholarPubMed
Chu, C, Qu, K, Zhong, FL, Artandi, SE, Chang, HY. 2011. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44: 667678.CrossRefGoogle ScholarPubMed
Collas, P. 2010. The current state of chromatin immunoprecipitation. Mol Biotechnol 45: 87100.CrossRefGoogle ScholarPubMed
de Lange, T. 2005. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19: 21002110.CrossRefGoogle ScholarPubMed
de Wit, E., de Laat, W. 2012. A decade of 3 C technologies: insights into nuclear organization. Genes Dev 26: 1124.CrossRefGoogle Scholar
Déjardin, J, Kingston, RE. 2009. Purification of proteins associated with specific genomic loci. Cell 136: 175186.CrossRefGoogle ScholarPubMed
Dekker, J, Rippe, K, Dekker, M, Kleckner, N. 2002. Capturing chromosome conformation. Science 295: 13061311.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.CrossRefGoogle ScholarPubMed
Durbin, JE, Hackenmiller, R, Simon, MC, Levy, DE. 1996. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral diseases. Cell 84: 443450.CrossRefGoogle Scholar
Egner, A, Hell, SW. 2005. Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol 15: 207215.CrossRefGoogle ScholarPubMed
Engreitz, JM, Pandya-Jones, A, McDonel, P, et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341: 1237973.CrossRefGoogle ScholarPubMed
Fisher, AG, Merkenschlager, M. 2002. Gene silencing, cell fate and nuclear organisation. Curr Opin Genet Dev 12: 193197.CrossRefGoogle ScholarPubMed
Fraser, P, Bickmore, W. 2007. Nuclear organization of the genome and the potential for gene regulation. Nature 447: 413417.CrossRefGoogle ScholarPubMed
Fujii, H, Fujita, T. 2015. Isolation of specific genomic regions and identification of their associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using the CRISPR system and TAL proteins. Int J Mol Sci 16: 2180221812.CrossRefGoogle ScholarPubMed
Fujita, T, Asano, Y, Ohtsuka, J, et al. 2013. Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP). Sci Rep 3: 3171.CrossRefGoogle ScholarPubMed
Fujita, T, Fujii, H. 2011. Direct identification of insulator components by insertional chromatin immunoprecipitation. PLoS One 6: e26109.CrossRefGoogle ScholarPubMed
Fujita, T, Fujii, H. 2012. Efficient isolation of specific genomic regions by insertional chromatin immunoprecipitation (iChIP) with a second-generation tagged LexA DNA-binding domain. Adv Biosci Biotechnol 3: 626629.CrossRefGoogle Scholar
Fujita, T, Fujii, H. 2013a. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun 439: 132136.CrossRefGoogle ScholarPubMed
Fujita, T, Fujii, H. 2013b. Locus-specific biochemical epigenetics/chromatin biochemistry by insertional chromatin immunoprecipitation. ISRN Biochem 2013: 913273.CrossRefGoogle ScholarPubMed
Fujita, T, Fujii, H. 2014a. Efficient isolation of specific genomic regions retaining molecular interactions by the iChIP system using recombinant exogenous DNA-binding proteins. BMC Mol Biol 15: 26.CrossRefGoogle ScholarPubMed
Fujita, T, Fujii, H. 2014b. Identification of proteins associated with an IFNγ-responsive promoter by a retroviral expression system for enChIP using CRISPR. PLoS One 9: e103084.CrossRefGoogle ScholarPubMed
Fujita, T, Fujii, H. 2014c. Identification of proteins interacting with genomic regions of interest in vivo using engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP). Bio Protoc 4: e1124.CrossRefGoogle Scholar
Fujita, T, Fujii, H. 2015a. Applications of engineered DNA-binding molecules such as TAL proteins and the CRISPR/Cas system in biology research. Int J Mol Sci 16: 2314323164.CrossRefGoogle ScholarPubMed
Fujita, T, Fujii, H. 2015b. Isolation of specific genomic regions and identification of associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Methods Mol Biol 1288: 4352.CrossRefGoogle ScholarPubMed
Fujita, T, Fujii, H. 2016a. Biochemical analysis of genome functions using locus-specific chromatin immunoprecipitation technologies. Gene Regul Syst Bio 10: 19.Google ScholarPubMed
Fujita, T, Fujii, H. 2016b. Isolation of specific genomic regions and identification of associated molecules by enChIP. J Vis Exp 107: e53478.Google Scholar
Fujita, T, Kitaura, F, Fujii, H. 2015a. A critical role of the Thy28-MYH9 axis in B cell-specific expression of the Pax5 gene in chicken B cells. PLoS One 10: e0116579.CrossRefGoogle Scholar
Fujita, T, Yuno, M, Fujii, H. 2016. Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins. Genes Cells 21: 370377.CrossRefGoogle ScholarPubMed
Fujita, T, Yuno, M, Okuzaki, D, Ohki, R, Fujii, H. 2015b. Identification of non-coding RNAs associated with telomeres using a combination of enChIP and RNA sequencing. PLoS One 10: e0123387.CrossRefGoogle ScholarPubMed
Fujita, T, Yuno, M, Suzuki, Y, Sugano, S, Fujii, H. 2017. Identification of physical interactions between genomic regions by enChIP-Seq. Genes Cells 22: 506520.CrossRefGoogle ScholarPubMed
Gavrilov, AA, Chetverina, HV, Chermnykh, ES, Razin, SV, Chetverin, AB. 2014. Quantitative analysis of genomic element interactions by molecular colony technique. Nucleic Acids Res 42: e36.CrossRefGoogle ScholarPubMed
Harrison, MM, Jenkins, BV, O’Connor-Giles, KM, Wildonger, J. 2014. A CRISPR view of development. Genes Dev 28: 18591872.CrossRefGoogle ScholarPubMed
Hoshino, A, Fujii, H. 2009. Insertional chromatin immunoprecipitation: a method for isolating specific genomic regions. J Biosci Bioeng 108: 446449.CrossRefGoogle ScholarPubMed
Ide, S, Dejardin, J. 2015. End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter. Nat Commun 6: 6674.CrossRefGoogle ScholarPubMed
Ji, N, Shroff, H, Zhong, H, Betzig, E. 2008. Advances in the speed and resolution of light microscopy. Curr Opin Neurobiol 18: 605616.CrossRefGoogle ScholarPubMed
Kalhor, R, Tjong, H, Jayathilaka, N, Alber, F, Chen, L. 2011. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 30: 9098.CrossRefGoogle ScholarPubMed
Kwon, S. 2013. Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules. BMB Rep 46: 6572.CrossRefGoogle ScholarPubMed
Lindhout, BI, Fransz, P, Tessadori, F, et al. 2007. Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res 35: e107.CrossRefGoogle ScholarPubMed
Mariner, PD, Walters, RD, Espinoza, CA, et al. 2008. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29: 499509.CrossRefGoogle ScholarPubMed
Meraz, MA, White, JM, Sheehan, KC, et al. 1996. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84: 431442.CrossRefGoogle ScholarPubMed
Miyanari, Y, Ziegler-Birling, C, Torres-Padilla, ME. 2013. Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 20: 13211324.CrossRefGoogle ScholarPubMed
Nagano, T, Várnai, C, Schoenfelder, S, et al. 2015. Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol 16: 175.CrossRefGoogle ScholarPubMed
Ong, SE, Biagoev, B, Kratchmarova, I, et al. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1: 376386.CrossRefGoogle ScholarPubMed
Pabo, CO, Peisach, E, Grant, RA. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70: 313340.CrossRefGoogle ScholarPubMed
Qi, LS, Larson, MH, Gilbert, LA, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 11731183.CrossRefGoogle ScholarPubMed
Sahl, SJ, Moerner, WE. 2013. Super-resolution fluorescence imaging with single molecules. Curr Opin Struct Biol 23: 778787.CrossRefGoogle ScholarPubMed
Simon, MD, Wang, CI, Kharchenko, PV, et al. 2011. The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA 108: 2049720502.CrossRefGoogle ScholarPubMed

References

Aguirre, AJ, Meyers, RM, Weir, BA, et al. 2016. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6: 914929.CrossRefGoogle ScholarPubMed
Bassik, MC, Lebbink, RJ, Churchman, LS, et al. 2009. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods 6: 443445.CrossRefGoogle ScholarPubMed
Boettcher, M, Hoheisel, JD. 2010. Pooled RNAi screens: technical and biological aspects. Curr Genomics 11: 162167.CrossRefGoogle ScholarPubMed
Boettcher, M, Mcmanus, MT. 2015. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58: 575585.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819823.CrossRefGoogle ScholarPubMed
Doench, JG, Fusi, N, Sullender, M, et al. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34: 184191.CrossRefGoogle ScholarPubMed
Dorsett, Y, Tuschl, T. 2004. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3: 318329.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.CrossRefGoogle ScholarPubMed
Evers, B, Jastrzebski, K, Heijmans, JP, et al. 2016. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol 34: 631633.CrossRefGoogle ScholarPubMed
Fire, A, Xu, S, Montgomery, MK, et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806811.CrossRefGoogle ScholarPubMed
Gilbert, LA, Horlbeck, MA, Adamson, B, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159: 647661.CrossRefGoogle ScholarPubMed
Hart, T, Brown, KR, Sircoulomb, F, Ottapel, R, Moffat, J. 2014. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol 10: 733.CrossRefGoogle ScholarPubMed
Hart, T, Chandrashekhar, M, Aregger, M, et al. 2015. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163: 15151526.CrossRefGoogle ScholarPubMed
Hinz, JM, Laughery, MF, Wyrick, JJ. 2015. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 54: 70637066.CrossRefGoogle ScholarPubMed
Horlbeck, MA, Witkowsky, LB, Guglielmi, B, et al. 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife 5: e12677.CrossRefGoogle ScholarPubMed
Isaac, RS, Jiang, F, Doudna, JA, et al. 2016. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife 5: e13450.CrossRefGoogle ScholarPubMed
Jinek, M, Chylinski, K, Fonfara, I., et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816821.CrossRefGoogle ScholarPubMed
Jinek, M, East, A, Cheng, A, et al. 2013. RNA-programmed genome editing in human cells. Elife 2: e00471.CrossRefGoogle ScholarPubMed
Koike-Yusa, H, Li, Y, Tan, EP, Velasco-Herrera Mdel, C, Yusa, K. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32: 267273.CrossRefGoogle ScholarPubMed
Kolde, R, Laur, S, Adler, P, Vilo, J. 2012. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28: 573580.CrossRefGoogle ScholarPubMed
Li, W, Xu, H, Xiao, T, et al. 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15: 554.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339: 823826.CrossRefGoogle ScholarPubMed
Marceau, CD, Puschnik, AS, Majzoub, K, et al. 2016. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535: 159163.CrossRefGoogle ScholarPubMed
Mohr, S, Bakal, C, Perrimon, N. 2010. Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79: 3764.CrossRefGoogle ScholarPubMed
Mohr, SE, Hu, Y, Ewen-Campen, B, et al. 2016. CRISPR guide RNA design for research applications. FEBS J 283(17): 32323238.CrossRefGoogle ScholarPubMed
Morgens, DW, Deans, RM, Li, A, Bassik, MC. 2016. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat Biotechnol 34: 634636.CrossRefGoogle ScholarPubMed
Munoz, DM, Cassiani, PJ, Li, L, et al. 2016. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 6(8): 900913.CrossRefGoogle ScholarPubMed
Newton, K, Manning, G. 2016. Necroptosis and inflammation. Annu Rev Biochem 85: 743763.CrossRefGoogle ScholarPubMed
Ran, FA, Cong, L, Yan, WX, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186191.CrossRefGoogle ScholarPubMed
Sander, JD, Joung, JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32: 347355.CrossRefGoogle ScholarPubMed
Sanjana, NE. 2016. Genome-scale CRISPR pooled screens. Anal Biochem 532: 9599.CrossRefGoogle ScholarPubMed
Sanjana, NE, Shalem, O, Zhang, F. 2014. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11: 783784.CrossRefGoogle ScholarPubMed
Savidis, G, McDougall, WM, Meraner, P, et al. 2016. Identification of Zika virus and dengue virus dependency factors using functional genomics. Cell Rep 16: 232246.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Hartenian, E, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 8487.CrossRefGoogle ScholarPubMed
Shi, J, Wang, E, Milazzo, JP, et al. 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33: 661667.CrossRefGoogle ScholarPubMed
Sigoillot, FD, King, RW. 2011. Vigilance and validation: keys to success in RNAi screening. ACS Chem Biol 6: 4760.CrossRefGoogle ScholarPubMed
Smith, JD, Suresh, S, Schlecht, U, et al. 2016. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 17: 45.CrossRefGoogle ScholarPubMed
Sternberg, SH, Lafrance, B, Kaplan, M, Doudna, JA. 2015. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527: 110113.CrossRefGoogle ScholarPubMed
Strezoska, Z., Licon, A., Haimes, J., et al. 2012. Optimized PCR conditions and increased shRNA fold representation improve reproducibility of pooled shRNA screens. PLoS One 7: e42341.CrossRefGoogle ScholarPubMed
Tycko, J, Myer, VE, Hsu, PD. 2016. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell 63: 355370.CrossRefGoogle ScholarPubMed
Van Overbeek, M, Capurso, D, Carter, MM, et al. 2016. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol Cell 63(4): 633646.CrossRefGoogle ScholarPubMed
Wang, H, Lu, B, Castillo, J, et al. 2016a. Tankyrase inhibitor sensitizes lung cancer cells to endothelial growth factor receptor (EGFR) inhibition via stabilizing angiomotins and inhibiting YAP signaling. J Biol Chem 291: 1525615266.CrossRefGoogle ScholarPubMed
Wang, T, Birsoy, K, Hughes, NW, et al. 2015. Identification and characterization of essential genes in the human genome. Science 350: 10961101.CrossRefGoogle ScholarPubMed
Wang, T, Lander, ES, Sabatini, DM. 2016b. Large-scale single guide RNA library construction and use for CRISPR-Cas9-based genetic screens. Cold Spring Harb Protoc 2016: pdb top086892.CrossRefGoogle ScholarPubMed
Wang, T, Wei, JJ, Sabatini, DM, Lander, ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343: 8084.CrossRefGoogle ScholarPubMed
Wilcoxon, F. 1946. Individual comparisons of grouped data by ranking methods. J Econ Entomol 39: 269.CrossRefGoogle ScholarPubMed
Yu, J, Silva, J, Califano, A. 2016. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling. Bioinformatics 32: 260267.CrossRefGoogle ScholarPubMed
Zhang, R, Miner, JJ, Gorman, MJ, et al. 2016. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535: 164168.CrossRefGoogle ScholarPubMed

References

Agrotis, A, Ketteler, R. 2015. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Frontiers in Genetics 6: 300.CrossRefGoogle ScholarPubMed
Cho, SW, Kim, S, Kim, Y, et al. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1): 132141.CrossRefGoogle ScholarPubMed
Dai, Z, Sheridan, JM, Gearing, LJ, et al. 2014. edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens. F1000Res 3: 95.Google ScholarPubMed
Doench, JG, Hartenian, E, Graham, DB, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12): 12621267.CrossRefGoogle ScholarPubMed
Fu, Y, Foden, JA, Khayter, C, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9): 822826.CrossRefGoogle ScholarPubMed
Fu, Y, Sander, JD, Reyon, D, et al. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3): 279284.CrossRefGoogle ScholarPubMed
Gilbert, LA, Horlbeck, MA, Adamson, B, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3): 647661.CrossRefGoogle ScholarPubMed
Gilbert, LA, Larson, MH, Morsut, L, et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2): 442451.CrossRefGoogle ScholarPubMed
Heigwer, F, Zhan, T, Breinig, M, et al. 2016. CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biol 17: 55.CrossRefGoogle ScholarPubMed
Hsu, PD, Scott, DA, Weinstein, JA, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9): 827832.CrossRefGoogle ScholarPubMed
Kim, J, Tan, AC. 2012. BiNGS!SL-seq: a bioinformatics pipeline for the analysis and interpretation of deep sequencing genome-wide synthetic lethal screen. Methods Mol Biol 802: 389398.CrossRefGoogle ScholarPubMed
Koike-Yusa, H, Li, Y, Tan, EP, et al. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3): 267273.CrossRefGoogle ScholarPubMed
Konermann, S, Brigham, MD, Trevino, AE, et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536): 583588.CrossRefGoogle ScholarPubMed
Li, W, Köster, J, Xu, H, et al. 2015. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol 16(1): 113.CrossRefGoogle ScholarPubMed
Li, W, Xu, H, Xiao, T, et al. 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15(12): 554.CrossRefGoogle ScholarPubMed
Mali, P, Aach, J, Stranges, PB, et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9): 833838.CrossRefGoogle ScholarPubMed
Mohr, SE, Hu, Y, Ewen-Campen, B, et al. 2016. CRISPR guide RNA design for research applications. FEBS J 283(17): 32323238.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Lin, CY, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6): 13801389.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Hartenian, E, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166): 8487.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Zhang, F. 2015. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16(5): 299311.CrossRefGoogle ScholarPubMed
Sims, D, Mendes-Pereira, AM, Frankim, J, et al. 2011. High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol 12(10): R104.CrossRefGoogle ScholarPubMed
Smith, JD, Suresh, S, Schlecht, U, et al. 2016. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 17: 45.CrossRefGoogle ScholarPubMed
Taylor, J, Woodcock, S. 2015. A perspective on the future of high-throughput RNAi screening: will CRISPR cut out the competition or can RNAi help guide the way? J Biomol Screen 20(8): 10401051.CrossRefGoogle ScholarPubMed
Tsai, SQ, Zheng, Z, Nguyen, NT, et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2): 187197.CrossRefGoogle ScholarPubMed
Wade, M. 2015. High-throughput silencing using the CRISPR-Cas9 system: a review of the benefits and challenges. J Biomol Screen 20(8): 10271039.CrossRefGoogle ScholarPubMed
Wallace, J, Hu, R, Mosbruger, TL, et al. 2016. Genome-wide CRISPR-Cas9 screen identifies microRNAs that regulate myeloid leukemia cell growth. PLoS One 11(4): e0153689.CrossRefGoogle ScholarPubMed
Wang, T, Wei, JJ, Sabatini, DM, Lander, ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166): 8084.CrossRefGoogle ScholarPubMed
Wu, Y, Zhou, L, Wang, X, et al. 2016. A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A. Cell Discov 2: 16014.CrossRefGoogle ScholarPubMed
Xie, S, Shen, B, Zhang, C, Huang, X, Zhang, Y. 2014. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9(6): e100448.CrossRefGoogle ScholarPubMed
Zalatan, JG, Lee, ME, Almeida, R, et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1–2): 339350.CrossRefGoogle ScholarPubMed
Zhou, Y, Zhu, S, Cai, C, et al. 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509(7501): 487491.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×