Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T12:00:17.765Z Has data issue: false hasContentIssue false

Part I - Introduction

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Chadwick, R. A., Arts, R., Bentham, M., et al. (2009). Review of monitoring issues and technologies associated with the long-term underground storage of carbon dioxide. In Special Publications, Vol. 313: 257275. London: Geological Society.Google Scholar
CO2CRC. (2011). A review of existing best practice manuals for carbon dioxide storage and regulation. A desktop study prepared for the Global CCS Institute by CO2CRC.Google Scholar
ENERGY.GOV. (2012). Regional partnership U.S. Department of Energy Office of Fossil Energy.Google Scholar
European Council (2014). Conclusions on 2030 climate and energy policy framework. Copenhagen: European Environment Agency.Google Scholar
Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (Eds.). (1990). Climate Change: The IPCC Scientific Assessment Report prepared for Intergovernmental Panel on Climate Change by Working Group I. Cambridge University Press, Cambridge and New York.Google Scholar
IEAGHG. (2011a). Potential for biomass and carbon dioxide capture and storage. Report 2011/06. Cheltenham: IEAGHG.Google Scholar
IEAGHG. (2011b). Global storage resource gap analysis for policy makers. Report 2011/10. Cheltenham: IEAGHG.Google Scholar
IEAGHG. (2012). Quantification techniques for CO2 leakage. Report 2012/02. Cheltenham: IEAGHG.Google Scholar
IEAGHG. (2013 a). Potential implications on gas production from shales and coals for geological storage of CO2. Report 2013/10. Cheltenham: IEAGHG.Google Scholar
IEAGHG. (2013b). The process of developing a CO2 test injection: Experience and best practice. Report 2013/13. Cheltenham: IEAGHG.Google Scholar
IEAGHG. (2015). Carbon capture and storage cluster projects: Review and future opportunities. Report 2015/03. Cheltenham: IEAGHG.Google Scholar
IGBP, IOC, SCOR (2013). Ocean acidification summary for policymakers. In Third Symposium on the Ocean in a High-CO2 World: International Geosphere-Biosphere Programme. Stockholm: Ocean Acidification International Coordination Centre.Google Scholar
IJGGC (2015). Special Issue commemorating the 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change Special Report on CO2 Capture and Storage. Edited by Gale, J., Abanades, J.C., Bachu, S., and Jenkins., C. International Journal of Greenhouse Gas Control, 40: 1458.CrossRefGoogle Scholar
IPCC. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
IPCC. (2007a). Summary for Policymakers. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
IPCC. (2007b). Summary for Policymakers. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
IPCC. (2013). Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
IPCC. (2014). Summary for Policymakers. Fifth Assessment Report (AR5). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Johansson, T. B., Nakicenovic, N., Patwardhan, A., Gomez-Echeverri, L., eds. (2012). Global Energy Assessment (GEA): Toward a Sustainable Future. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Le Treut, H., Somerville, R., Cubasch, U., et al. (2007). Historical Overview of Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
OECD, IEA (2012). Energy technology perspectives 2012: Pathways to a clean energy system. Energy Technology Perspectives. Paris: OECD Publishing.Google Scholar
OECD/IEA. (2016). Energy technology perspectives 2016: Towards sustainable urban energy systems. Energy Technology Perspectives. Paris: OECD Publishing.Google Scholar
Romanak, K., Sherk, G.W., Hovorka, S., and Yang, C. (2013). Assessment of alleged CO2 leakage at the Kerr Farm using a simple process-based soil gas technique: Implications for carbon capture, utilization, and storage (CCUS) monitoring. Energy Procedia, GHGT-11 37: 42424248.CrossRefGoogle Scholar
Stern, N. (2006). Stern review on the economics of climate change (pre-publication edition). Executive Summary). HM Treasury, London. Archived from the original on January 31, 2010. http://mudancasclimaticas.cptec.inpe.br/~rmclima/pdfs/destaques/sternreview_report_complete.pdfGoogle Scholar
Whittaker, S., and Perkins, E. (2013). Technical aspects of CO2 enhanced oil recovery and associated carbon storage. Docklands, VIC: Global CCS Institute.Google Scholar
Wilson, M., and Monea, M., eds. (2004). IEA GHG Weyburn CO2 Monitoring & Storage project summary report 2000–2004: 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada. Vol. 3.Google Scholar
World Bank Group. (2014). Turn down the heat: Confronting the new climate normal. Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/20595Google Scholar

References

Aki, K., and Richards, P. G. (1980). Quantitative seismology: Theory and methods. San Francisco: W. H. Freeman. DOI:10.1017/S0016756800034439Google Scholar
Calvert, R. (2005). Insights and methods for 4D reservoir monitoring and characterization. Society of Exploration Geophysicists. www.amazon.com/Insights-Methods-4D-Reservoir-Charterization/dp/1560801360CrossRefGoogle Scholar
Carbon Storage Taskforce. (2009). National carbon mapping and infrastructure plan. Department of Resources, Energy and Tourism (DRET), Australia.Google Scholar
Caspari, E., Müller, T. M., and Gurevich, B. (2011). Time-lapse sonic logsreveal patchy CO2 saturationin-situ. Geophysics Research Letters, 38: L13301. DOI:10.1029/2011GL046959.Google Scholar
Claerbout, J. (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2): 264269. https://doi.org/10.1190/1.1439927CrossRefGoogle Scholar
Cole, S., Lumley, D., Meadows, M., and Tura, A. (2002). Pressure and saturation inversion of 4D seismic data by rock physics forward modeling. Technical Program Expanded Abstracts. Society of Exploration Geophysicists, 24752478. DOI:10.1190/1.1817221.Google Scholar
Daley, T. M., Myer, L. R., Peterson, J. E., Majer, E. L., and Hoversten, G. M. (2008). Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer. Environmental Geology, 54(8): 16571665. DOI:10.1007/s00254-007–0943-z.CrossRefGoogle Scholar
Davis, T., Terrell, M. J., Benson, R. D., Cardona, R., Kendall, R. R., and Winarsky, R. (2003). Multicomponent seismic characterization and monitoring of the CO2 flood at Weyburn Field, Saskatchewan. Leading Edge, 22(7): 696697. DOI:10.1190/1.1599699.CrossRefGoogle Scholar
Dvorkin, J., and Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics, 61: 13631370. DOI:10.1190/1.1444059.CrossRefGoogle Scholar
Emberley, S., Hutcheon, I., Shevalier, M., Durocher, K., Gunter, W. D., and Perkins, E. H. (2004). Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada. Energy. https://ideas.repec.org/a/eee/energy/v29y2004i9p1393-1401.htmlCrossRefGoogle Scholar
Gernert, J., and Span, R. (2016). EOS–CG: A Helmholtz energy mixture model for humid gases and CCS mixtures. Journal of Chemical Thermodynamics, 93: 274293. https://doi.org/10.1016/j.jct.2015.05.015CrossRefGoogle Scholar
Glubokovskikh, S., Pevzner, R., Dance, T., et al. (2016). Seismic monitoring of CO2 geosequestration: CO2CRC Otway case study using full 4D FDTD approach. International Journal of Greenhouse Gas Control, 49: 201–216. https://doi.org/10.1016/j.ijggc.2016.02.02CrossRefGoogle Scholar
Guilbot, J., and Smith, B. (2002). 4D constrained depth conversion for reservoir compaction estimation: Application to Ekofisk Field. Leading Edge, 21(3): 302308. http://dx.doi.org/10.1190/1.1463782CrossRefGoogle Scholar
Hatchell, P., and Bourne, S. (2005). Rocks under strain: Strain-induced time-lapse time shifts are observed for depleting reservoirs. Leading Edge, 24(12): 12221225. http://library.seg.org/doi/abs/10.1190/1.2149624CrossRefGoogle Scholar
Issa, N., and Lumley, D. (2015). Passive seismic imaging at depth using ambient noise fields recorded in a shallow buried sensor array. Australian Society of Exploration Geophysicists. library.seg.org/doi/pdf/10.1071/ASEG2015ab135CrossRefGoogle Scholar
Issa, N., Lumley, D., and Pevzner, R. (2017). Passive seismic imaging at reservoir depths using ambient seismic noise recorded at the Otway CO2 geological storage research facility. Geophysical Journal International, 209(3): 16221628. https://doi.org/10.1093/gji/ggx109CrossRefGoogle Scholar
Johnston, D. H. (2013). Practical applications of time-lapse seismic data. Society of Exploration Geophysicists. http://dx.doi.org/10.1190/1.9781560803126CrossRefGoogle Scholar
Kamei, R., and Lumley, D. (2017). Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes. Geophysical Journal International, 209(2): 12391264.Google Scholar
Kamei, R., Jang, U., Lumley, D., et al. (2017). Time-lapse full waveform inversion for monitoring near-surface microbubble injection. Expanded Abstracts, European Association of Engineering Geosciece (EAGE), Paris, France. DOI:10.3997/2214–4609.201700956.CrossRefGoogle Scholar
Kragh, E., and Christie, P. (2002). Seismic repeatability, normalized RMS, and predictability. Leading Edge, 21(7): 640647. DOI:10.1190/1.1497316.CrossRefGoogle Scholar
Landrø, M. (1999). Discrimination between pressure and fluid saturation changes from time-lapse seismic data. In Expanded Abstracts, 69th Annual International Meeting. Society of Exploration Geophysicists, 1651–1654.CrossRefGoogle Scholar
Landrø, M. (2001). Discrimination between pressure and fluid saturation changes from time-lapse seismic data. Geophysics, 66(3): 836–844. http://dx.doi.org/10.1190/1.1444973CrossRefGoogle Scholar
Lebedev, M. (2012). Geophysics laboratory: Otway rock physics tests. In B. Evans, R. Rezaee, V. Rasouli, et al., Milestone Report for ANLEC Project #3–1110-0122. http://anlecrd.com.au/projects/predicting-co-sub-2-sub-injectivity-properties-for-application-at-ccs-sites/Google Scholar
Lumley, D. (1995a). Seismic time-lapse monitoring of subsurface fluid flow. PhD thesis, Stanford University.Google Scholar
Lumley, D. E. (1995b). Seismic monitoring of hydrocarbon fluid flow. Journal of Mathematical Imaging and Vision, 5(4): 287296. DOI:10.1007/BF01250285.CrossRefGoogle Scholar
Lumley, D. E. (2001). Time-lapse seismic reservoir monitoring. Geophysics, 66: 5053.CrossRefGoogle Scholar
Lumley, D. E. (2006). Nonlinear uncertainty analysis in reservoir seismic modeling and inverse problems: Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 2037–2041. DOI:10.1190/1.2369936.CrossRefGoogle Scholar
Lumley, D. (1996–present). 4D seismic reservoir monitoring: Course book.Google Scholar
Lumley, D. (2010). 4D seismic monitoring of CO2 sequestration. Leading Edge, 29(2): 150155. DOI:10.1190/1.3304817.CrossRefGoogle Scholar
Lumley, D., and Shragge, J. (2013). Advanced concepts in active and passive seismic monitoring using full wavefield techniques. Extended Abstracts, Australian Society of Exploration Geophysicists, 2013: 14. https://doi.org/10.1071/ASEG2013ab167CrossRefGoogle Scholar
Lumley, D., Adams, D. C., Meadows, M., Cole, S., and Wright, R. (2003a). 4D seismic data processing issues and examples. Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 1394–1397. DOI:10.1190/1.1817550.CrossRefGoogle Scholar
Lumley, D., Adams, D., Meadows, M., Cole, S., and Ergas, R. (2003b). 4D seismic pressure-saturation inversion at Gullfaks Field, Norway. First Break, 21, September, European Association of Geoscientists and Engineers (EAGE).CrossRefGoogle Scholar
Lumley, D., Meadows, M., Cole, C., and Adams, D. (2003c). Estimation of reservoir pressure and saturations by crossplot inversion of 4D seismic attributes. Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 1513–1516. DOI:10.1190/1.1817582.CrossRefGoogle Scholar
Lumley, D., Adams, D., Wright, R., Markus, D., and Cole, S. (2008). Seismic monitoring of CO2 geo‐sequestration: Realistic capabilities and limitations. Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 28412845. DOI:10.1190/1.3063935.CrossRefGoogle Scholar
Lumley, D., King, A., Pevzner, R., et al. (2016). Feasibility and design for passive seismic monitoring at the SW Hub CO2 Geosequestration Site. Australian National Low Emissions Council (ANLEC) R&D Project Number 7‐0212‐0203. http://anlecrd.com.au/reports_storage/Google Scholar
Mathieson, A., Wright, I., Roberts, D., and Ringrose, P. (2009). Satellite imaging to monitor CO2 movement at Krechba, Algeria. Energy Procedia, 1(1): 22012209. DOI:10.1016/j.egypro.2009.01.286.CrossRefGoogle Scholar
Mavko, G., Mukerji, T., and Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysis of porous media. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Meadows, M., Adams, D., Wright, R., Tura, A., Cole, S., and Lumley, D. (2005). Rock physics analysis for time-lapse seismic at Schiehallion Field, North Sea. Geophysical Prospecting, 53: 205213.CrossRefGoogle Scholar
Ostrander, W. (1984). Plane‐wave reflection coefficients for gas sands at non-normal angles of incidence. Geophysics, 49(10): 16371648. http://dx.doi.org/10.1190/1.1441571CrossRefGoogle Scholar
Pacala, S., and Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305: 968972. DOI:10.1126/science.1100103.CrossRefGoogle ScholarPubMed
Pevzner, R., Shulakova, V., Kepic, A., and Urosevic, M. (2011). Repeatability analysis of land time-lapse seismic data: CO2CRC Otway pilot project case study. Geophysical Prospecting, 59: 6677. DOI:10.1111/j.1365–2478.2010.00907.CrossRefGoogle Scholar
Pevzner, R., Urosevic, M., Tertyshnikov, K., et al. (2017a). Stage 2C of the CO2CRC Otway Project: Seismic monitoring operations and preliminary results. Energy Procedia. www.sciencedirect.com/science/article/pii/S1876610217317344CrossRefGoogle Scholar
Pevzner, R., Urosevic, M., Popik, D., et al. (2017b). 4D surface seismic tracks small supercritical CO2 injection into the subsurface: CO2CRC Otway Project. International Journal of Greenhouse Gas Control, 63: 150157. https://doi.org/10.1016/j.ijggc.2017.05.008CrossRefGoogle Scholar
Rickett, J. E., and Lumley, D. E. (2001). Cross‐equalization data processing for time‐lapse seismic reservoir monitoring: A case study from the Gulf of Mexico. Geophysics, 66, Special Section, 10151025. DOI:10.1190/1.1487049.CrossRefGoogle Scholar
Ridsdill-Smith, T., Flynn, D., and Darling, S. (2008). Benefits of two-boat 4D acquisition, an Australian case study. Leading Edge, 27(7): 940944. DOI:10.1190/1.2954036.CrossRefGoogle Scholar
Saul, M., and Lumley, D. (2013). A new velocity-pressure-compaction model for uncemented sediments. Geophysical Journal International, 193(2): 905913. DOI:10.1093/gji/ggt005.CrossRefGoogle Scholar
Schuster, G. T. (2009). Seismic interferometry. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shragge, J., and Lumley, D. (2013). Time-lapse wave-equation migration velocity analysis. Geophysics, 78(2): S6979.CrossRefGoogle Scholar
Shulakova, V., Pevzner, R., Dupuis, J. C., et al. (2015). Burying receivers for improved time-lapse seismic repeatability: CO2CRC Otway field experiment. Geophysical Prospecting, 63: 5569.CrossRefGoogle Scholar
Tura, A., and Lumley, D. E. (1998). Subsurface fluid-flow properties from time-lapse elastic-wave reflection data. In 43rd Annual Meeting, SPIE, Proceedings, 125–138.CrossRefGoogle Scholar
Tura, A., and Lumley, D. E. (1999). Estimating pressure and saturation changes from time-lapse AVO data. Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 16551658.CrossRefGoogle Scholar
van Gestel, J-P., Kommedal, J. H., Barkved, O. I., Mundal, I., Bakke, R., and Best, K. D. (2008). Continuous seismic surveillance of Valhall Field. Leading Edge, 27(12): 16161621. DOI:10.1190/1.3036964.CrossRefGoogle Scholar
Vanorio, T. (2015). Recent advances in time-lapse, laboratory rock physics for the characterization and monitoring of fluid-rock interactions. Geophysics, 80(2): WA49WA59. DOI:10.1190/geo2014-0202.1.CrossRefGoogle Scholar
Vialle, S., and Vanorio, T. (2011). Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2-saturated water. Geophysics Research Letters, 38: L01302. DOI:10.1029/2010GL045606.CrossRefGoogle Scholar
Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A. (2010). Tutorial on seismic interferometry: Part 1 – Basic principles and applications. Geophysics, 75(5): 75A211227. https://doi.org/10.1190/1.3457445CrossRefGoogle Scholar
White, D. J., Roach, L. A. N., and Roberts, B. (2015). Time-lapse seismic performance of a sparse permanent array: Experience from the Aquistore CO2 storage site. Geophysics, 80(2): WA35WA48. http://library.seg.org/doi/abs/10.1190/geo2014-0239.1CrossRefGoogle Scholar

References

Allis, R. G., and Hunt, T. M. (1986). Analysis of exploitation-induced gravity changes at Wairakei Geothermal Field. Geophysics, 51(8): 16471660.CrossRefGoogle Scholar
Alnes, H., Eiken, O., and Stenvold, T. (2008). Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73(6): WA155WA161.CrossRefGoogle Scholar
Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., et al. (2012). Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics, 77(6): B253B267.CrossRefGoogle Scholar
Calvert, R. (2005). Insights and methods for 4D reservoir monitoring and characterization. Society of Exploration Geophysicists Distinguished Instructor Series, No. 8.CrossRefGoogle Scholar
Cantillo, J. (2011). A quantitative discussion on time-lapse repeatability and its metrics: Expanded Abstracts, Society of Exploration Geophysicists. http://dx.doi.org/10.1190/segam2012-0719.1CrossRefGoogle Scholar
Carrigan, C. R., Ramirez, A. L., Newmark, R. L., Aines, R., and Friedmann, S. J. (2009). Application of ERT for tracking CO2 plume growth and movement at the SECARB Cranfield site. In 8th Annual Conference on Carbon Capture & Sequestration, Pittsburgh, PA (Vol. 4, No. 7).Google Scholar
Castagna, J. P., and Backus, M. M. ( 1993). Offset-dependent reflectivity – theory and practice of AVO analysis. Society of Exploration Geophysicists Investigations in Geophysics No. 8.CrossRefGoogle Scholar
Castagna, J. P., and Swan, H. W. (1997). Principles of AVO crossplotting. Leading Edge, 16(4): 337344.CrossRefGoogle Scholar
Castagna, J. P., Swan, H. W., and Foster, D. J. (1998). Framework for AVO gradient and intercept interpretation. Geophysics, 63(3): 948956.CrossRefGoogle Scholar
Chapman, D.S., Sahm, E., and Gettings, P. (2008). Monitoring aquifer recharge using repeated high-precision gravity measurements: A pilot study in South Weber, Utah. Geophysics, 73(6): WA83WA93.CrossRefGoogle Scholar
Cheng, A., Huang, L., and Rutledge, J. (2010). Time-lapse VSP data processing for monitoring CO2 injection. Leading Edge, 29: 196199.CrossRefGoogle Scholar
Coueslan, M. (2013). Monitoring CO2 injection at the Illinois Basin – Decatur Project: Second monitor survey. Presentation at MGSC Annual Meeting September 2013. http://sequestration.org/resources/PAGOct2013Presentations/09-Time-lapse_3DVSP-Mcoueslan_Sept2013.pdfGoogle Scholar
Dafflon, B., Wu, Y., Hubbard, S. S., et al. (2012). Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical methods. Environmental Science and Technology, 47(1): 314–21. http://dx.doi.org/10.1021/es301260eCrossRefGoogle Scholar
Daley, T. M., Myer, L. R., Peterson, J. E., Majer, E. L., and Hoversten, G. M. (2008). Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer. Environmental Geology, 54: 16571665. DOI:10.1007/s00254-007–0943-z.CrossRefGoogle Scholar
Daley, T. M., Miller, D. E., Dodds, K., Cook, P., and Freifeld, B. M. (2015). Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profile at Citronelle, Alabama. Geophysical Prospecting, 64(5): 318–1334. DOI:10.1111/1365–2478.12324.CrossRefGoogle Scholar
Davis, K., Li, Y., and Batzle, M. (2008). Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery. Geophysics, 73(6): WA61WA69.CrossRefGoogle Scholar
Doetsch, J., Kowalsky, M. B., Doughty, C., et al. (2012). Fully coupled hydrogeophysical inversion of CO2 migration data in a deep saline aquifer. In SEG-AGU Hydrogeophysics Workshop, July 8–11, 2012, Boise State University, Boise, Idaho.Google Scholar
Doetsch, J., Kowalsky, M. B., Doughty, C., et al. (2013). Constraining CO2 simulations by coupled modeling and inversion of electrical resistance and gas composition data. International Journal of Greenhouse Gas Control, 18: 510522.CrossRefGoogle Scholar
Duffaut, K., and Landrø, M. (2007). Vp/Vs ratio versus differential stress and rock consolidation: A comparison between rock models and time-lapse AVO data. Geophysics, 72(5): C81C94.CrossRefGoogle Scholar
EPA. (2013). Underground Injection Control (UIC) Program Class VI Well Testing and Monitoring Guidance, Office of Water (4606 M), EPA 816-R-13–001. www.epa.gov/safewaterGoogle Scholar
EPA. (2015). Subpart RR: Geologic sequestration of carbon dioxide, Greenhouse Gas Reporting Program (GHGRP). http://www2.epa.gov/ghgreporting/subpart-rr-geologic-sequestration-carbon-dioxideGoogle Scholar
EPA. (2016). Greenhouse Gas Reporting Program (GHGRP), 2016. www.epa.gov/ghgreportingGoogle Scholar
EU. (2009a). Implementation of the CCS Directive, Guidance Documents 1, 2, 3 and 4. http://ec.europa.eu/clima/policies/lowcarbon/ccs/implementation/documentation_en.htmGoogle Scholar
EU. (2009b). Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, Official Journal of the European Union, 5.6.2009. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0114:0135:EN:PDFGoogle Scholar
Ferguson, J. F., Chen, T., Brady, J., Aiken, C. L. V., and Seibert, J. (2007). The 4D microgravity method for waterflood surveillance II: Gravity measurements for the Prudhoe Bay reservoir, Alaska. Geophysics, 72(2): I33I43.CrossRefGoogle Scholar
Freifeld, B. M., Trautz, R. C., Kharaks, Y. K., et al. (2005). The U-tube: A novel system for acquiring borehole fluid samples from a deep geologic CO2 sequestration experiment. Journal of Geophysical Research, 110: B10203.CrossRefGoogle Scholar
Goodway, B., Chen, T., and Downton, J. (1997). Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; λρ, μρ and λ/μ fluid stack”, from P and S inversions. Expanded Abstracts, Society of Exploration Geophysicists, 183186.CrossRefGoogle Scholar
Hannas, S. D. (2013). Monitoring the geological storage of CO2. Geological storage of carbon dioxide (CO2). Geoscience, technologies, environmental aspects and legal frameworks, 54. Duxford, UK: Woodhead Publishing Series in Energy, 6896.Google Scholar
Harbert, W., Purcell, C., and Mur, A. (2011). Seismic reflection data processing of 3D surveys over an EOR CO2 injection. Energy Procedia, 4: 36843690.CrossRefGoogle Scholar
Harbert, W., Daley, T. M., Bromhal, G. Sullivan, C., and Huang, L. (2016). Progress in monitoring strategies for risk reduction in geologic CO2 storage. International Journal of Greenhouse Gas Control, 51: 260275. DOI:10.1016/j.ijggc.2016.05.007.CrossRefGoogle Scholar
Hovorka, S. D. (2013). Three-million-metric-ton-monitored injection at the Secarb Cranfield Project: Project update. Energy Procedia, 37: 64126423. http://dx.doi.org/10.1016/j.egypro.2013.06.571CrossRefGoogle Scholar
IPCC. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., Davidson, O., de Coninck, H. C., Loos, M., and Meyer, L. A. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.Google Scholar
Johnson, D. H. (2013). Practical applications of time-lapse seismic data. Society of Exploration Geophysics, Distinguished Instructor Series, No. 16.Google Scholar
Kirksey, J. (2012). Deep well monitoring and verification at the Illinois Basin Decatur Project. Presentation at MGSC Annual Meeting September 2012. http://sequestration.org/resources/PAGSept2012Presentations/06-JimKirksey_PAG2012.pdfGoogle Scholar
Kowalsky, M. B., Doetsch, J., Commer, M., et al. (2016). Coupled inversion of hydrological and geophysical data for improved prediction of subsurface CO2 migration. Lawrence Berkeley National Laboratory Report, NRAP-TRS-III-004–2016, Level III Technical Report Series.Google Scholar
Kragh, E., and Christie, P. (2002). Seismic repeatability, normalized RMS, and predictability. Leading Edge, 21: 640647.CrossRefGoogle Scholar
Landrø, M. (2001). Discrimination between pressure and fluid saturation changes from time-lapse seismic data. Geophysics, 66(3): 836844.CrossRefGoogle Scholar
Landrø, M., Hafslund Veire, H., Duffaut, K., and Najjar, N. (2003). Discrimination between pressure and fluid saturation changes from marine multicomponent time-lapse seismic data. Geophysics, 68(5): 15921599.CrossRefGoogle Scholar
Lumley, D. (2001). Time-lapse seismic reservoir monitoring. Geophysics, 66: 5053.CrossRefGoogle Scholar
Lumley, D. (2010). 4D seismic monitoring of CO2 sequestration. Leading Edge, 29(2): 150155.Google Scholar
Lumley, D., Adams, D., Wright, R., Markus, D., and Cole, S. (2008). Seismic monitoring of CO2 geo-sequestration: Realistic capabilities and limitations. Expanded Abstracts, Society of Exploration Geophysicists, 28412845.Google Scholar
Mathieson, A., Midgley, J., Dodds, K., Wright, I., Ringrose, P., and Saoul, N. (2010). CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Leading Edge, 29(2): 216222.CrossRefGoogle Scholar
Mavko, G., Tukerji, T., and Dvorkin, J. (2009). The rock physics handbook, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mullins, O. G. (2008). The physics of reservoir fluids: Discovery through downhole fluid analysis. Houston: Schlumberger.Google Scholar
Mur, A., Purcell, C., Soong, Y., et al. (2011). Integration of core sample velocity measurements into a 4D seismic survey and analysis of SEM and CT images to obtain pore scale properties. Energy Procedia, 4: 36763683.CrossRefGoogle Scholar
Nelson, E. B., and Guillot, D. (2006). Well cementing, 2nd edn. Houston: Schlumberger.Google Scholar
Peters, D. (2007). CO2 geological storage: Methodology and risk management process. Presented at NHA Hydrogen Conference, March 20, 2007.Google Scholar
Pevzner, R., Shulakova, V., Kepic, A., and Urosevic, M. (2011). Repeatability analysis of land time-lapse seismic data: CO2CRC Otway pilot project case study. Geophysical Prospecting, 59: 6677.CrossRefGoogle Scholar
Pevzner, R., Urosevic, M., Popik, D., et al. (2017). 4D surface seismic tracks small supercritical CO2 injection into the subsurface: CO2CRC Otway Project. International Journal of Greenhouse Gas Control, 63: 150157. https://doi.org/10.1016/j.ijggc.2017.05.008CrossRefGoogle Scholar
Purcell, C., Harbert, W., Soong, Y., et al. (2009). Velocity measurements in reservoir rock samples from the SACROC unit using various pore fluids and integration into a seismic survey taken before and after a CO2 sequestration flood. Energy Procedia, 1: 23232331.CrossRefGoogle Scholar
Purcell, C., Mur, A., Soong, Y., McLendon, T. R., Haljasmaa, I. V., and Harbert, W. (2010). Integrating velocity measurements in a reservoir rock sample from the SACROC unit with an AVO proxy for subsurface supercritical CO2. Leading Edge, 29(2): 192195.CrossRefGoogle Scholar
Sayers, C. M. (2006). An introduction to velocity-based stress changes in sandstones. Leading Edge, 24(12): 12621266.CrossRefGoogle Scholar
Sayers, C. M. (2010). Geophysics under stress: Geomechanical applications of seismic and borehole acoustic waves. Society of Exploration Geophysicists Distinguished Instructor Series, No. 13.CrossRefGoogle Scholar
Schlumberger. (1989). Cased hole log interpretation: Principles/applications. www.slb.com/resources/publications/books/ch_lipa.aspxGoogle Scholar
Schlumberger. (1991). Log interpretation: Principles/applications. www.slb.com/resources/publications/books/lipa.aspx.Google Scholar
Shapiro, S. (2015). Fluid induced seismicity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Simm, R., and Bacon, M. (2014). Seismic amplitude: An interpreter’s handbook. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Trainor-Guitton, W. J., Ramirez, A., Yang, X., Mansoor, K., Sun, Y., and Carroll, S. (2013). Value of information methodology for assessing the ability of electrical resistivity to detect CO2/brine leakage into a shallow aquifer. International Journal of Greenhouse Gas Control, 18: 101113. DOI:10.1016/j.ijggc.2013.06.018.CrossRefGoogle Scholar
Urosevic, M., Pevzner, R., Kepic, A., and Wisman, P. (2010). Time-lapse seismic monitoring of CO2 injection into a depleted gas reservoir-Naylor Field, Australia. Leading Edge, 29(2): 164169.CrossRefGoogle Scholar
Wright, I. (2011). In Salah CO2 storage JIP lessons learned. In 10th Annual Conference on Carbon Capture and Sequestration, Pittsburgh, PA, May 2–5, 2011.Google Scholar
Wright, I., Ringrose, P., Mathieson, A., and Eiken, O. (2009). An overview of active large-scale CO2 storage projects. In Society of Petroleum Engineers, SPE 127096, SPE International Conference on CO2 Capture, Storage, and Utilization, November 2–4, 2009, San Diego, CA.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×