Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T10:13:08.544Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 March 2013

R. B. Paris
Affiliation:
University of Abertay, Dundee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Hadamard Expansions and Hyperasymptotic Evaluation
An Extension of the Method of Steepest Descents
, pp. 235 - 240
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. (eds.) 1965. Handbook of Mathematical Functions, New York: Dover.Google Scholar
Airey, J. R. 1937. The ‘converging factor’ in asymptotic series and the calculation of Bessel, Laguerre and other functions, Philos. Mag. 24, 521–552.CrossRefGoogle Scholar
Bakhoom, N. G. 1933. Asymptotic expansions of the function, Proc. London Math. Soc. 35(2), 83–100.CrossRefGoogle Scholar
Barnes, E. W. 1906. The asymptotic expansion of integral functions defined by Taylor's series, Philos. Trans. R. Soc. London A206, 249–297.CrossRefGoogle Scholar
Bender, C. M. and Orszag, S. A. 1978. Advanced Mathematical Methods for Scientists and Engineers, New York: McGraw-Hill.Google Scholar
Berry, M. V. 1989. Uniform asymptotic smoothing of Stokes's discontinuities, Proc. R. Soc. London A412, 7–21.CrossRefGoogle Scholar
Berry, M. V. 1991a. Asymptotics, superasymptotics, hyperasymptotics …, in Asymptotics Beyond All Orders (ed. H., Segur, H., Tanveer and H., Levine), pp. 1–14, New York: Plenum Press.Google Scholar
Berry, M. V. 1991b. Infinitely many Stokes smoothings in the gamma function, Proc. R. Soc. London A434, 465–472.CrossRefGoogle Scholar
Berry, M. V. 1991c. Stokes's phenomenon for superfactorial asymptotic series, Proc. R. Soc. London A435, 437–444.CrossRefGoogle Scholar
Berry, M. V. and Howls, C. J. 1990. Hyperasymptotics, Proc. R. Soc. London A430, 653–667.CrossRefGoogle Scholar
Berry, M. V. and Howls, C. J. 1991. Hyperasymptotics for integrals with saddles, Proc. R. Soc. London A434, 657–675.CrossRefGoogle Scholar
Berry, M. V. and Howls, C. J. 1993. Infinity interpreted, Phys. World 6, 35–39.CrossRefGoogle Scholar
Bleistein, N. 1966. Uniform asymptotic expansions of integrals with stationary point near an algebraic singularity, Commun. Pure Appl. Math. 19, 353–370.CrossRefGoogle Scholar
Bleistein, N. and Handelsman, R. A. 1975. Asymptotic Expansions of Integrals, New York: Holt, Rinehart and Winston.Google Scholar
Borwein, D., Borwein, J. M. and Chan, O.-Y. 2008. The evaluation of the Bessel functions via exp-arc integrals, J. Math. Anal. Appl. 341, 478–500.CrossRefGoogle Scholar
Borwein, D., Borwein, J. M. and Crandall, R. 2008. Effective Laguerre asymptotics, SIAM J. Num. Anal. 341, 478–500.Google Scholar
Boyd, J. P. 1999. The Devil's invention: asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math. 56, 1–98.CrossRefGoogle Scholar
Boyd, W. G. C. 1990. Stieltjes transforms and the Stokes phenomenon. Proc. R. Soc. London A429, 227–246.CrossRefGoogle Scholar
Boyd, W. G. C. 1993. Error bounds for the method of steepest descents, Proc. R. Soc. London A440, 493–518.CrossRefGoogle Scholar
Brillouin, L. 1916. Sur une méthode de calcul approchée de certaines intégrales, dite méthode de col, Ann. Sci. Ec. Norm. Super. 33, 17–69.CrossRefGoogle Scholar
Burwell, W. R. 1924. Asymptotic expansions of generalised hypergeometric functions, Proc. London Math. Soc. 53, 599–611.Google Scholar
Byatt-Smith, J. G. B. 1998. Formulation and summation of hyperasymptotic expansions obtained from integrals, Eur. J. Appl. Math. 9, 159–185.CrossRefGoogle Scholar
Cauchy, A. L. 1829. Mémoire sur divers points d'analyse, Mem. Acad. Fr. 8, 130–138; reprinted in Oeuvres Complètes d'Augustin Cauchy, série I, vol. 2, pp. 52–58, 1908, Paris: Gauthier-Villars.Google Scholar
Chester, C., Friedman, B. and Ursell, F. J. 1957. An extension of the method of steepest descents, Proc. Cambridge Philos. Soc. 53, 599–611.CrossRefGoogle Scholar
Connor, J. N. L. and Curtis, P. R. 1982. A method for the numerical evaluation of the oscillatory integrals associated with the cuspoid catastrophes: application to Pearcey's integral and its derivatives, J. Phys. A 15, 1179–1190.CrossRefGoogle Scholar
Copson, E. T. 1935. Theory of Functions of a Complex Variable, Oxford: Oxford University Press.Google Scholar
Copson, E. T. 1965. Asymptotic Expansions, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
De Bruijn, N. G. 1958. Asymptotic Methods in Analysis, New York: Dover.Google Scholar
Debye, P. 1909. Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index, Math. Ann. 67, 535–558.CrossRefGoogle Scholar
Dingle, R. B. 1973. Asymptotic Expansions: Their Derivation and Interpretation, London: Academic Press.Google Scholar
Écalle, J. 1981. Les Fonctions Résurgentes (3 volumes), Orsay: Publ. Math. Université Paris-Sud.Google Scholar
Edwards, H. M. 1974. Riemann's Zeta Function, New York: Academic Press.Google Scholar
Erdélyi, A. (ed.) 1953. Higher Transcendental Functions, vol. 1, New York: McGraw-Hill.Google Scholar
Erdélyi, A. 1956. Asymptotic Expansions, New York: Dover.Google Scholar
Faxén, H. 1921. Expansion in series of the integral, Ark. Mat. Astron. Fys. 15, 1–57.Google Scholar
Ferreira, C., López, J. L., Pagola, P. and Pérez Sinusía, E. 2007. The Laplace's and steepest descents methods revisited, Int. Math. Forum 2, 297–314.CrossRefGoogle Scholar
Franklin, J. and Friedman, B. 1957. A convergent asymptotic representation for integrals, Proc. Cambridge Philos. Soc. 53, 612–619.CrossRefGoogle Scholar
Gautschi, W., Harris, F. E. and Temme, N. M. 2003. Expansions of the exponential integral in incomplete gamma functions, Appl. Math. Lett. 16, 1095–1099.CrossRefGoogle Scholar
Gillespie, C. C. 1997. Pierre-Simon Laplace, 1749–1827: A Life in Exact Science, Princeton, NJ: Princeton University Press.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. M. 1980. Table of Integrals, Series and Products, New York: Academic Press.Google Scholar
Greene, D. H. and Knuth, D. E. 1982. Mathematics for the Analysis of Algorithms, Boston, MA: Birkhauser.Google Scholar
Hadamard, J. 1908. Sur l'expression asymptotique de la fonction de Bessel, Bull. Soc. Math. Fr. 36, 77–85. Reprinted in Oeuvres de Jacques Hadamard, vol. 1, pp. 365–373, 1968, Paris: CNRS.CrossRefGoogle Scholar
Hadamard, J. 1912. Sur la série de Stirling, Fifth Int. Cong. Math., Cambridge, 1912. Reprinted in Oeuvres de Jacques Hadamard, vol. 1, pp. 375–377, 1968, Paris: CNRS.Google Scholar
Hardy, G. H. and Littlewood, J. E. 1920. Some problems of ‘Partitio Numerorum’ I: a new solution of Waring's Problem, Göttinger Nachr. (Math. Phys. Kl.)13–17.Google Scholar
Hobson, E. W. 1925. A Treatise on Plane Trigonometry, Cambridge: Cambridge University Press.Google Scholar
Jeffreys, H. 1958. The remainder in Watson's lemma, Proc. R. Soc. London A248, 88–92.CrossRefGoogle Scholar
Jeffreys, H. and Jeffreys, B. S. 1972. Methods of Mathematical Physics, Cambridge: Cambridge University Press.Google Scholar
Jones, D. S. 1972. Asymptotic behavior of integrals, SIAM Rev. 14, 286–317.CrossRefGoogle Scholar
Jones, D. S. 1997. Introduction to Asymptotics: A Treatment using Nonstandard Analysis, Singapore: World Scientific.CrossRefGoogle Scholar
Kaminski, D. 1989. Asymptotic expansion of the Pearcey integral near the caustic, SIAM J. Math. Anal. 20, 987–1005.CrossRefGoogle Scholar
Kaminski, D. and Paris, R. B. 1999. On the zeroes of the Pearcey integral. J. Comput. Appl. Math. 107, 31–52.CrossRefGoogle Scholar
Kaminski, D. and Paris, R. B. 2003. Hadamard expansions for a Laplace integral with two nearly coincident poles, Technical Report MS 03:03, University of Abertay Dundee.Google Scholar
Kaminski, D. and Paris, R. B. 2004. On the use of Hadamard expansions in hyperasymptotic evaluation: differential equations of hypergeometric type, Proc. R. Soc. Edinburgh 134A, 159–178.CrossRefGoogle Scholar
Kelvin, Lord, 1903. The scientific work of Sir George Stokes, Nature 67, 337–338.CrossRefGoogle Scholar
Kibble, W. F. 1939. A Bessel function in terms of incomplete gamma functions, J. Indian Math. Soc. 3, 271–294.Google Scholar
Kowalenko, V. 2001. Towards a theory of divergent series and its importance to asymptotics, Recent Res. Dev. Phys. 2, 17–67.Google Scholar
Kowalenko, V. 2002. Exactification of the asymptotics for Bessel and Hankel functions, Appl. Math. Comput. 133, 487–518.Google Scholar
Kruskal, M. D. and Segur, H. 1991. Asymptotics beyond all orders in a model of crystal growth, Stud. Appl. Math. 85, 129–181.CrossRefGoogle Scholar
Laplace, P. S. 1820. Théorie Analytique des Probabilités, 3rd edn., Paris: Courcier, reprinted in Complete Works, vol. 7, 1886, Paris: Gauthier-Villars.Google Scholar
Lauwerier, H. A. 1966. Asymptotic Expansions, Mathematical Centre Tracts 13, Amsterdam: Mathematisch Centrum.Google Scholar
López, J. L. 2007. The Stokes phenomenon as a boundary-value problem, J. Phys. A: Math. Theor. 40, 10807–10812.CrossRefGoogle Scholar
López, J. L., Pagola, P. and Pérez Sinusía, E. 2009. A simplification of Laplace's method: applications to the gamma function and Gauss hypergeometric function, J. Approx. Theory 161, 280–291.CrossRefGoogle Scholar
Muller, K. E. 2001. Computing the confluent hypergeometric function, M(a, b, x), Numer. Math. 90, 179–196.CrossRefGoogle Scholar
Murphy, B. T. M. and Wood, A. D. 1997. Hyperasymptotic solutions of second-order differential equations with a singularity of arbitrary integer rank, Methods Appl. Anal. 3, 250–260.Google Scholar
Nishikov, A. I. and Ritus, V. I. 1992. Stokes line width, Teor. Mat. Fiz. 92, 24–40.Google Scholar
Olde Daalhuis, A. B. 1996. Hyperterminants I, J. Comput. Appl. Math. 76, 255–264.CrossRefGoogle Scholar
Olde Daalhuis, A. B. 1997. Hyperterminants II, J. Comput. Appl. Math. 89, 87–95.CrossRefGoogle Scholar
Olde Daalhuis, A. B. and Olver, F. W. J. 1995. Hyperasymptotic solutions of second-order linear differential equations I, Methods Appl. Anal. 2, 173–197.Google Scholar
Olde Daalhuis, A. B., Chapman, S. J., King, J. R., Ockendon, J. R. and Tew, R. H. 1995. Stokes phenomenon and matched asymptotic expansions, SIAM J. Appl. Math. 55, 1469–1483.CrossRefGoogle Scholar
Olver, F. W. J. 1954. The asymptotic expansion of Bessel functions of large order, Philos. Trans. R. Soc. London A247, 328–368.CrossRefGoogle Scholar
Olver, F. W. J. 1968. Error bounds for the Laplace approximation for definite integrals, J. Approx. Theory 1, 293–313.CrossRefGoogle Scholar
Olver, F. W. J. 1970. Why steepest descents?, SIAM Rev. 12, 228–247.CrossRefGoogle Scholar
Olver, F. W. J. 1990. On Stokes' phenomenon and converging factors, Proc. Int. Conf. on Asymptotic and Computational Analysis, Winnipeg, Canada, 5–7 June 1989 (ed. R., Wong), pp. 329–355, New York: Marcel Dekker.Google Scholar
Olver, F. W. J. 1991a. Uniform, exponentially improved, asymptotic expansions for the confluent hypergeometric function and other integral transforms, SIAM J. Math. Anal. 22, 1475–1489.CrossRefGoogle Scholar
Olver, F. W. J. 1991b. Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral, SIAM J. Math. Anal. 22, 1460–1474.CrossRefGoogle Scholar
Olver, F. W. J. 1992. Converging factors, in Wave Asymptotics (ed. P. A., Martin and G. R., Wickham), pp. 54–68, Cambridge: Cambridge University Press.Google Scholar
Olver, F. W. J. 1995. On an asymptotic expansion of a ratio of gamma functions, Proc. R. Irish Acad. 95A, 5–9.Google Scholar
Olver, F. W. J. 1997. Asymptotics and Special Functions, New York: Academic Press, 1974. Reprinted Wellesley, MA: A. K. Peters.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W. 2010. NIST Handbook of Mathematical Functions, Cambridge: Cambridge University Press.Google Scholar
Paris, R. B. 1991. The asymptotic behaviour of Pearcey's integral for complex variables, Proc. R. Soc. London A 432, 391–426.CrossRefGoogle Scholar
Paris, R. B. 1996. The mathematical work of G. G. Stokes, Math. Today 32, 43–46.Google Scholar
Paris, R. B. 1997. The asymptotic expansion of Gordeyev's integral, Z. Angew. Math. Phys. 49, 322–338.CrossRefGoogle Scholar
Paris, R. B. 2000 The Hadamard expansion for log γ(z), Technical Report MS 00:03, Division of Mathematical Sciences, University of Abertay Dundee.Google Scholar
Paris, R. B. 2001a On the use of Hadamard expansions in hyperasymptotic evaluation. I. Real variables, Proc. R. Soc. London A457, 2835–2853.CrossRefGoogle Scholar
Paris, R. B. 2001b On the use of Hadamard expansions in hyperasymptotic evaluation. II. Complex variables, Proc. R. Soc. London A457, 2855–2869.CrossRefGoogle Scholar
Paris, R. B. 2004a On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals. I. Real variable, J. Comput. Appl. Math. 167, 293–319.CrossRefGoogle Scholar
Paris, R. B. 2004b On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals. II. Complex variable, J. Comput. Appl. Math. 167, 321–343.CrossRefGoogle Scholar
Paris, R. B. 2004c Exactification of the method of steepest descents: the Bessel functions of large order and argument, Proc. R. Soc. London 460A, 2737–2759.CrossRefGoogle Scholar
Paris, R. B. 2005. The Stokes phenomenon associated with the Hurwitz zeta function ζ(s, a), Proc. R. Soc. London A461, 297–304.CrossRefGoogle Scholar
Paris, R. B. 2007a. On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals. III. Clusters of saddle points, J. Comput. Appl. Math. 207, 273–290.CrossRefGoogle Scholar
Paris, R. B. 2007b. On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals. IV. Poles, J. Comput. Appl. Math. 206, 454–472.CrossRefGoogle Scholar
Paris, R. B. 2009. High-precision evaluation of the Bessel functions via Hadamard series, J. Comput. Appl. Math. 224, 84–100.CrossRefGoogle Scholar
Paris, R. B. 2010. Asymptotic expansion of n-dimensional Faxén-type integrals, Eur. J. Pure Appl. Math. 3(6), 1006–1031.Google Scholar
Paris, R. B. and Kaminski, D. 2001. Asymptotics and Mellin–Barnes Integrals, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Paris, R. B. and Kaminski, D. 2005. Hadamard expansions for integrals with saddles coalescing with an endpoint, Appl. Math. Lett. 18, 1389–1395.CrossRefGoogle Scholar
Paris, R. B. and Kaminski, D. 2006. Hyperasymptotic evaluation of the Pearcey integral via Hadamard expansions, J. Comput. Appl. Math. 190, 437–452.CrossRefGoogle Scholar
Paris, R. B. and Liakhovetski, G. V. 2000. Asymptotics of the multidimensional Faxén integral, Frac. Calc. Appl. Anal., 3, 63–73.Google Scholar
Paris, R. B. and Wood, A. D. 1986. Asymptotics of High Order Differential Equations, Pitman Research Notes in Mathematics, 129, Harlow: Longman Scientific & Technical.Google Scholar
Paris, R. B. and Wood, A. D. 1992. Exponentially-improved asymptotics for the gamma function, J. Comput. Appl. Math. 41, 135–143.CrossRefGoogle Scholar
Paris, R. B. and Wood, A. D. 1995. Stokes phenomenon demystified, IMA Bull. 31, 21–28.Google Scholar
Petrova, S. S. and Solov'ev, A. D. 1997. The origin of the method of steepest descent, Hist. Math. 24, 361–375.CrossRefGoogle Scholar
Poincaré, H. 1886. Sur les intégrales irrégulières des équations linéaires, Acta Math. 8, 295–344.CrossRefGoogle Scholar
Riemann, B. 1863. Sullo svolgimento del quoziente di due serie ipergeometriche in frazione continua infinita. In Collected Works of Bernhard Riemann (ed. H., Weber), pp. 424–430, 1953, New York: Dover.Google Scholar
Rosser, J. B. 1951. Transformations to speed the convergence of series, J. Res. Nat. Bur. Stand. 46, 56–64.CrossRefGoogle Scholar
Rosser, J. B. 1955. Explicit remainder terms for some asymptotic series, J. Rational Mech. Anal. 4, 595–626.Google Scholar
Schmitt, J. P. M. 1974. The magnetoplasma dispersion function: some mathematical properties, J. Plasma Phys. 12, 51–59.CrossRefGoogle Scholar
Senouf, D. 1996. Asymptotic and numerical approximations of the zeros of Fourier integrals, SIAM J. Math. Anal. 27, 1102–1128.CrossRefGoogle Scholar
Shi, W. and Wong, R. 2009. Hyperasymptotic expansions of the modified Bessel function of the third kind of purely imaginary order, Asymptotic Anal. 63, 101–123.Google Scholar
Stieltjes, T. J. 1886. Recherches sur quelques séries semi-convergentes, Ann. Sci. Ec. Norm. Super. 3, 201–258. Reprinted in Complete Works, vol. 2, pp. 2–58, 1918, Groningen: Noordhoff.CrossRefGoogle Scholar
Stix, T. H. 1962. The Theory of Plasma Waves, New York: McGraw-Hill.Google Scholar
Stokes, G. G. 1850. On the numerical calculation of a class of definite integrals and infinite series. In Collected Mathematical and Physical Papers, vol. 2, pp. 329–357, Cambridge: Cambridge University Press.Google Scholar
Stokes, G. G. 1857. On the discontinuity of arbitrary constants which appear in divergent developments. In Collected Mathematical and Physical Papers, vol. 4, pp. 79–109, Cambridge: Cambridge University Press.Google Scholar
Temme, N. M. 1994. Steepest descent paths for integrals defining the modified Bessel functions of imaginary order, Methods Appl. Anal. 1, 14–24.Google Scholar
Temme, N. M. 1996. Special Functions: An Introduction to the Classical Functions of Mathematical Physics, New York: Wiley.CrossRefGoogle Scholar
Tricomi, F. G. 1950. Sulla funzione gamma incompleta, Ann. Mat. 33, 263–279.CrossRefGoogle Scholar
Ursell, F. 1991. Integrals with a large parameter. A strong form of Watson's lemma, in Elasticity, Mathematical Methods and Applications (ed. G., Eason and R. W., Ogden), pp. 391–395, Chichester: Ellis-Horwood.Google Scholar
Van der Waerden, B. L. 1951. On the method of saddle points, Appl. Sci. Res. Ser. B 2, 33–45.CrossRefGoogle Scholar
Watson, G. N. 1918. Harmonic functions associated with the parabolic cylinder, Proc. London Math. Soc. 17(2), 116–148.CrossRefGoogle Scholar
Watson, G. N. 1952. Treatise on the Theory of Bessel Functions, Cambridge: Cambridge University Press.Google Scholar
Whittaker, E. T. and Watson, G. N. 1952. A Course of Modern Analysis, Cambridge: Cambridge University Press.Google Scholar
Wojdylo, J. 2006. On the coefficients that arise from Laplace's method, J. Comput. Appl. Math. 196, 241–266.CrossRefGoogle Scholar
Wong, R. 1980. Error bounds for asymptotic expansions of integrals, SIAM Rev. 22, 401–435.CrossRefGoogle Scholar
Wong, R. 1989. Asymptotic Approximations of Integrals, London: Academic Press.Google Scholar
Wrench, J. W. 1968. Concerning two series for the gamma function, SIAM J. Math. Anal. 22, 617–626.Google Scholar
Wright, F. J. 1980. The Stokes set of the cusp diffraction catastrophe, J. Phys. A 13, 2913–2928.CrossRefGoogle Scholar
Wyman, M. and Wong, R. 1969. The asymptotic behaviour of μ(z, β, α), Can. J. Math. 21, 1013–1023.CrossRefGoogle Scholar
Yang, S. and Srivastava, H. M. 2004. Some generalizations of the Hadamard expansion for the modified Bessel function, Appl. Math. Lett. 17, 591–596.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • R. B. Paris, University of Abertay, Dundee
  • Book: Hadamard Expansions and Hyperasymptotic Evaluation
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511753626.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • R. B. Paris, University of Abertay, Dundee
  • Book: Hadamard Expansions and Hyperasymptotic Evaluation
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511753626.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • R. B. Paris, University of Abertay, Dundee
  • Book: Hadamard Expansions and Hyperasymptotic Evaluation
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511753626.009
Available formats
×