Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-04T14:57:02.260Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  04 August 2010

Lennart O. Bengtsson
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Claus U. Hammer
Affiliation:
University of Copenhagen
Get access

Summary

A Study Conference on “Geosphere-Biosphere Interactions and Climate” was held at the Pontifical Academy of Sciences, 9-13 November 1998. The purpose of the Study Conference was to examine the role of the biogeochemical cycles and climate, to identify the key scientific issues in this field of research, and to outline a long-term scientific strategy.

Biogeochemical cycles play a key role in the way the Earth's climate both influences and is influenced by interactions with the geosphere and the biosphere. It is probably no overstatement to say that the elucidation of the biogeochemical cycles in Nature constitutes one of the greatest scientific challenges of our time.

The greenhouse gases – carbon dioxide, methane, nitrous oxide, and so on – together with aerosol particles, albeit in tiny concentrations, play a crucial role in determining the Earth's climate. Their concentrations are determined by physical, chemical, and biological processes in the terrestrial and oceanic biospheres and in the ocean as well as by chemical interactions within the atmosphere itself. Thus, to discover how atmospheric trace gas composition is regulated requires an understanding of the complex interactive system that sustains life on Earth, in the face of variations imposed both externally (e.g., orbital variations and changes in the solar irradiation) and by human activities, such as fossil fuel burning, deforestation, and agricultural practices.

Research during recent decades has shown that the climate of the Earth, interacting with chemical processes occurring within the atmosphere and the biosphere, constitutes a complex interwoven and integrated system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×