Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T06:20:30.300Z Has data issue: false hasContentIssue false

Part VII - Color effects on psychological and biological functioning

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anderson, B. A., and Folk, C. L. (2010). Variations in the magnitude of attentional capture: testing a two-process account. Attention, Perception & Psychophysics, 72, 342–52.CrossRefGoogle Scholar
Anderson, B. A., Laurent, P. A., and Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108, 10367–71.Google ScholarPubMed
Anderson, B. A., Laurent, P. A., and Yantis, S. (2012). Generalization of value-based attentional priority. Visual Cognition, 20, 647–58.CrossRefGoogle ScholarPubMed
Anderson, B. A., and Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, naturalistic viewing. Attention, Perception & Psychophysics, 74, 1644–53.CrossRefGoogle Scholar
Anderson, B. A., and Yantis, S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 39, 69.Google ScholarPubMed
Bacon, W. F., and Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–96.CrossRefGoogle ScholarPubMed
Bauer, B., Jolicoeur, P., and Cowan, W. B. (1996). Visual search for colour targets that are or are not linearly separable from distractors. Vision Research, 36, 1439–66.CrossRefGoogle Scholar
Becker, S. I. (2010). The role of target–distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General, 139, 247–65.Google ScholarPubMed
Becker, S. I., Folk, C. L., and Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36, 1460–76.Google ScholarPubMed
Becker, S. I., Folk, C. L., and Remington, R. W. (2013). Involuntary attentional capture does not depend on feature similarity, but on target–nontarget relations. Psychological Science, 24, 634–47.CrossRefGoogle Scholar
Boot, W. R., and Brockmole, J. R. (2010). Irrelevant features at fixation modulate saccadic latency and direction in visual search. Visual Cognition, 18, 481–91.CrossRefGoogle Scholar
Boynton, R. (1979). Human Color Vision. New York: Holt, Rinehart and Winston.Google Scholar
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–47.CrossRefGoogle ScholarPubMed
Bundesen, C, and Pedersen, L. F. (1983). Color segregation and visual search. Perception & Psychophysics, 33, 487–93.CrossRefGoogle ScholarPubMed
Carter, R. C. (1982). Visual search with color. Journal of Experimental Psychology: Human Perception and Performance, 8, 127–36.Google ScholarPubMed
Changizi, M. A., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biological Letters, 2, 217–21.Google ScholarPubMed
Chun, M. C., Golumb, J. D., and Turke-Brown, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73101.CrossRefGoogle ScholarPubMed
Chun, M. M. (1997). Temporal binding errors are redistributed by the attentional blink. Perception & Psychophysics, 59, 1191–9.CrossRefGoogle ScholarPubMed
Chun, M. M., and Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109–27.Google ScholarPubMed
Daoutis, C. A., Pilling, M., and Davies, I. R. L. (2006). Categorical effects in visual search for colour. Visual Cognition, 14, 217–40.CrossRefGoogle Scholar
Desimone, R., and Duncan, J. (1995). Neural mechanism of selective visual attention. Annual Review of Neuroscience, 18, 193222.CrossRefGoogle ScholarPubMed
Duncan, J. (1988). Boundary conditions on parallel processing in human vision. Perception, 17, 358.Google Scholar
Duncan, J., and Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–58.CrossRefGoogle ScholarPubMed
D’Zmura, M. (1991). Color in visual search. Vision Research, 31, 951–66.Google ScholarPubMed
Egeth, H., Virzi, R. A., and Garbart, H. (1984). Searching for conjunctively defined targets. Human Perception and Performance, 10, 3239.CrossRefGoogle ScholarPubMed
Elliot, A. J., and Maier, M. A. (2014). Color psychology: effects of perceiving color on psychological functioning in humans. Annual Review of Psychology, 65, 95120.CrossRefGoogle ScholarPubMed
Farmer, E. W., and Taylor, R. M. (1980). Visual search through color displays: effects of target-background similarity and background uniformity. Perception & Psychophysics, 27, 267–72.CrossRefGoogle ScholarPubMed
Fecteau, J. H. (2007). Priming of pop-out depends upon the current goals of observers. Journal of Vision, 7, 111.CrossRefGoogle ScholarPubMed
Folk, C. L., and Anderson, B. A. (2010). Target uncertainty effects in attentional capture: singleton detection mode or multiple attentional control settings? Psychonomic Bulletin & Review, 17, 421–6.CrossRefGoogle ScholarPubMed
Folk, C. L., Ester, E., and Troemel, K. (2009). How to keep attention from straying: get engaged! Psychonomic Bulletin & Review, 16, 127–32.CrossRefGoogle ScholarPubMed
Folk, C. L., Leber, A., and Egeth, H. (2008). Top-down control settings and the attentional blink: evidence for non-spatial contingent capture. Visual Cognition, 16, 616–42.Google Scholar
Folk, C. L., and Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–58.Google ScholarPubMed
Folk, C. L., and Remington, R. W. (2008). Bottom-up priming of top-down attentional control settings. Visual Cognition, 16, 215–31.Google Scholar
Folk, C. L., Remington, R. W., and Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–44.Google ScholarPubMed
Folk, C. L., Remington, R. W., and Johnston, J. C. (1993). Contingent attentional capture: a reply to Yantis (1993). Journal of Experimental Psychology: Human Perception and Performance, 19, 682–5.Google Scholar
Folk, C. L., Remington, R. W., and Wright, J. H. (1994). The structure of attentional control: contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20, 317–29.Google ScholarPubMed
Found, A., and Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: investigating a ‘dimension-weighting’ account. Perception & Psychophysics, 58, 88101.CrossRefGoogle ScholarPubMed
Frey, H. P., Honey, C., and König, P. (2008). What’s color got to do with it? The influence of color on overt visual attention in different categories. Journal of Vision, 8, 117.CrossRefGoogle Scholar
Frey, H. P., Wirz, K., Willenbocke, V., Betz, T., Schreiber, C., Trosciank, T., and König, P. (2011). Beyond correlation: do color features influence attention in rainforest? Frontiers in Human Neuroscience, 5, 36.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Rieger, J. (2000). Sensory and cognitive contributions of color to the recognition of natural scenes. Current Biology, 10, 805–8.CrossRefGoogle Scholar
Green, B. F., and Anderson, L. K. (1956). Color coding in a visual search task. Journal of Experimental Psychology, 51, 1924.CrossRefGoogle Scholar
Harris, A., Remington, R. W., and Becker, S. (2013). Feature specificity in attentional capture by size and color. Journal of Vision, 13, 12.CrossRefGoogle ScholarPubMed
Hillstrom, A. P. (2000). Repetition effects in visual search. Perception & Psychophysics, 62, 800–17.CrossRefGoogle ScholarPubMed
Horstmann, G. (2002). Evidence for attentional capture by a surprising color singleton in visual search. Psychological Science, 13, 499505.CrossRefGoogle ScholarPubMed
Irons, J. L., Folk, C. L., and Remington, R. W. (2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38, 758–75.Google ScholarPubMed
Jameson, K. A., and D’Andrade, R. G. (1997). It’s not really red, green, yellow, blue: an inquiry into perceptual color space. In Hardin, C. L. and Maffi, L. (eds.), Color Categories in Thought and Language (pp. 295319). Cambridge University Press.CrossRefGoogle Scholar
Jonides, J. (1981). Voluntary vs. automatic control over the mind’s eye’s movement. In Long, J. B. and Baddeley, A. D. (eds.), Attention and Performance IX (pp. 187203). Hillsdale, NJ: Erlbaum.Google Scholar
Koch, C., and Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4, 219–27.Google ScholarPubMed
Lamy, D., Leber, A., and Egeth, H. E. (2004). Effects of stimulus-driven salience within feature search mode. Journal of Experimental Psychology: Human Perception and Performance, 30, 1019–31.Google ScholarPubMed
Lennie, P., and D’Zmura, M. (1988). Mechanisms of color vision. Critical Reviews in Neurobiology, 3, 333400.Google ScholarPubMed
Lindsey, D. T., Brown, A. M., Reijnen, E., Rich, A. N., Kuzmove, Y. I., and Wolfe, J. M. (2010). Color channels, not color appearance or color categories guide visual search for desaturated color targets. Psychological Science, 21, 1208–14.CrossRefGoogle ScholarPubMed
Maljkovic, V., and Nakayama, K. (1994). Priming of pop-out. I. Role of features. Memory & Cognition, 22, 657–72.CrossRefGoogle ScholarPubMed
Maljkovic, V., and Nakayama, K. (1996). Priming of pop-out. II. The role of position. Perception & Psychophysics, 58(7), 977–91.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco, CA: W. H. Freeman.Google Scholar
Mikellides, B. (1990). Color and physiological arousal. Journal of Architectural and Planning Research, 7, 1320.Google Scholar
Moher, J., Lakshmanan, B., Egeth, H., and Ewen, J. (2014). Inhibition drives early feature-based attention. Psychological Science, 25, 315–24.CrossRefGoogle ScholarPubMed
Moore, K. S., and Weissman, D. H. (2010). Involuntary transfer of a top-down attentional set into the focus of attention: evidence from a contingent attentional capture paradigm. Attention, Perception, and Psychophysics, 72, 14951509.CrossRefGoogle ScholarPubMed
Müller, H. J., Reimann, B., and Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: stimulus- and expectancy-riven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–35.Google ScholarPubMed
Nagy, A. L., and Sanchez, R. R. (1990). Critical color differences determined with a visual search task. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 7, 1209–17.Google ScholarPubMed
Olivers, C., Meijer, F., and Theeuwes, J. (2006). Feature-based memory-driven attentional capture: visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243–65.Google ScholarPubMed
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 325.CrossRefGoogle ScholarPubMed
Posner, M. I., and Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.CrossRefGoogle ScholarPubMed
Prinzmetal, W., Presti, D. E., and Posner, M. I. (1986). Does attention affect visual feature integration? Journal of Experimental Psychology: Human Perception and Performance, 12, 361–9.Google ScholarPubMed
Pylyshyn, Z. (1980). Computation and cognition: issues in the foundation of cognitive science. Behavioral and Brain Sciences, 3, 111–32.CrossRefGoogle Scholar
Raymond, J. E., Shapiro, K. L., and Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849–60.Google Scholar
Saenz, M. T, Buracas, G. T., and Boynton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5, 631–2.CrossRefGoogle ScholarPubMed
Schultz, M. F., and Sanocki, T. (2003). Time course of perceptual grouping by color. Psychological Science, 14, 2630.CrossRefGoogle Scholar
Smallman, H., and Boynton, R. (1990). Segregation of basic colors in an information display. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10, 1985–94.Google Scholar
Sumner, P., and Mollon, J. D. (2000). Catarrhine photopigments are optimized for detecting targets against a foliage background. Journal of Experimental Biology, 203, 1963–86.CrossRefGoogle ScholarPubMed
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599606.CrossRefGoogle ScholarPubMed
Theeuwes, J. (1994). Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20, 799806.Google ScholarPubMed
Theeuwes, J. (1995). Perceptual selectivity for color and form: on the nature of the interference effect. In Kramer, A. F., Coles, M. G. H., and Logan, G. D. (eds.), Converging Operations in the Study of Visual Attention (pp. 297314). Washington, DC: American Psychological Association.Google Scholar
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 123, 7799.CrossRefGoogle Scholar
Treisman, A. (1988). Features and objects: the fourteenth Bartlett Memorial Lecture. Quarterly Journal of Experimental Psychology, 40A, 201–36.Google Scholar
Treisman, A., and Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97136.CrossRefGoogle ScholarPubMed
Treisman, A., and Gormican, S. (1988). Feature analysis in early vision: evidence from search asymmetries. Psychological Review, 95, 1548.CrossRefGoogle ScholarPubMed
Turatto, M., and Galfano, G. (2001). Attentional capture by color without any relevant attentional set. Perception & Psychophysics, 63, 286–97.CrossRefGoogle ScholarPubMed
Wilson, G. D. (1966). Arousal properties of red versus green. Perceptual and Motor Skills, 23, 947–49.CrossRefGoogle Scholar
Wolfe, J. M. (1994). Guided Search 2.0: a revised model of visual search. Psychonomic Bulletin & Review, 1, 202–38.CrossRefGoogle ScholarPubMed
Yantis, S., and Egeth, H. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25, 661–76.Google ScholarPubMed
Yokoi, K., and Uchikawa, K. (2005). Color category influences heterogeneous visual search for color. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 22, 2309–17.CrossRefGoogle ScholarPubMed
Zhang, W., and Luck, S. J. (2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12, 24–5.CrossRefGoogle ScholarPubMed

References

Allen, W. L., and Higham, J. P. (2015). Assessing the potential information content of multicomponent visual signals: a machine learning approach. Proceedings of the Royal Society of London. Series B, Biological Sciences, 282, 20142284.Google ScholarPubMed
Allen, W. L., Stevens, M., and Higham, J. P. (2014). Character displacement of cercopithecini primate visual signals. Nature Communications, 5, 4266.CrossRefGoogle ScholarPubMed
Amundsen, T., and Forsgren, E. (2001). Male mate choice selects for female coloration in a fish. Proceedings of the National Academy of Sciences of the United States of America, 98, 13155–60.Google Scholar
Andrés, J. A., Sánchez-Guillén, R. A., and Rivera, C. (2002). Evolution of female colour polymorphism in damselflies: testing the hypotheses. Animal Behaviour, 63, 677–85.CrossRefGoogle Scholar
Arak, A., and Enquist, M. (1993). Hidden preferences and the evolution of signals. Philosophical Transactions of the Royal Society of London. SeriesB, Biological Sciences, 340, 207–13.Google Scholar
Baird, T. A. (2004). Reproductive coloration in female collared lizards, Crotaphytus collaris, stimulates courtship by males. Herpetologica, 60, 337–48.CrossRefGoogle Scholar
Baird, T. A., Fox, S. F., and McCoy, J. K. (1997). Population differences in the roles of size and coloration in intra- and intersexual selection in the collared lizard, Crotaphytus collaris: influence of habitat and social organization. Behavioral Ecology, 8, 506–17.CrossRefGoogle Scholar
Bajer, K., Molnár, O., Török, J., and Herczeg, G. (2010). Female European green lizards (Lacerta viridis) prefer males with high ultraviolet throat reflectance. Behavioral Ecology and Sociobiology, 64, 2007–14.CrossRefGoogle Scholar
Baldauf, S. A., Bakker, T. C. M., Kullmann, H., and Thünken, T. (2011). Female nuptial coloration and its adaptive significance in a mutual mate choice system. Behavioral Ecology, 22, 478–85.CrossRefGoogle Scholar
Baldwin, J., and Johnsen, S. (2009). The importance of color in mate choice of the blue crab Callinectes sapidus. Journal of Experimental Biology, 212, 3762–8.CrossRefGoogle ScholarPubMed
Baldwin, J., and Johnsen, S. (2012). The male blue crab, Callinectes sapidus, uses both chromatic and achromatic cues during mate choice. Journal of Experimental Biology, 215, 1184–91.CrossRefGoogle ScholarPubMed
Bakker, T. C. M., and Mundwiler, B. (1994). Female mate choice and male red coloration in a natural three-spined stickleback (Gasterosteus aculeatus) population. Behavioral Ecology, 5, 7480.CrossRefGoogle Scholar
Bateman, A. J. (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349–68.CrossRefGoogle ScholarPubMed
Baube, C. L., Rowland, W. J., and Fowler, J. B. (1995). The mechanisms of colour-based mate choice in female threespine sticklebacks: hue, contrast and configurational cues. Behaviour, 132, 979–96.CrossRefGoogle Scholar
Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., and Maier, E. J. (1996). Ultraviolet vision and mate choice in zebra finches. Nature, 380, 433–5.CrossRefGoogle Scholar
Bergman, T. J., Ho, L., and Beehner, J. C. (2009). Chest color and social status in male geladas (Theropithecus gelada). International Journal of Primatology, 30, 791806.CrossRefGoogle Scholar
Bick, G. H., and Bick, J. C. (1965). Color variation and significance of color in reproduction in the damselfly, Argia apicalis (Say) (Zygoptera: Coenagriidae). Canadian Entomologist, 97, 3241.CrossRefGoogle Scholar
Bielert, C., Girolami, L., and Jowell, S. (1989). An experimental examination of the colour component in visually mediated sexual arousal of the male chacma baboon (Papio ursinus). Journal of the Zoological Society of London, 219, 569–79.CrossRefGoogle Scholar
Boal, J. G. (1997). Female choice of males in cuttlefish (Mollusca: Cephalopoda). Behaviour, 134, 975–88.Google Scholar
Bradley, B. J., and Mundy, N. I. (2008). The primate palette: the evolution of primate coloration. Evolutionary Anthropology, 17, 97111.CrossRefGoogle Scholar
Breaux, S. D., Watson, S. L., and Fontenot, M. B. (2012). A free choice task evaluating chimpanzees’ preference for photographic images of sex swellings: effects of color, size, and symmetry. International Journal of Comparative Psychology, 25, 118–36.CrossRefGoogle Scholar
Briscoe, A. D., and Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471510.CrossRefGoogle ScholarPubMed
Burley, N. (1981). Mate choice by multiple criteria in a monogamous species. American Naturalist, 117, 515–28.CrossRefGoogle Scholar
Burley, N. (1986). Comparison of the band-colour preferences of two species of estrildid finches. Animal Behaviour, 34, 1732–41.CrossRefGoogle Scholar
Burley, N., and Coopersmith, C. B. (1987). Bill color preferences of zebra finches. Ethology, 76, 133–51.CrossRefGoogle Scholar
Burley, N., Krantzberg, G., and Radman, P. (1982). Influence of colour-banding on the conspecific preferences of zebra finches. Animal Behaviour, 30, 444–55.CrossRefGoogle Scholar
Burley, N. T., and Symanski, R. (1998). “A taste for the beautiful”: latent aesthetic mate preferences for white crests in two species of Australian grassfinches. American Naturalist, 152, 792802.CrossRefGoogle ScholarPubMed
Changizi, M. A., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biology Letters, 2, 217–21.CrossRefGoogle ScholarPubMed
Charpentier, M., Peignot, P., Hossaert-McKey, M., Gimenez, O., Setchell, J. M., and Wickings, E. J. (2005). Constraints on control: factors influencing reproductive success in male mandrills (Mandrillus sphinx). Behavioral Ecology, 16, 614–23.CrossRefGoogle Scholar
Clark, D. L., and Uetz, G. (1992). Morph-independent mate selection in a dimorphic jumping spider: demonstration of movement bias in female choice using video-controlled courtship behavior. Animal Behaviour, 43, 247–54.CrossRefGoogle Scholar
Clutton-Brock, T., and McAuliffe, K. (2009). Female mate choice in mammals. Quarterly Review of Biology, 84, 327.CrossRefGoogle ScholarPubMed
Collins, S. A., Hubbard, C., and Houtman, A. M. (1994). Female mate choice in the zebra finch – the effect of male beak colour and male song. Behavioral Ecology and Sociobiology, 35, 21–5.CrossRefGoogle Scholar
Cooper, V. J., and Hosey, G. R. (2003). Sexual dichromatism and female preference in Eulemur fulvus subspecies. International Journal of Primatology, 24, 1177–88.CrossRefGoogle Scholar
Cooper, W. E., and Vitt, L. J. (1993). Female mate choice of large male broad-headed skinks. Animal Behaviour, 45, 683–93.CrossRefGoogle Scholar
Cott, H. B. (1940). Adaptive Coloration in Animals. London: Bradford and Dickens Drayton House.Google Scholar
Cuadrado, M. (1998). The use of yellow spot colors as a sexual receptivity signal in females of Chameleo chameleon. Herpetologica, 54, 395402.Google Scholar
Cummings, M. E., García de León, F. J., Mollaghan, D. M., and Ryan, M. J. (2006). Is UV ornamentation an amplifier in swordtails? Zebrafish, 3, 91100.CrossRefGoogle ScholarPubMed
Cummings, M. E., Rosenthal, G. G., and Ryan, M. J. (2003). A private ultraviolet channel in visual communication. Proceedings of the Royal Society of London. Series B, Biological Sciences, 270, 897904.CrossRefGoogle ScholarPubMed
Cuthill, I. C., Partridge, J. C., Bennett, A. T. D., Church, S. C., Hart, N. S., and Hunt, S. (2000). Ultraviolet vision in birds. Advances in the Study of Behavior, 29, 159214.CrossRefGoogle Scholar
Darwin, C. R. (1871). The Descent of Man, and Selection in Relation to Sex, 2 vols. London, John Murray.Google Scholar
Darwin, C. R. (1876). Sexual selection in relation to monkeys. Nature, 15(366), 1819.CrossRefGoogle Scholar
Dawkins, M. S., and Guilford, T. (1996). Sensory bias and the adaptiveness of female choice. American Naturalist, 148, 937–42.CrossRefGoogle Scholar
Deaner, R. O., Khera, A. V., and Platt, M. L. (2005). Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Current Biology, 15, 543–8.CrossRefGoogle ScholarPubMed
Demaria, C., and Thierry, B. (1988). Responses to animal stimulus photographs in stumptailed macaques (Macaca arctoides). Primates, 29, 237–44.CrossRefGoogle Scholar
Detto, T. (2007). The fiddler crab Uca mjoebergi uses colour vision in mate choice. Proceedings of the Royal Society of London. Series B, Biological Sciences, 274, 2785–90.Google ScholarPubMed
Detto, T., and Blackwell, P. R. Y. (2009). The fiddler crab Uca mjoebergi uses ultraviolet cues in mate choice but not aggressive interactions. Animal Behaviour, 78, 407–11.CrossRefGoogle Scholar
Dixson, A. F. (2012). Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes, and Humans, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Dubuc, C., Allen, W. L., Casio, J., Lee, S. D., Maestripieri, D., Petersdorf, M., Winters, S. and Higham, J. P. (2015). Who cares? Experimental attention biases provide new insights into a mammalian sexual signal. Behavioral Ecology.Google Scholar
Dubuc, C., Allen, W. L., Maestripieri, D., and Higham, J. P. (2014a). Is male rhesus macaque red color ornamentation attractive to females? Behavioral Ecology and Sociobiology, 68, 1215–24.CrossRefGoogle ScholarPubMed
Dubuc, C., Brent, L. J. N., Accamando, A. K., Gerald, M. S., MacLarnon, A., Semple, S., Heistermann, M., et al. (2009). Sexual skin color contains information about the timing of the fertile phase in free-ranging Macaca mulatta. International Journal of Primatology, 30, 777–89.CrossRefGoogle Scholar
Dubuc, C., Winters, S., Allen, W. L., Brent, L. J. N., Cascio, J., Maestripieri, D., Ruiz-Lambides, A. V., et al. (2014b). Sexually selected skin colour is heritable and related to fitness in a non-human primate. Proceedings of the Royal Society of London. Series B, Biological Sciences, 281, 20141602.Google Scholar
Ellers, J., and Boggs, C. L. (2003). The evolution of wing color: male mate choice opposes adaptive wing color divergence in Colias butterflies. Evolution, 57, 1100–6.Google Scholar
Elliot, A. J., Kayser, D. N., Greitemeyer, T., Lichtenfeld, S., Gramzow, R. H., and Maier, M. A. (2010). Red, rank, and romance in women viewing men. Journal of Experimental Psychology: General, 139, 399417.CrossRefGoogle ScholarPubMed
Elliot, A. J., and Niesta, D. (2008). Romantic red: red enhances men’s attraction to women. Journal of Personality and Social Psychology, 95, 1150–64.CrossRefGoogle ScholarPubMed
Emlen, D. J. (2008). The evolution of animal weapons. Annual Review of Ecology, Evolution, and Systematics, 39, 387413.CrossRefGoogle Scholar
Endler, J. A. (1983). Natural and sexual selection on color patterns in poeciliid fishes. Environmental Biology of Fishes, 9, 173–90.CrossRefGoogle Scholar
Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. American Naturalist, 139, S12553.CrossRefGoogle Scholar
Endler, J. A., and Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution, 13, 415–20.CrossRefGoogle ScholarPubMed
Endler, J. A., and Day, L. B. (2006). Ornament colour selection, visual contrast and the shape of colour preference functions in great bowerbirds, Chlamydera nuchalis. Animal Behaviour, 72, 1405–16.CrossRefGoogle Scholar
Endler, J. A., Westcott, D. A., Madden, J. R., and Robson, T. (2005). Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution, 59, 17951818.Google ScholarPubMed
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140, 296–7.CrossRefGoogle ScholarPubMed
Fernandez, A. A., and Morris, M. R. (2007). Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. American Naturalist, 170, 1020.CrossRefGoogle ScholarPubMed
Fincke, O. M., Fargevieille, A., and Schultz, T. D. (2007). Lack of innate preference for morph and species identity in mate-searching Enallagma damselflies. Behavioral Ecology and Sociobiology, 61, 1121–31.CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Selection. Oxford: Clarendon Press.Google Scholar
Fujita, K. (1987). Species recognition by five macaque monkeys. Primates, 28, 353–66.CrossRefGoogle Scholar
Fujita, S., Sugiura, H., Mitsunaga, F., and Shimizu, K. (2004). Hormone profiles and reproductive characteristics in wild female Japanese macaques (Macaca fuscata). American Journal of Primatology, 64, 367–75.CrossRefGoogle ScholarPubMed
Gerald, M. S., Ayala, J., Ruíz-Lambides, A., Waitt, C., and Weiss, A. (2010). Do females pay attention to secondary sexual coloration in vervet monkeys (Chlorocebus aethiops)? Naturwissenschaften, 97, 8996.CrossRefGoogle ScholarPubMed
Ghiradella, H. (1991). Light and color on the wing: structural colors in butterflies and moths. Applied Optics, 30, 34923500.CrossRefGoogle ScholarPubMed
Gomez, D., Richardson, C., Lengagne, T., Derex, M., Plenet, S., Joly, P., Léna, J., et al. (2010). Support for a role of colour vision in mate choice in the nocturnal European tree frog (Hyla arborea). Behaviour, 147, 1753–68.Google Scholar
Gomez, D., Richardson, C., Lengagne, T., Plenet, S., Joly, P., Léna, J., and Théry, M. (2009). The role of nocturnal vision in mate choice: females prefer conspicuous males in the European tree frog (Hyla arborea). Proceedings of the Royal Society of London. Series B, Biological Sciences, 276, 2351–8.Google ScholarPubMed
Groves, C. P. (2005). Order Primates. In Wilson, D. E. and Reeder, D. M. (eds.), Mammal Species of the World, 3rd edn (pp. 111–84). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Guéguen, N. (2012). Color and women attractiveness: when red clothed women are perceived to have more intense sexual intent. Journal of Social Psychology, 152, 261–5.CrossRefGoogle ScholarPubMed
Guilford, T., and Harvey, P. H. (1998). Ornithology: the purple patch. Nature, 392, 867–9.CrossRefGoogle Scholar
Hagelin, J. C., and Ligon, J. D. (2001). Female quail prefer testosterone-mediated traits, rather than the ornate plumage of males. Animal Behaviour, 61, 465–76.CrossRefGoogle Scholar
Hamilton, P. S., and Sullivan, B. K. (2005). Female mate attraction in ornate tree lizards, Urosaurus ornatus: a multivariate analysis. Animal Behaviour, 69, 219–24.CrossRefGoogle Scholar
Hanlon, R. T., and Messenger, J. B. (1996). Cephalopod Behaviour. Cambridge University Press.Google Scholar
Hebets, E. A. (2003). Subadult experience influences adult mate choice in an arthropod: exposed female wolf spiders prefer males of a familiar phenotype. Proceedings of the National Academy of Sciences of the United States of America, 100, 13390–5.Google Scholar
Higham, J. P., Brend, L. J. N., Dubuc, C., Accamando, A. K., Engelhardt, A., Gerald, M. S., Heistermann, M., et al. (2010). Color signal information content and the eye of the beholder: a case study in the rhesus macaque. Behavioral Ecology, 21, 739–46.CrossRefGoogle ScholarPubMed
Higham, J. P., Hughes, K. D., Brent, L. J. N., Dubuc, C., Engelhardt, A., Heistermann, M., Maestripieri, D., et al. (2011). Familiarity affects the assessment of female facial signals of fertility by free-ranging male rhesus macaques. Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, 3452–8.Google ScholarPubMed
Higham, J. P., Pfefferle, D., Heistermann, M., Maestripieri, D., and Stevens, M. (2013). Signaling in multiple modalities in male rhesus macaques: sex skin coloration and barks in relation to androgen levels, social status, and mating behavior. Behavioral Ecology and Sociobiology, 67, 1457–69.CrossRefGoogle ScholarPubMed
Hill, G. E. (1990). Female house finches prefer colourful males: sexual selection for a condition-dependent trait. Animal Behaviour, 40, 563–72.CrossRefGoogle Scholar
Hill, G. E. (1991). Plumage coloration is a sexually selected indicator of male quality. Nature, 350, 337–9.CrossRefGoogle Scholar
Hill, G. E. (1993). Male mate choice and the evolution of female plumage coloration in the house finch. Evolution, 47, 1515–25.CrossRefGoogle Scholar
Hill, G. E. (2006). Female mate choice for ornamental coloration. In Hill, and McGraw, , Bird Coloration, pp. 137200.Google Scholar
Hill, G. E., and McGraw, K. J. (2006). Bird Coloration: Function and Evolution. Cambridge, MA: Harvard University Press.Google Scholar
Hill, G. E., and Montgomerie, R. (1994). Plumage colour signals nutritional condition in the house finch. Proceedings of the Royal Society of London. Series B, Biological Sciences, 258, 4752.Google Scholar
Hill, J. A., Enstrom, D. A., Ketterson, E. D., Nolan, V., and Ziegenfus, C. (1999). Mate choice based on static versus dynamic secondary sexual traits in the dark-eyed junco. Behavioral Ecology, 10, 91–6.CrossRefGoogle Scholar
Hill, W. C. O. (1955). A note on integumental colours with special reference to the genus Mandrillus. Saeugetierkundliche Mitteilungen, 3, 145–51.Google Scholar
Houde, A. E. (1987). Mate choice based upon naturally occurring color-pattern variation in a guppy population. Evolution, 41, 110.Google Scholar
Houde, A. E. (1997). Sex, Color, and Mate Choice in Guppies. Princeton University Press.Google Scholar
Houde, A. E., and Torio, A. J. (1992). Effect of parasitic infection on male color pattern and female choice in guppies. Behavioral Ecology, 3, 346–51.CrossRefGoogle Scholar
Hughes, K. D., Higham, J. P., Allen, W. L., Elliot, A. J., and Hayden, B. Y. (2015). Extraneous color affects female macaques’ gaze preference for photographs of male conspecifics. Evolution and Human Behavior, 36, 2531.CrossRefGoogle ScholarPubMed
Hunt, S., Cuthill, I. C., Bennett, A. T. D., and Griffiths, R. (1999). Preferences for ultraviolet partners in the blue tit. Animal Behaviour, 58, 809–15.CrossRefGoogle ScholarPubMed
Hunt, S., Cuthill, I. C., Swaddle, J. P., and Bennett, A. T. D. (1997). Ultraviolet vision and band-colour preferences in female zebra finches, Taeniopygia guttata. Animal Behaviour, 54, 1383–92.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews, 68, 413–71.CrossRefGoogle ScholarPubMed
Johnson, J. L. (1994). Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images. Applied Optics, 33, 6239–53.CrossRefGoogle ScholarPubMed
Kemp, D. J. (2007). Female butterflies prefer males bearing bright iridescent ornamentation. Proceedings of the Royal Society of London. Series B, Biological Sciences, 274, 1043–7.Google ScholarPubMed
Kemp, D. J. (2008). Female mating biases for bright ultraviolet iridescence in the butterfly Eurema hecabe (Pieridae). Behavioral Ecology, 19, 18.CrossRefGoogle Scholar
Kingston, J. J., Rosenthal, G. G., and Ryan, M. L. (2003). The role of sexual selection in maintaining a colour polymorphism in the pygmy swordtail, Xiphophorus pygmaeus. Animal Behaviour, 65, 735–43.CrossRefGoogle Scholar
Kodric-Brown, A. (1985). Female preference and sexual selection for male coloration in the guppy (Poecilia reticulata). Behavioral Ecology and Sociobiology, 17, 199205.CrossRefGoogle Scholar
Kodric-Brown, A., and Johnson, S. C. (2002). Ultraviolet reflectance patterns of male guppies enhance attractiveness to females. Animal Behaviour, 63, 391–6.CrossRefGoogle Scholar
Kwiatkowski, M. A., and Sullivan, B. K. (2002). Geographic variation in sexual selection among populations of an iguanid lizard, Sauromalus obesus (=ater). Evolution, 56, 2039–51.Google ScholarPubMed
Lall, A. B., Cronin, T. W., Carvalho, A. A., de Souza, J. M., Parros, M. P., Stevani, C. V., Bechara, E. J. H., et al. (2010). Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. Journal of Comparative Physiology A, 196, 629–38.CrossRefGoogle ScholarPubMed
Lall, A. B., Seliger, H. H., Biggley, W. H., and Lloyd, J. E. (1980). Ecology of colors of firefly bioluminescence. Science, 210, 560–2.CrossRefGoogle ScholarPubMed
Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences of the United States of America, 78, 3721–5.Google ScholarPubMed
Lane, E. K. (2013). Sexual Selection of Beard Color in the Inland Bearded Dragon (Pogona vitticeps). Ph.D. dissertation, California State University–San Marcos.Google Scholar
LeBas, N. R., and Marshall, N. J. (2000). The role of colour in signaling and mate choice in the agamid lizard Ctenophorus ornatus. Proceedings of the Royal Society of London. Series B, Biological Sciences, 267, 445–52.Google ScholarPubMed
Li, J., Zhang, Z., Liu, F., Liu, Q., Gan, W., Chen, J., Lim, M. L. M., et al. (2008). UVB-based mate-choice cues used by females of the jumping spider Phintella vittata. Current Biology, 18, 399403.CrossRefGoogle ScholarPubMed
Ligon, J. D., and Sqartjes, P. W. (1995). Ornate plumage of male red junglefowl does not influence mate choice by females. Animal Behaviour, 49, 117–25.CrossRefGoogle Scholar
Lim, M. L. M., Land, M. F., and Li, D. (2007a). Sex-specific UV and fluorescence signals in jumping spiders. Science, 315, 481.CrossRefGoogle ScholarPubMed
Lim, M. L. M., Land, M. F., and Li, D. (2007b). Effect of UV-reflecting marking on female mate-choice decisions in Cosmophasis umbratica, a jumping spider from Singapore. Behavioral Ecology, 19, 61–6.CrossRefGoogle Scholar
Lind, O., Mitku, M., Olsson, P., and Kelber, A. (2013). Ultraviolet sensitivity and colour vision in raptor foraging. Journal of Experimental Biology, 216, 1819–26.CrossRefGoogle ScholarPubMed
Long, K. D., and Houde, A. E. (1989). Orange spots as a visual cue for female mate choice in the guppy (Poecilia reticulata). Ethology, 82, 316–24.CrossRefGoogle Scholar
Maan, M. E., and Cummings, M. E. (2009). Sexual dimorphism and direction selection on aposematic signals in a poison frog. Proceedings of the National Academy of Sciences of the United States of America, 106, 19072–7.Google Scholar
Maan, M. E., Hofker, K. D., van Alphen, J. J. M., and Seehausen, O. (2006). Sensory drive in cichlid speciation. American Naturalist, 167, 947–54.CrossRefGoogle ScholarPubMed
Marty, J. S., Higham, J. P., Gadsby, E. L., and Ross, C. (2009). Dominance, coloration, and social and sexual behavior in male drills Mandrillus leucophaeus. International Journal of Primatology, 30, 807–23.CrossRefGoogle Scholar
McGraw, K. J. (2006a). Mechanics of carotenoid-based coloration. In Hill, and McGraw, , Bird Coloration, pp. 177294.CrossRefGoogle Scholar
McGraw, K. J. (2006b). Mechanisms of uncommon colors: pterins, porphyrins, and psittacofulvins. In Hill, and McGraw, , Bird Coloration, pp. 354–98.CrossRefGoogle Scholar
McKinnon, J. S. (1995). Video mate preferences of female three-spined sticklebacks from populations with divergent male coloration. Animal Behaviour, 50, 1645–55.CrossRefGoogle Scholar
McLennan, D. A., and McPhail, J. D. (1990). Experimental investigations of the evolutionary significance of sexually dimorphic nuptial colouration in the Gasterosteus aculeatus (L.): the relationship between male colour and female behaviour. Canadian Journal of Zoology, 68, 482–92.CrossRefGoogle Scholar
Milinski, M., and Bakker, T. C. M. (1990). Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature, 344, 330–3.CrossRefGoogle Scholar
Morehouse, N. I., and Rutowski, R. L. (2010). In the eyes of the beholders: female choice and avian predation risk associated with an exaggerated male butterfly color. American Naturalist, 176, 768–84.CrossRefGoogle ScholarPubMed
Muma, K. E., and Weatherhead, P. J. (1989). Male traits expressed in females: direct or indirect sexual selection? Behavioral Ecology and Sociobiology, 25, 2331.CrossRefGoogle Scholar
Newton, A. V. (1896). A Dictionary of Birds. London: A & C Black.Google Scholar
Osorio, D., and Vorobyev, M. (2005). Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proceedings of the Royal Society of London. Series B, Biological Sciences, 272, 1745–52.Google ScholarPubMed
Palmer, M. S., and Hankison, S. J. (2012). UV and mate choice in the sailfin molly, Poecilia latipinna [abstract]. Society for Integrative and Comparative Biology Annual Meeting; January 3–7, 2012, Charleston, South Carolina.Google Scholar
Pierotti, M. E. R., Martín-Fernández, J. A., and Seehausen, O. (2009). Mapping individual variation in male mating preference space: multiple choice in a color polymorphic cichlid fish. Evolution, 63, 2372–88.CrossRefGoogle Scholar
Pincemy, G., Dobson, F. S., and Jouventin, P. (2009). Experiments on colour ornaments and mate choice in king penguins. Animal Behaviour, 78, 1247–53.CrossRefGoogle Scholar
Prum, R. O. (2006). Anatomy, physics, and evolution of structural colors. In Hill, and McGraw, , Bird Coloration, pp. 295353.Google Scholar
Pryke, S. R., Andersson, S., and Lawes, M. J. (2001). Sexual selection of multiple handicaps in the red-collared widowbird: female choice of tail length but not carotenoid display. Evolution, 55, 1452–63.Google Scholar
Qu, X., Yan, J., Xiao, H., and Zhu, Z. (2008). Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Automatica Sinica, 34, 1508–14.CrossRefGoogle Scholar
Re, D. E., Whitehead, R. D., Xio, D., and Perrett, D. I. (2011). Oxygenated-blood colour change thresholds for perceived facial redness, health, and attractiveness. PLoS ONE, 6, e17859.CrossRefGoogle ScholarPubMed
Renoult, J. P., Schaefer, H. M., Sallé, B., and Charpentier, M. J. E. (2011). The evolution of the multicoloured face of mandrills: insights from the perceptual space of colour vision. PLoS ONE, 6, e29117.CrossRefGoogle ScholarPubMed
Rhodes, G., and Jeffery, L. (2006). Adaptive norm-based coding of facial identity. Vision Research, 46, 2977–87.CrossRefGoogle ScholarPubMed
Rick, I. P., Modarressie, R., and Bakker, T. C. M. (2006). UV wavelengths affect female mate choice in three-spined sticklebacks. Animal Behaviour, 71, 307–13.CrossRefGoogle Scholar
Roberts, S. C., Owen, R. C., and Havlicek, J. (2010). Distinguishing between perceiver and wearer effects in clothing color-associated attributions. Evolutionary Psychology, 8, 350–64.CrossRefGoogle ScholarPubMed
Rudh, A., and Qvarnström, A. (2013). Adaptive colouration in amphibians. Seminars in Cell and Developmental Biology, 24, 553–61.CrossRefGoogle ScholarPubMed
Rutowski, R. L., and Rajyaguru, P. K. (2013). Male-specific iridescent coloration in the pipevine swallowtail (Battus philenor) is used in mate choice by females but not sexual discrimination by males. Journal of Insect Behavior, 26, 200–11.CrossRefGoogle Scholar
Ryan, M. J. (1990). Sexual selection, sensory systems and sensory exploitation. Oxford Surveys in Evolutionary Biology, 7, 157–95.Google Scholar
Schwartz, S., and Singer, M. (2012). Romantic red revisited: red enhances men’s attraction to young, but not menopausal women. Journal of Experimental Social Psychology, 49, 161–4.Google Scholar
Seehausen, O., van Alphen, J. J. M., and Witte, F. (1997). Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science, 277, 1808–11.CrossRefGoogle Scholar
Seitz, J. J., Schmutz, S. M., Thue, T. D., and Buchanan, F. C. (1999). A missense mutation in the bovine MGF gene is associated with the roan phenotype in Belgian Blue and Shorthorn cattle. Mammalian Genome, 10, 710–12.Google ScholarPubMed
Semler, D. E. (1971). Some aspects of adaptation in a polymorphism for breeding colours in the threespine stickleback (Gasterosteus aculeatus). Journal of the Zoological Society of London, 165, 291302.CrossRefGoogle Scholar
Senar, J. C., and Escobar, D. (2002). Carotenoid derived plumage coloration in the siskin Carduelis spinus is related to foraging ability. Avian Science, 2, 1924.Google Scholar
Setchell, J. M. (2005). Do female mandrills prefer brightly colored males? International Journal of Primatology, 26, 715–35.CrossRefGoogle Scholar
Setchell, J. M., Adams, M. J., and Knapp, L. A. (2014). Female mate choice in mandrills (Mandrillus sphinx) [abstract]. American Journal of Physical Anthropology, 153, 236–7.Google Scholar
Setchell, J. M., Charpentier, M. J. E., Abbott, K. M., Wickings, E. J., and Knapp, L. A. (2009). Is brightest best? Testing the Hamilton–Zuk hypothesis in mandrills. International Journal of Primatology, 30, 825–44.CrossRefGoogle Scholar
Setchell, J. M., Charpentier, M., and Wickings, E. J. (2005). Mate guarding and paternity in mandrills: factors influencing alpha male monopoly. Animal Behaviour, 70, 1105–20.CrossRefGoogle Scholar
Setchell, J. M., and Dixson, A. F. (2001). Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39, 177–84.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Wickings, E. J. (2004). Sexual swelling in mandrills (Mandrillus sphinx): a test of the reliable indicator hypothesis. Behavioral Ecology, 15, 438–45.CrossRefGoogle Scholar
Setchell, J. M., and Wickings, E. J. (2005). Dominance, status signals and coloration in male mandrills (Mandrillus sphinx). Ethology, 111, 2550.CrossRefGoogle Scholar
Setchell, J. M., Wickings, E. J., and Knapp, L. A. (2006). Signal content of red facial coloration in female mandrills (Mandrillus sphinx). Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 23952400.Google ScholarPubMed
Sigmund, W. R. (1983). Female preference for Anolis carolinensis males as a function of dewlap color and background coloration. Journal of Herpetology, 17, 137–43.CrossRefGoogle Scholar
Slominski, A., Wortsman, J., Plonka, P. M., Schallreuter, K. U., Paus, R., and Tobin, D. J. (2004). Hair follicle pigmentation. Journal of Investigative Dermatology, 124, 1321.CrossRefGoogle Scholar
Smith, E. J., Partridge, J. C., Parsons, K. N., White, E. M., Cuthill, I. C., Bennett, A. T. D., and Church, S. C. (2002). Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behavioral Ecology, 13, 1119.CrossRefGoogle Scholar
Stephen, I. D., Oldham, F. H., Perrett, D. I., and Barton, R. A. (2012). Redness enhances perceived aggression, dominance and attractiveness in men’s faces. Evolutionary Psychology, 10, 562–72.CrossRefGoogle ScholarPubMed
Stevens, M., and Cuthill, I. C. (2007). Hidden messages: are ultraviolet signals a special channel in avian communication? BioScience, 57, 501–7.Google Scholar
Stoddard, M. C., and Prum, R. O. (2008). Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. American Naturalist, 171, 755–76.CrossRefGoogle Scholar
Stoddard, M. C., and Prum, R. O. (2011). How colorful are birds? Evolution of the avian plumage color gamut. Behavioral Ecology, 22, 1042–52.CrossRefGoogle Scholar
Summers, K., Symula, R., Clough, M., and Cronin, T. (1999). Visual mate choice in poison frogs. Proceedings of the Royal Society of London. Series B, Biological Sciences, 266, 2141–5.Google ScholarPubMed
Sumner, P., and Mollon, J. D. (2003). Colors of primate pelage and skin: objective assessment of conspicuousness. American Journal of Primatology, 59, 6791.CrossRefGoogle ScholarPubMed
Taylor, L. A., and McGraw, K. J. (2013). Male ornamental coloration improves courtship success in a jumping spider, but only in the sun. Behavioral Ecology, 24, 955–67.CrossRefGoogle Scholar
Toomey, M. B., and McGraw, K. J. (2012). Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation. BMC Evolutionary Biology, 12, 3.CrossRefGoogle ScholarPubMed
Torres, R., and Velando, A. (2003). A dynamic trait affects continuous pair assessment in the blue-footed booby, Sula nebouxii. Behavioral Ecology and Sociobiology, 55, 6572.CrossRefGoogle Scholar
Torres, R., and Velando, A. (2005). Male preference for female foot colour in the socially monogamous blue-footed booby, Sula nebouxii. Animal Behaviour, 69, 5965.CrossRefGoogle Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (ed.), Sexual Selection and the Descent of Man 1871–1971 (pp. 136207). Chicago: Aldine.Google Scholar
van Gossum, H., Stoks, R., and De Bruyn, L. (2001). Reversible frequency-dependent switches in male mate choice. Proceedings of the Royal Society of London. Series B, Biological Sciences, 268, 83–5.Google ScholarPubMed
van Gossum, H., Stoks, R., Matthysen, E., Valck, F., and De Bruyn, L. (1999). Male choice for female colour morphs in Ischnura elegans (Odonata, Coenagrionidae): testing the hypotheses. Animal Behaviour, 57, 1229–32.CrossRefGoogle Scholar
Vásquez, T., and Pfenning, K. S. (2007). Looking on the bright side: females prefer coloration indicative of male size and condition in the sexually dichromatic spadefoot toad, Scaphiopus couchii. Behavioral Ecology and Sociobiology, 62, 127–35.CrossRefGoogle Scholar
Vorobyev, M., and Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society of London. Series B, Biological Sciences, 265, 351–8.Google ScholarPubMed
Waitt, C., Gerald, M. S., Little, A. C., and Kraiselburd, E. (2006). Selective attention toward female secondary sexual color in male rhesus macaques. American Journal of Primatology, 68, 738–44.CrossRefGoogle ScholarPubMed
Waitt, C., Little, A. C., Wolfensohn, S., Honess, P., Brown, A. P., Buchanan-Smith, H. M., and Perrett, D. I. (2003). Evidence from rhesus macaques suggests that male coloration plays a role in female primate mate choice. Proceedings of the Royal Society of London. Series B, Biological Sciences, 270, S144–6.Google Scholar
Watkins, G. G. (1997). Inter-sexual signaling and the functions of female coloration in the tropidurid lizard Microlophus occipitalis. Animal Behaviour, 53, 843–52.CrossRefGoogle Scholar
West, P. M., and Packer, C. (2002). Sexual selection, temperature, and the lion’s mane. Science, 297, 1339–43.CrossRefGoogle ScholarPubMed
White, E. M., Partridge, J. C., and Church, S. C. (2003). Ultraviolet dermal reflexion and mate choice in the guppy, Poecilia reticulata. Animal Behaviour, 65, 693700.CrossRefGoogle Scholar
Wiernasz, D. C. (1989). Female choice and sexual selection of male wing melanin pattern in Pieris occidentalis (Lepidoptera). Evolution, 43, 1672–82.Google ScholarPubMed
Wiernasz, D. C. (1995). Male choice on the basis of female melanin patterns in Pieris butterflies. Animal Behaviour, 49, 4551.CrossRefGoogle Scholar
Winters, S., Dubuc, C., and Higham, J. P. (2015). Perspectives: the looking time experimental paradigm in studies of non-human perception and cognition. Ethology, 121, 116.CrossRefGoogle Scholar
Winters, S., Kamilar, J. M., Webster, T. H., Bradley, B. J., and Higham, J. P. (2014). Primate camouflage as seen by felids, raptors, and conspecifics. American Journal of Physical Anthropology, 153, 275.Google Scholar
Wong, B. B. M., Candolin, U., and Lindstrom, K. (2007). Environmental deterioration compromises socially enforced signals of male quality in three-spined sticklebacks. American Naturalist, 170, 184–9.CrossRefGoogle ScholarPubMed
Zuk, M., Thornhill, R., Ligon, J. D., Johnson, K., Austad, S., Ligon, S. H., Thornhill, N. W., et al. (1990). The role of male ornaments and courtship behavior in female mate choice of red jungle fowl. American Naturalist, 136, 459–73.CrossRefGoogle Scholar

References

Abbey, A. (1982). Sex differences in attributions for friendly behavior: do males misperceive females’ friendliness? Journal of Personality and Social Psychology, 42, 830–8.Google Scholar
Abbey, A., Cozzarelli, C., McLaughlin, K., and Harnish, R. J. (1987). The effects of clothing and dyad sex composition on perceptions of sexual intent: do women and men evaluate these cues differently. Journal of Applied Social Psychology, 17, 108–26.CrossRefGoogle Scholar
Andersson, M. (1994). Sexual Selection. Princeton University Press.CrossRefGoogle Scholar
Aslam, M. M. (2006). Are you selling the right colour? A cross-cultural review of colour as a marketing cue. Journal of Marketing Communications, 12, 1530.CrossRefGoogle Scholar
Barua, H. (1962). The Red River and the Blue Hill. Guahati, Assam: Lawyer’s Bookstall.Google Scholar
Beach, F. A. (1976). Sexual attractivity, proceptivity, and receptivity in female mammals. Hormones and Behavior, 7, 105–38.CrossRefGoogle ScholarPubMed
Beall, A. T., and Tracy, J. L. (2013). Women are more likely to wear red or pink at peak fertility. Psychological Science, 24, 1837–41.CrossRefGoogle ScholarPubMed
Bielert, C., Girolami, L., and Jowell, S. (1989). An experimental examination of the color component in visually mediated sexual arousal of the male chacma baboon (Papio ursinus). Journal of the Zoological Society of London, 219, 569–79.CrossRefGoogle Scholar
Bullivant, S. B., Sellergren, S. A., Stern, K., Spencer, N. A., Jacob, S., Mennella, J. A., and McClintock, M. K. (2004). Women’s sexual experience during the menstrual cycle: identification of the sexual phase by noninvasive measurement of luteinizing hormone. Journal of Sexual Research, 41, 8293.CrossRefGoogle ScholarPubMed
Buss, D. M. (1988). The evolution of human intrasexual competition: tactics of mate attraction. Journal of Personality and Social Psychology, 54, 616–28.CrossRefGoogle ScholarPubMed
Buss, D. M. (1989). Sex differences in human mate preference: evolutionary hypothesis tested in 37 cultures. Behavioral and Brain Sciences, 12, 149.CrossRefGoogle Scholar
Buss, D. M. (2011). Evolutionary Psychology: The Science of the Mind, 4th edn. New York: Prentice-Hall.Google Scholar
Buss, D. M., and Dedden, L. A. (1990). Derogation of competitors. Journal of Social and Personal Relationships, 7, 395422.CrossRefGoogle Scholar
Changizi, M. (2009). The Vision Revolution. Dallas, TX: Benbella.Google Scholar
Clark, A. P. (2008). Attracting interest: dynamic displays of proceptivity increase the attractiveness of men and women. Evolutionary Psychology, 6, 563–74.CrossRefGoogle Scholar
Coetzee, V., Faerber, S. J., Greeff, J. M., Lefevre, C. E., Re, D. E., and Perrett, D. I. (2012). African perceptions of female attractiveness. PLoS ONE, 7, e48116.CrossRefGoogle ScholarPubMed
Dennerstein, L., Gotts, G., Brown, J., Morse, C., Farley, T., and Pinol, A. (1994). The relationship between the menstrual cycle and female sexual interest in women with PMS complaints and volunteers. Psychoneuroendocrinology, 19, 293304.Google ScholarPubMed
Dixson, A. F. (1983). Observations on the evolution and behavioral significance of “sexual skin” in female primates. Advances in the Study of Behavior, 13, 63106.CrossRefGoogle Scholar
Douglas, K. (2001). Painted ladies. New Scientist, 172, 42–5.Google Scholar
Durante, K. M., Li, N. P., and Haselton, M. G. (2008). Changes in women’s choice of dress across the ovulatory cycle: naturalistic and laboratory task-based evidence. Personality and Social Psychology Bulletin, 34, 1451–60.CrossRefGoogle ScholarPubMed
Eibl-Eiblsfeldt, I. (1989). Human Ethology. New York: Aldine de Gruyter.Google Scholar
Elliot, A. J. (2015). Color and psychological functioning: a review of theoretical and empirical work. Frontiers in Psychology, 6(368).CrossRefGoogle ScholarPubMed
Elliot, A. J., Greitemeyer, T., and Pazda, A. D. (2013). Women’s use of red clothing as a sexual signal in intersexual interaction. Journal of Experimental Social Psychology, 49, 599602.CrossRefGoogle Scholar
Elliot, A. J., and Maier, M. A. (2013). The red-attractiveness effect, applying the Ioannidis and Trikalinos (2007a) test, and the broader scientific context: a reply to Francis (2013). Journal of Experimental Psychology: General, 142, 297300.CrossRefGoogle Scholar
Elliot, A. J., and Niesta, D. (2008). Romantic red: red enhances men’s attraction to women. Journal of Personality and Social Psychology, 95, 1150–64.CrossRefGoogle ScholarPubMed
Elliot, A. J., Niesta-Kayser, D., Greitemeyer, T., Lichtenfeld, S., Gramzow, R. H., Maier, M. A., and Liu, H. (2010). Red, rank, and romance in women viewing men. Journal of Experimental Psychology: General, 139, 399417.CrossRefGoogle ScholarPubMed
Elliot, A. J., and Pazda, A. D. (2012). Dressed for sex: red as a female sexual signal in humans. PLoS ONE, 7, e34607.CrossRefGoogle ScholarPubMed
Elliot, A. J., Tracy, J., Pazda, A. D., and Beall, A. (2013). Red enhances women’s attractiveness to men: first evidence suggesting universality. Journal of Experimental Social Psychology, 49, 165–8.CrossRefGoogle Scholar
Erdoes, R., and Ortiz, A. (1984). American Indian Myths and Legends. New York: Pantheon Books.Google Scholar
Fink, B., Bunse, L., Matts, P. J., and D’Emiliano, D. (2012). Visible skin colouration predicts perception of male facial age, health and attractiveness. International Journal of Cosmetic Science, 34, 307–10.CrossRefGoogle ScholarPubMed
Fink, B., Grammer, K., and Matts, P. J. (2006). Visible skin color distribution plays a role in the perception of age, attractiveness, and health in female faces. Evolution and Human Behavior, 27, 433–42.CrossRefGoogle Scholar
Fisher, M. L. (2004). Female intrasexual competition decreases female facial attractiveness. Proceedings of the Royal Society of London. Series B, Biological Sciences, 271, S283–5.Google ScholarPubMed
Fortney, S. M., Beckett, W. S., Carpenter, A. J., David, J., Drew, H., LaFrance, N. D., et al. (1988). Changes in plasma volume during bed rest: effects of menstrual cycle and estrogen administration. Journal of Applied Physiology, 65, 525–33.CrossRefGoogle ScholarPubMed
Foster, H. B., and Johnson, D. C. (eds.) (2003). Wedding Dress Across Cultures. New York: Berg.CrossRefGoogle Scholar
Gerald, M. (2003). How color may guide the primate world: possible relationships between sexual selection and sexual dichromatism. In Jones, C. (ed.), Sexual Selection and Reproductive Competition in Primates: New Perspectives and Directions (pp. 141–72). Norman, OK: American Society of Primatologists.Google Scholar
Gerald, M. S., Waitt, C., Little, A. C., and Kraiselburd, E. (2007). Females pay attention to female secondary sexual color: an experimental study in Macaca mulatta. International Journal of Primatology, 28, 17.CrossRefGoogle Scholar
Grabe, M. E., Bas, O., Pagano, L. A., and Samson, L. (2012). The architecture of female competition: derogation of a sexualized female news anchor. Journal of Evolutionary Psychology, 10, 107–33.CrossRefGoogle Scholar
Greenfield, A. B. (2005). A Perfect Red: Empire, Espionage, and the Quest for the Color of Desire. New York: HarperCollins.Google Scholar
Guéguen, N. (2008). The effects of women’s cosmetics on men’s approach: an evaluation in a bar. North American Journal of Psychology, 10, 221–8.Google Scholar
Guéguen, N. (2010). Color and women hitchhikers’ attractiveness: gentlemen drivers prefer red. Color Research & Application, 37, 76–8.Google Scholar
Guéguen, N. (2012a). Color and women attractiveness: when red clothed women are perceived to have more intense sexual intent. Journal of Social Psychology, 152, 261–5.CrossRefGoogle ScholarPubMed
Guéguen, N. (2012b). Does red lipstick really attract men? An evaluation in a bar. International Journal of Psychology Studies, 4, 206–9.CrossRefGoogle Scholar
Guéguen, N. (2012c). Makeup and menstrual cycle: near ovulation, women use more cosmetics. Psychological Record, 62, 18.CrossRefGoogle Scholar
Guéguen, N., and Jacob, C. (2011). Enhanced female attractiveness with use of cosmetics and male tipping behavior in restaurants. Journal of Cosmetic Science, 62, 283–90.Google ScholarPubMed
Guéguen, N., and Jacob, C. (2012a). Color and cyber-attractiveness: red enhances men’s attraction to women’s internet personal ads. Color Research & Application, 38, 309–12.Google Scholar
Guéguen, N., and Jacob, C. (2012b). Lipstick and tipping behavior: when red lipstick enhances waitresses’ tips. International Journal of Hospitality Management, 31, 1333–5.CrossRefGoogle Scholar
Guéguen, N., and Jacob, C. (2014). Clothing color and tipping: gentlemen patrons give more tips to waitresses with red clothes. Journal of Hospitality & Tourism Research, 38, 275–80.CrossRefGoogle Scholar
Haselton, M. G. (2003). The sexual overperception bias: evidence of a systematic bias in men from a survey of naturally occurring events. Journal of Research in Personality, 37, 3447.CrossRefGoogle Scholar
Haselton, M. G., and Gangestad, S. W. (2006). Conditional expression of women’s desires and men’s mate guarding across the ovulatory cycle. Hormones and Behavior, 49, 509–18.CrossRefGoogle ScholarPubMed
Haselton, M. G., Mortezaie, M., Pillsworth, E. G., Bleske-Rechek, A., and Frederick, D. A. (2007). Ovulatory shifts in human female ornamentation: near ovulation, women dress to impress. Hormones and Behavior, 51, 40–5.CrossRefGoogle ScholarPubMed
Hendrie, C. A., Mannion, H. D., and Godfrey, G. K. (2009). Evidence to suggest that nightclubs function as human sexual display grounds. Behaviour, 146, 1331–48.Google Scholar
Hrdy, S. B., and Whitten, P. L. (1987). Patterning of sexual activity. In Smuts, B., Cheney, D., Seyfarth, R., Wrangham, R., and Struhsaker, T. (eds.), Primate Societies (pp. 370–84). University of Chicago Press.Google Scholar
Hupka, R. B., Zaleski, Z., Otto, J., Reidl, L., and Tarabrina, N. V. (1997). The colors of anger, envy, fear, and jealousy: a cross-cultural study. Journal of Cross-Cultural Psychology, 28, 156–71.CrossRefGoogle Scholar
Hutchings, J. (2004). Color in folklore and tradition—the principles. Color Research & Application, 29, 5766.CrossRefGoogle Scholar
Jacobs, L., Keown, C., Worthley, R., and Gyhmn, K. (1991). Cross-cultural color comparisons: global marketers beware! International Marketing Review, 8, 2130.CrossRefGoogle Scholar
Jobes, G. (1962). Dictionary of Mythology, Folklore, and Symbols (vols. I–II). New York: Scarecrow Press.Google Scholar
Jones, B. C., Little, A. C., Burt, D. M., and Perrett, D. I. (2004). When facial attractiveness is only skin deep. Perception, 33, 569–76.CrossRefGoogle ScholarPubMed
Katchadourian, H. A. (1984). Fundamentals of Human Sexuality, 4th edn. New York: Holt, Reinhart, and Winston.Google Scholar
Kaya, N., and Epps, H. H. (2004). Relationship between color and emotion: a study of college students. College Student Journal, 38, 396405.Google Scholar
Knight, C. D., Powers, C., and Watts, I. (1995). The human symbolic revolution: a Darwinian account. Cambridge Archeological Journal, 5, 75119.CrossRefGoogle Scholar
Kohn, M. (1999). As We Know It: Coming to Terms with the Evolved Mind. London: Granta Books.Google Scholar
Lee, Y. (2006). Man as the Prayer: The Origin and Nature of Humankind. New York: Trafford.Google Scholar
Lin, H. (2014). Red-colored products enhance the attractiveness of women. Displays, 35, 202–5.CrossRefGoogle Scholar
Lynn, B. M., McCord, J. L., and Halliwell, J. R. (2007). Effects of menstrual cycle and sex on progesterone hemodynamics. American Journal of Physiology: Regulatory, Integrative, and Comparative Physiology, 292, R1260–70.Google ScholarPubMed
Maier, M. A., Elliot, A. J., Lee, B., Lichtenfeld, S., Barchfeld, P., and Pekrun, R. (2013). The influence of red on impression formation in a job application context. Motivation and Emotion, 37, 389401.CrossRefGoogle Scholar
Matts, P. J., Fink, B., Grammer, K., and Burquest, M. (2007). Color homogeneity and visual perception of age, health, and attractiveness of female facial skin. Journal of the American Academy of Dermatology, 57, 977–84.CrossRefGoogle ScholarPubMed
Meier, B. P., D’Agostino, P. R., Elliot, A. J., Maier, M. A., and Wilkowski, B. M. (2012). Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior. PLoS ONE, 7, e40333.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., and Bribiescas, R. G. (2005). Testosterone-mediated immune functions and male life histories. American Journal of Human Biology, 17, 527–58.CrossRefGoogle ScholarPubMed
Neto, F. (2002). Colors associated with styles of love. Perceptual and Motor Skills, 94, 1303–10.CrossRefGoogle ScholarPubMed
Niesta-Kayser, D., Elliot, A. J., and Feltman, R. (2010). Red and romantic behavior in men viewing women. European Journal of Social Psychology, 40, 901–8.CrossRefGoogle Scholar
Oberzaucher, E., Katina, S., Schmehl, S., Holzleitner, I., Mehu-Blantar, I., and Grammer, K. (2012). The myth of hidden ovulation: shape and texture changes in the face during the menstrual cycle. Journal of Evolutionary Psychology, 10, 163–75.CrossRefGoogle Scholar
Oliver, M. B., and Hyde, J. S. (1993). Gender differences in sexuality: a meta-analysis. Psychological Bulletin, 114, 2951.CrossRefGoogle ScholarPubMed
Pazda, A. D., Elliot, A. J., and Greitemeyer, T. (2012). Sexy red: perceived sexual receptivity mediates the red-attraction relation in men viewing women. Journal of Experimental Social Psychology, 48, 787–90.CrossRefGoogle Scholar
Pazda, A. D., Elliot, A. J., and Greitemeyer, T. (2014). Perceived sexual receptivity and fashionableness: separate paths linking red and black to perceived attractiveness. Color Research & Application, 39, 208–12.CrossRefGoogle Scholar
Pazda, A. D., Prokop, P., and Elliot, A. J. (2014). Red and romantic rivalry: viewing another woman in red increases perceptions of sexual receptivity, derogation, and intentions to mate-guard. Personality and Social Psychology Bulletin, 40, 1260–9.CrossRefGoogle ScholarPubMed
Prokop, P., and Hromada, M. (2013). Women use red in order to attract mates. Ethology, 119, 605–13.CrossRefGoogle Scholar
Re, D. E., Whitehead, R. D., Xiao, D., and Perrett, D. I. (2011). Oxygenated-blood colour change thresholds for perceived facial redness, health, and attractiveness. PLoS ONE, 6, e17859.CrossRefGoogle ScholarPubMed
Regas, J. C., and Kozlowski, K. (1998). Read My Lips: A Cultural History of Lipstick. San Francisco, CA: Chronicle Books.Google Scholar
Rhodes, L., Argersinger, M. E., Gantert, L. T., Friscino, B. H., Hom, G., Pikounis, B., et al. (1997). Effects of administration of testosterone, dihydrotestosterone, oestrogen and fadrozole, an aromatase inhibitor, on sex skin colour in intact male rhesus macaques. Journal of Reproduction and Fertility, 111, 51–7.CrossRefGoogle ScholarPubMed
Roberts, S. C., Owen, R. C., and Havlicek, J. (2010). Distinguishing between perceiver and wearer effects in clothing color-associated attributions. Evolutionary Psychology, 8, 350–64.CrossRefGoogle ScholarPubMed
Samson, N., Fink, B., and Matts, P. J. (2011). Does a woman’s skin color indicate her fertility level? Swiss Journal of Psychology, 70, 199202.CrossRefGoogle Scholar
Schmitt, D. P., and Buss, D. M. (1996). Strategic self-promotion and competitor derogation: sex and context effects on the perceived effectiveness of mate attraction tactics. Journal of Personality and Social Psychology, 70, 11851204.CrossRefGoogle ScholarPubMed
Schmitt, D. P., Couden, A., and Baker, M. (2001). The effects of sex and temporal context on feelings of romantic desire: an experimental evaluation of sexual strategies theory. Personality and Social Psychology Bulletin, 27, 833–47.CrossRefGoogle Scholar
Schwarz, S., and Singer, M. (2013). Romantic red revisited: red enhances men’s attraction to young, but not menopausal women. Journal of Experimental Social Psychology, 49, 161–4.CrossRefGoogle Scholar
Setchell, J. M. (2005). Do female mandrills (Mandrillus sphinx) prefer brightly coloured males? International Journal of Primatology, 26, 713–32.CrossRefGoogle Scholar
Setchell, J. M., and Dixson, A. F. (2001). Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39, 177–84.CrossRefGoogle ScholarPubMed
Setchell, J. M., Wickings, E. J., and Knapp, L. A. (2006). Signal content of red facial coloration in female mandrills (Mandrillus sphinx). Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 23952400.Google ScholarPubMed
Stephen, I. D., Coetzee, V., Law-Smith, M. J., and Perrett, D. I. (2009). Skin blood perfusion and oxygenization colour affect perceived human health. PLoS ONE, 4, 5083.CrossRefGoogle Scholar
Stephen, I. D., Law-Smith, M. J., Stirrat, M. R., and Perrett, D. I. (2009). Facial skin coloration affects perceived health of human faces. International Journal of Primatology, 30, 845–57.CrossRefGoogle ScholarPubMed
Stephen, I. D., and McKeegan, A. M. (2010). Lip colour affects perceived sex typicality and attractiveness of human faces. Perception, 39, 1104–10.CrossRefGoogle ScholarPubMed
Stephen, I. D., Oldham, F. H., Perrett, D. I., and Barton, R. A. (2012). Redness enhances perceived aggression, dominance, and attractiveness in men’s faces. Evolutionary Psychology, 10, 562–72.CrossRefGoogle ScholarPubMed
Stephen, I. D., Scott, I. M., Coetzee, V., Pound, N., Perrett, D. I., and Penton-Voak, I. S. (2012). Cross-cultural effects of color, but not morphological masculinity, on perceived attractiveness of men’s faces. Evolution and Human Behavior, 33, 260–7.CrossRefGoogle Scholar
Tan, K. W., and Stephen, I. D. (2013). Colour detection thresholds in faces and colour patches. Perception, 42, 733–41.CrossRefGoogle ScholarPubMed
Tracy, J. L., and Beall, A. T. (2014). The impact of weather on women’s tendency to wear red or pink when at high risk for conception. PLoS ONE, 9, e88852.CrossRefGoogle ScholarPubMed
Vaillancourt, T. (2005). Indirect aggression among humans: social construct or evolutionary adaptation? In Tremblay, R., Hartup, W., and Archer, J.(eds.), Developmental Origins of Aggression (pp. 158–77). New York: Guilford.Google Scholar
Vaillancourt, T., and Sharma, A. (2011). Intolerance of sexy peers: intrasexual competition among women. Aggressive Behavior, 37, 569–77.CrossRefGoogle ScholarPubMed
Waitt, C., Gerald, M. S., Little, A. C., and Krasielburd, E. (2006). Selective attention toward female secondary sexual characteristics. American Journal of Primatology, 68, 738–44.CrossRefGoogle Scholar
Wallen, K., and Rupp, H. A. (2010). Women’s interest in visual sexual stimuli varies with menstrual cycle phase at first exposure and predicts later interest. Hormones and Behavior, 57, 263–8.CrossRefGoogle ScholarPubMed
Wartenberg, W., Höpfner, T., Potthast, P., and Mirau, A. (2011). If you wear red on a date, you will please your mate. In Empiriepraktikumskongress Proceedings, pp. 26–7. University of Jena, Germany.Google Scholar

References

Abernethy, K. A., White, L. J. T., and Wickings, E. J. (2002). Hordes of mandrills (Mandrillus sphinx): extreme group size and seasonal male presence. Journal of Zoology, 258, 131–7.CrossRefGoogle Scholar
Altmann, S. A. (1973). The pregnancy sign in savannah baboons. Journal of Zoo Animal Medicine, 4, 812.CrossRefGoogle Scholar
Amundsen, T. (2000). Why are female birds ornamented? Trends in Ecology Evolution, 15(4), 149–55.CrossRefGoogle ScholarPubMed
Amundsen, T., and Parn, H. (2006). Female coloration: review of functional and nonfunctional hypotheses. In Hill, and McGraw, , Bird Coloration, vol. II, pp. 280345.Google Scholar
Andersson, M. (1994). Sexual Selection. Princeton University Press.CrossRefGoogle Scholar
Ayres, J. M. C. (1996). Uakaris and Amazonian Flooded Forest. Cambridge University Press.Google Scholar
Barlow, G. E. (1973). Competition between color morphs of the polychromatic Midas cichlid Cichlasoma citrinellum. Science, 179, 806–7.CrossRefGoogle ScholarPubMed
Barlow, G. E., and Wallach, S. J. (1976). Colour and levels of aggression in the Midas cichlid. Animal Behaviour, 24, 814–17.CrossRefGoogle Scholar
Baulu, J. (1976). Seasonal sex skin coloration and hormonal fluctuations in free-ranging and captive monkeys. Hormones and Behavior, 7, 495507.CrossRefGoogle ScholarPubMed
Berard, J. D., Nürnberg, P., Epplen, J., and Schmidtke, J. (1993). Male rank, reproductive behavior, and reproductive success in free-ranging rhesus macaques. Primates, 34, 481–9.CrossRefGoogle Scholar
Bercovitch, F. B. (1996). Testicular function and scrotal coloration in patas monkeys. Journal of Zoology, 239, 93100.CrossRefGoogle Scholar
Bergman, T. J., and Beehner, J. C. (2008). A simple method for measuring colour in wild animals: validation and use on chest patch color in geladas (Theropithecus gelada). Biological Journal of the Linnean Society, 94, 231–40.CrossRefGoogle Scholar
Bergman, T. J., Ho, L., and Beehner, J. C. (2009). Chest color and social status in male geladas (Theropithecus gelada). International Journal of Primatology, 30, 791806.CrossRefGoogle Scholar
Bergman, T. J., and Sheehan, M. J. (2012). Social knowledge and signals in primates. American Journal of Primatology, 75, 683–94.Google ScholarPubMed
Bielert, C., Czaja, J. A., Eisele, S., Scheffler, G., Robinson, J. A., and Goy, R. W. (1976). Mating in the rhesus monkey (Macaca mulatta) after conception and its relationship to oestradiol and progesterone levels throughout pregnancy. Journal of Reproduction and Fertility, 46, 179–82.CrossRefGoogle ScholarPubMed
Bradbury, J. W., and Vehrencamp, S. L. (1998). Principles of Animal Communication. Sunderland, MA: Sinauer Associates.Google Scholar
Bradley, B. J., and Mundy, N. I. (2008). The primate palette: the evolution of primate coloration. Evolutionary Anthropology, 17, 97111.CrossRefGoogle Scholar
Brown, J. (1997). A theory of mate choice based on heterozygosity. Behavioral Ecology, 8, 60–5.CrossRefGoogle Scholar
Buchanan, K. (2000). Stress and the evolution of condition-dependent signals. Trends in Ecology and Evolution, 15, 156–60.CrossRefGoogle ScholarPubMed
Candolin, U. (2003). The use of multiple cues in mate choice. Biological Reviews of the Cambridge Philosophical Society, 78, 575–95.CrossRefGoogle ScholarPubMed
Changizi, M. A., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biology Letters, 2, 217–21.CrossRefGoogle ScholarPubMed
Charpentier, M. J. E., Peignot, P., Hossaeart-McKey, M., Gimenez, O., Setchell, J. M., and Wickings, E. J. (2005). Constraints on control: factors influencing reproductive success in male mandrills (Mandrillus sphinx). Behavioral Ecology, 16, 614–23.CrossRefGoogle Scholar
Clough, D., Heistermann, M., and Kappeler, P. M. (2009). Individual facial coloration in male Eulemur fulvus rufus: a condition-dependent ornament? International Journal of Primatology, 30, 859–75.CrossRefGoogle Scholar
Clutton-Brock, T. H. (2009). Sexual selection in females. Animal Behaviour, 77, 341.CrossRefGoogle Scholar
Cotton, S., Fowler, K., and Pomiankowski, A. (2004). Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proceedings of the Royal Society of London. Series B, Biological Sciences, 271, 771–83.Google ScholarPubMed
Cramer, J. D., Gaetano, T., Gray, J. P., Grobler, P., Lorenz, J. G., Freimer, N. B., and Turner, T. R. (2013). Variation in scrotal color among widely distributed vervet monkey populations (Chlorocebus aethiops pygerythrus and Chlorocebus aethiops sabaeus). American Journal of Primatology, 75, 752–62.CrossRefGoogle ScholarPubMed
Cuthill, I. C. (2006). Color perception. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 340.CrossRefGoogle Scholar
Czaja, J. A., Robinson, J. A., Eisele, S. G., Scheffler, G., and Goy, R. W. (1977). Relationship between sexual skin colour of female rhesus monkeys and midcycle plasma levels of oestradiol and progesterone. Journal of Reproduction and Fertility, 49, 147–50.CrossRefGoogle Scholar
Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex. London, 2 vols.: John Murray.Google Scholar
Darwin, C. (1876). Sexual selection in relation to monkeys. Nature, 15, 1819.CrossRefGoogle Scholar
Dixson, A. F. (2012). Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes and Humans, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Dixson, A. F., and Herbert, J. (1974). The effects of testosterone on the sexual skin and genitalia of the male talapoin monkey. Journal of Reproduction and Fertility, 38, 217–19.CrossRefGoogle ScholarPubMed
Drury, J. P. (2010). Immunity and mate choice: a new outlook. Animal Behaviour, 79, 539–45.CrossRefGoogle Scholar
Dubuc, C., Brent, L. J. N., Accamando, A. K., Gerald, M. S., MacLarnon, A., Semple, S., and Engelhardt, A. (2009). Sexual skin color contains information about the timing of the fertile phase in free-ranging Macaca mulatta. International Journal of Primatology, 30, 777–89.CrossRefGoogle Scholar
Dubuc, C., Muniz, L., Heistermann, M., Engelhardt, A., and Widdig, A. (2011). Testing the priority-of-access model in a seasonally breeding primate species. Behavioral Ecology and Sociobiology, 65, 1615–27.CrossRefGoogle Scholar
Dunbar, R. I. M. (1984). Reproductive Decisions: An Economic Analysis of Gelada Baboon Social Strategies. Princeton University Press.Google Scholar
Dunbar, R. I. M., and Dunbar, E. P. (1975). Social Dynamics of Gelada Baboons. Basel: Karger.Google ScholarPubMed
Dunbar, R. I. M., and Dunbar, E. P. (1977). Dominance and reproductive success among female gelada baboons. Nature, 266, 351–2.CrossRefGoogle ScholarPubMed
Endler, J. A. (1980). Natural selection on color patterns in Poecilia reticulata. Evolution, 34, 7691.CrossRefGoogle ScholarPubMed
Evans, M., Goldsmith, A., and Norris, S. (2000). The effects of testosterone on antibody production and plumage coloration in male house sparrows (Passer domesticus). Behavioral Ecology and Sociobiology, 47, 156–63.CrossRefGoogle Scholar
Fairbanks, L. A., Fontenot, M. B., Phillips-Conroy, J. E., Jolly, C. J., Kaplan, J. R., and Mann, J. J. (1999). CSF monoamines, age and impulsivity in wild grivet monkeys (Cercopithecus aethiops aethiops). Brain, Behavior and Evolution, 53, 305–12.CrossRefGoogle ScholarPubMed
Fairbanks, L. A., Melega, W. P., Jorgensen, M. J., Kaplan, J. R., and McGuire, M. T. (2001). Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology, 24, 370–8.CrossRefGoogle ScholarPubMed
Faivre, B., Grégoire, A., Préault, M., Cezilly, F., and Sorci, G. (2003). Immune activation rapidly mirrored in a secondary sexual trait. Science, 300, 103.CrossRefGoogle Scholar
Fernandez, A., and Morris, M. (2007). Sexual selection and trichromatic color vision in primates: statistical support for the preexisting bias hypothesis. American Naturalist, 170, 1020.CrossRefGoogle ScholarPubMed
Foerster, K., Delhey, K., Johnson, A., Lifjeld, J. T., and Kempenaers, B. (2003). Females increase offspring heterozygosity and fitness through extra-pair matings. Nature, 425, 714–17.CrossRefGoogle ScholarPubMed
Folstad, I., and Karter, A. J. (1992). Parasites, bright males, and the immunocompetence handicap. American Naturalist, 139, 603–22.CrossRefGoogle Scholar
Fujita, S., Sugiura, H., Mitsunaga, F., and Shimizu, K. (2004). Hormone profiles and reproductive characteristics in wild female Japanese macaques (Macaca fuscata). American Journal of Primatology, 64, 367–75.CrossRefGoogle ScholarPubMed
Gartlan, J. S., and Brain, C. K. (1968). Ecology and social variability in Cercopithecus aethiops and C. mitis. In Jay, P. J. (ed.), Primates: Studies in Adaptation and Variability (pp. 253–92). New York: Holt, Rinehart, and Winston.Google Scholar
Gauthier, C.-A. (1999). Reproductive parameters and paracallosal skin color changes in captive female guinea baboons, Papio papio. American Journal of Primatology, 47, 6774.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Gerald, M. S. (2001). Primate colour predicts social status and aggressive outcome. Animal Behaviour, 61, 559–66.CrossRefGoogle Scholar
Gerald, M. S. (2003). How color may guide the primate world: possible relationships between sexual selection and sexual dichromatism. In Jones, C. B. (ed.), Sexual Selection and Reproductive Competition in Primates: New Perspectives and Directions, vol. III, pp. 141–72). Special Topics in Primatology. Norman, OK: American Society of Primatologists.Google Scholar
Gerald, M. S., Bernstein, J., Hinkson, R., and Fosbury, R. A. E. (2001). Formal method for objective assessment of primate color. American Journal of Primatology, 53, 7985.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Gerald, M. S., and McGuire, M. T. (2008). Secondary sexual coloration and CSF 5-HIAA are correlated in vervet monkeys (Cercopithecus aethiops sabaeus). Journal of Medical Primatology, 36, 348–54.Google Scholar
Gerald, M. S., Waitt, C., and Little, A. C. (2008). Pregnancy coloration in macaques may act as a warning signal to reduce antagonism by conspecifics. Behavioural Processes, 80, 711.CrossRefGoogle ScholarPubMed
Gerald, M. S., Waitt, C., Little, A. C., and Kraiselburd, E. (2007). Females pay attention to female secondary sexual color. International Journal of Primatology, 28, 17.CrossRefGoogle Scholar
Grubb, P. (1973). Distribution, divergence and speciation of the drill and mandrill. Folia Primatologica, 20, 161–77.CrossRefGoogle ScholarPubMed
Hamilton, W., and Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science, 218, 384–7.CrossRefGoogle Scholar
Harrison, M. (1988). The mandrill in Gabon’s rain forest – ecology, distribution and status. Oryx, 22, 218–28.CrossRefGoogle Scholar
Henzi, S. P. (1985). Genital signaling and the coexistence of male vervet monkeys (Cercopithecus aethiops pygerythrus). Folia Primatologica, 45, 129–47.CrossRefGoogle ScholarPubMed
Herdegen, M., Dudka, K., and Radwan, J. (2014). Heterozygosity and orange coloration are associated in the guppy (Poecilia reticulata). Journal of Evolutionary Biology, 27, 220–5.CrossRefGoogle ScholarPubMed
Higham, J. P., Hughes, K. D., Brent, L. J. N., Dubuc, C., Engelhardt, A., Heistermann, M., and Stevens, M. (2011). Familiarity affects the assessment of female facial signals of fertility by free-ranging male rhesus macaques. Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, 3452–8.Google ScholarPubMed
Higham, J. P., MacLarnon, A. M., Ross, C., Heistermann, M., and Semple, S. (2008). Baboon sexual swellings: information content of size and color. Hormones and Behavior, 53, 452–62.CrossRefGoogle ScholarPubMed
Higham, J. P., Pfefferle, D., Heistermann, M., Maestripieri, D., and Stevens, M. (2013). Signaling in multiple modalities in male rhesus macaques: barks and sex skin coloration in relation to androgen levels, social status and mating behaviour. Behavioral Ecology and Sociobiology, 67, 1457–69.CrossRefGoogle Scholar
Hill, G. E. (2006). Environmental regulation of ornamental coloration. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 507–60.CrossRefGoogle Scholar
Hill, G. E., and McGraw, K. J. (2006). Bird Coloration, vol. I: Mechanisms and Measurements; vol. II: Function and Evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Hillgarth, N., and Wingfield, J. (1997). Parasite-mediated sexual selection: endocrine aspects. In Clayton, D. H. and Moore, J. (eds.), Host–Parasite Evolution (pp. 78104). Oxford University Press.CrossRefGoogle Scholar
Isbell, L. (1995). Seasonal and social correlates of changes in hair, skin, and scrotal condition in vervet monkeys (Cercopithecus aethiops) of Amboseli National Park, Kenya. American Journal of Primatology, 36, 6170.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Deegan, J. F. II. (1999). Uniformity of colour vision in Old World monkeys. Proceedings of the Royal Society of London. Series B, Biological Sciences, 26, 2023–8.Google Scholar
Johnstone, R. A. (1995). Sexual selection, honest advertisement and the handicap principle – reviewing the evidence. Biological Reviews of the Cambridge Philosophical Society, 70, 165.CrossRefGoogle ScholarPubMed
Khan, S. A., Levine, W. J., Dobson, S. D., and Kralik, J. D. (2011). Red signals dominance in male rhesus macaques. Psychological Science, 22, 1001–3.CrossRefGoogle ScholarPubMed
Lande, R. (1980). Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution, 34, 292305.CrossRefGoogle ScholarPubMed
Lasry, J. E., and Sheridan, B. W. (1965). Chagas’ myocarditis and heart failure in the red uakari. International Zoo Yearbook, 5, 182–4.CrossRefGoogle Scholar
Lewis, R. J., and van Schaik, C. P. (2007). Bimorphism in male Verreaux’s sifaka in the Kirindy Forest of Madagascar. International Journal of Primatology, 28, 159–82.CrossRefGoogle Scholar
Ligon, R. A., and McGraw, K. J. (2013). Chameleons communicate with complex colour changes during contests: different body regions convey different information. Biology Letters, 9, 20130892.CrossRefGoogle ScholarPubMed
Martín, J., and López, P. (2009). Multiple color signals may reveal multiple messages in male Schreiber’s green lizards, Lacerta schreiberi. Behavioral Ecology and Sociobiology, 63, 1743–55.CrossRefGoogle Scholar
Marty, J. S., Higham, J. P., Gadsby, E. L., and Ross, C. (2009). Dominance, coloration, and social and sexual behavior in male drills Mandrillus leucophaeus. International Journal of Primatology, 30, 807–23.CrossRefGoogle Scholar
Mitani, J. C., Call, J., Kappeler, P. M., Palombit, R. A., and Silk, J. B. (eds.) (2013). The Evolution of Primate Societies. University of Chicago Press.Google Scholar
Møller, A. P., and Hoglund, J. (1991). Patterns of fluctuating asymmetry in avian feather ornaments: implications for models of sexual selection. Proceedings of the Royal Society of London. Series B, Biological Sciences, 245, 15.Google Scholar
Montgomerie, R. (2006a). Cosmetic and adventitious colors. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 399430.Google Scholar
Montgomerie, R. (2006b). Analyzing colors. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 90147.Google Scholar
Müller, G., and Ward, P. I. (1995). Parasitism and heterozygosity influence the secondary sexual characters of the European minnow, Phoxinus phoxinus (L.) (Cyprinidae). Ethology, 100, 309–19.CrossRefGoogle Scholar
Negro, J. J., Sarasola, J. H., Farinas, F., and Zorrilla, I. (2006). Function and occurrence of facial flushing in birds. Comparative Biochemistry and Physiology A, 143, 7884.CrossRefGoogle ScholarPubMed
Nunn, C. L., van Schaik, C. P., and Zinner, D. (2001). Do exaggerated sexual swellings function in female mating competition in primates? A comparative test of the reliable indicator hypothesis. Behavioral Ecology, 12, 646–54.CrossRefGoogle Scholar
Ortolani, A. (1999). Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method. Biological Journal of the Linnean Society, 67, 433–76.CrossRefGoogle Scholar
Osman Hill, W. C. (1966). Primates, Comparative Anatomy and Taxonomy, vol. VI: Catarrhini Cercopithecoidea: Cercopithecinae. Edinburgh University Press.Google Scholar
Osman Hill, W. C. (1970). Primates, Comparative Anatomy and Taxonomy, vol. VIII: Cynopithecinae, Papio, Mandrillus, Theropithecus. Edinburgh University Press.Google Scholar
Penn, D., and Potts, W. K. (1998). Chemical signals and parasite-mediated sexual selection. Trends in Ecology and Evolution, 13, 391–6.CrossRefGoogle ScholarPubMed
Plavcan, J. M. (2001). Sexual dimorphism in primate evolution. American Journal of Physical Anthropology, 44, 2553.CrossRefGoogle Scholar
Poiani, A., Goldsmith, A., and Evans, M. (2000). Ectoparasites of house sparrows (Passer domesticus): an experimental test of the immunocompetence handicap hypothesis and a new model. Behavioral Ecology and Sociobiology, 47, 230–42.CrossRefGoogle Scholar
Preuschoft, S., and van Schaik, C. P. (2000). Dominance and communication: conflict management in various social settings. In Aureli, F. and de Waal, F. B. M. (eds.), Natural Conflict Resolution (pp. 77105). Oakland, CA: University of California Press.Google Scholar
Price, J. S., Burton, J. L., Shuster, S., and Wolff, K. (1976). Control of scrotal color in the vervet monkey. Journal of Medical Primatology, 5, 296304.Google ScholarPubMed
Price, T., and Birch, G. L. (1996). Repeated evolution of sexual color dimorphism in passerine birds. Auk, 113, 842–8.CrossRefGoogle Scholar
Prum, R. O., and Torres, R. (2003). Structural coloration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 206, 2409–29.CrossRefGoogle ScholarPubMed
Prum, R. O., and Torres, R. (2004). Structural coloration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 207, 2157–72.CrossRefGoogle ScholarPubMed
Pusey, A. (2013). Magnitude and sources of variation in female reproductive performance. In Mitani, J. C., Call, J., Kappeler, P. M., Palombit, R. A., and Silk, J. B. (eds.), The Evolution of Primate Societies (pp. 143–66). University of Chicago Press.Google Scholar
Renoult, J. P., Schaefer, H. M., Sallé, B., and Charpentier, M. J. E. (2011). The evolution of the multicoloured face of mandrills: insights from the perceptual space of colousr vision. PLoS ONE, 6, e29117.CrossRefGoogle ScholarPubMed
Rhodes, L., Argersinger, M. E., Gantert, L. T., Friscino, B. H., Hom, G., Pikounis, B., and Rhodes, W. L. (1997). Effects of administration of testosterone, dihydrotestosterone, oestrogen and fadrozole, an aromatase inhibitor, on sex skin colour in intact male rhesus macaques. Journal of Reproduction and Fertility, 111, 51–7.CrossRefGoogle ScholarPubMed
Rohwer, S. (1975). The social significance of avian winter plumage variability. Evolution, 29, 593610.CrossRefGoogle ScholarPubMed
Rohwer, S. (1977). Status signalling in Harris sparrows. Behaviour, 61, 107–29.CrossRefGoogle Scholar
Rohwer, S., and Ewald, P. (1981). The cost of dominance and advantage of subordination in a badge signaling system. Evolution, 35, 441–54.CrossRefGoogle Scholar
Rohwer, S., and Rohwer, F. C. (1978). Status signalling in Harris sparrows: experimental deceptions achieved. Animal Behaviour, 26, 1012–22.CrossRefGoogle Scholar
Rowell, T. E. (1972). Female reproduction cycles and social behavior in primates. Advances in the Study of Behavior, 4, 69105.CrossRefGoogle Scholar
Ruxton, G. D., and Schaefer, H. M. (2011). Resolving current disagreements and ambiguities in the terminology of animal communication. Journal of Evolutionary Biology, 24, 2574–85.CrossRefGoogle ScholarPubMed
Sade, D. (1964). Seasonal cycle in size of testes of free-ranging Macaca mulatta. Folia Primatologica, 2, 171–80.CrossRefGoogle Scholar
Santana, S. E., Lynch Alfaro, J., and Alfaro, M. E. (2012). Adaptive evolution of facial colour patterns in Neotropical primates. Proceedings of the Royal Society of London. B, Biological Sciences, 279, 2204–11.Google ScholarPubMed
Senar, J. C. (2006). Color displays as intrasexual signals of aggression and dominance. In Hill, and McGraw, , Bird Coloration, vol. II, pp. 87136.Google Scholar
Setchell, J. M. (1999). Socio-Sexual Development in the Male Mandrill (Mandrillus sphinx). Cambridge University Press.Google Scholar
Setchell, J. M., Charpentier, M. J. E., Abbott, K. M., Wickings, E. J., and Knapp, L. A. (2009). Is brightest best? Testing the Hamilton–Zuk hypothesis in mandrills. International Journal of Primatology, 30, 825–44.CrossRefGoogle Scholar
Setchell, J. M., Charpentier, M. J. E., and Wickings, E. J. (2005). Mate-guarding and paternity in mandrills (Mandrillus sphinx): factors influencing monopolisation of females by the alpha male. Animal Behaviour, 70, 1105–20.CrossRefGoogle Scholar
Setchell, J. M., and Dixson, A. F. (2001a). Arrested development of secondary sexual adornments in subordinate adult male mandrills (Mandrillus sphinx). American Journal of Physical Anthropology, 115, 245–52.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Dixson, A. F. (2001b). Circannual changes in the secondary sexual adornments of semifree-ranging male and female mandrills (Mandrillus sphinx). American Journal of Primatology, 121, 109–21.Google Scholar
Setchell, J. M., and Dixson, A. F. (2001c). Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39, 177–84.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Dixson, A. F. (2002). Developmental variables and dominance rank in adolescent male mandrills (Mandrillus sphinx). American Journal of Primatology, 56, 925.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Kappeler, P. M. (2003). Selection in relation to sex in primates. Advances in the Study of Behavior, 33, 87173.CrossRefGoogle Scholar
Setchell, J. M., Smith, T., Wickings, E. J., and Knapp, L. A. (2008). Social correlates of testosterone and ornamentation in male mandrills. Hormones and Behavior, 54, 365–72.CrossRefGoogle ScholarPubMed
Setchell, J. M., Smith, T., Wickings, E. J., and Knapp, L. A. (2010). Stress, social behaviour, and secondary sexual traits in a male primate. Hormones and Behavior, 58, 720–8.CrossRefGoogle Scholar
Setchell, J. M., Vaglio, S., Abbott, K. M., Moggi-Cecchi, J., Boscaro, F., Pieraccini, G., and Knapp, L. A. (2011). Odour signals MHC genotype in an Old World monkey. Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, 274–80.Google Scholar
Setchell, J. M., Vaglio, S., Moggi-Cecchi, J., Boscaro, F., Calamai, L., and Knapp, L. A. (2010). Chemical composition of scent-gland secretions in an Old World monkey (Mandrillus sphinx): influence of sex, male status, and individual identity. Chemical Senses, 35, 205–20.CrossRefGoogle Scholar
Setchell, J. M., and Wickings, E. J. (2004a). Social and seasonal influences on the reproductive cycle in female mandrills (Mandrillus sphinx). American Journal of Physical Anthropology, 125, 7384.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Wickings, E. J. (2004b). Sexual swellings in mandrills (Mandrillus sphinx): a test of the reliable indicator hypothesis. Behavioral Ecology, 15, 438–45.CrossRefGoogle Scholar
Setchell, J. M., and Wickings, E. J. (2005). Dominance, status signals and coloration in mandrills (Mandrillus sphinx). Ethology, 111, 2550.CrossRefGoogle Scholar
Setchell, J. M., Wickings, E. J., and Knapp, L. A. (2006a). Signal content of red facial coloration in female mandrills (Mandrillus sphinx). Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 23952400.Google ScholarPubMed
Setchell, J. M., Wickings, E. J., and Knapp, L. A. (2006b). Life history in male mandrills (Mandrillus sphinx): physical development, dominance rank and group association. American Journal of Physical Anthropology, 131, 44984510.CrossRefGoogle ScholarPubMed
Snyder-Mackler, N., Bergman, T. J., and Beehner, J. C. (2012). Defining higher levels in a gelada multilevel society. International Journal of Primatology, 33, 1054–68.CrossRefGoogle Scholar
Stevens, M., Parraga, C. A., Cuthill, I. C., Partridge, J. C., and Troscianko, T. S. (2007). Using digital photography to study animal coloration. Biological Journal of the Linnean Society, 90, 211–37.CrossRefGoogle Scholar
Stevens, M, Stoddard, M. C., and Higham, J. P. (2009). Studying primate color: towards visual system dependent methods. International Journal of Primatology, 30, 893917.CrossRefGoogle Scholar
Struhsaker, T. T. (1967). Behavior of vervet monkeys (Cercopithecus aethiops). University of California Publications in Zoology, 82, 164.Google Scholar
Strum, S. C., and Western, J. D. (1982). Variations in fecundity with age and environment in olive baboons (Papio anubis). American Journal of Primatology, 3, 6176.CrossRefGoogle ScholarPubMed
Sumner, P., and Mollon, J. (2003). Colors of primate pelage and skin: objective assessment of conspicuousness. American Journal of Primatology, 59, 6791.CrossRefGoogle ScholarPubMed
Thery, M. (2006). Effect of light environment on color communication. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 148–76.Google Scholar
Thompson, C. W., and Moore, M. C. (1991). Throat colour reliably signals status in male tree lizards, Urosaurus ornatus. Animal Behaviour, 52, 745–53.Google Scholar
Tobias, J., Montgomerie, R., and Lyon, B. E. (2012). The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2274–93.Google ScholarPubMed
Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (ed.), Sexual Selection and the Descent of Man (pp. 136–79). Chicago: Aldine.Google Scholar
Vandenburgh, J. G. (1965). Hormonal basis of sex skin in male rhesus monkeys. General and Comparative Endocrinology, 5, 31–4.Google Scholar
van Oosterhout, C., Trigg, R. E., Carvalho, G. R., Magurran, A. E., Hauser, L., and Shaw, P. W. (2003). Inbreeding depression and genetic load of sexually selected traits: how the guppy lost its spots. Journal of Evolutionary Biology, 16, 273–81.CrossRefGoogle ScholarPubMed
Von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D., and Wittzell, H. (1999). Good genes, oxidative stress and condition-dependent sexual signals. Proceedings of the Royal Society of London. Series B, Biological Sciences, 266, 112.CrossRefGoogle ScholarPubMed
Waitt, C., Gerald, M. S., Little, A. C., and Kraiselburd, E. (2006). Selective attention towards female secondary sexual color in male rhesus macaques. American Journal of Primatology, 68, 738–44.CrossRefGoogle Scholar
Westneat, D. F., and Birkhead, T. R. (1998). Alternative hypotheses linking the immune system and mate choice for good genes. Proceedings of the Royal Society of London. Series B,Biological Sciences, 265, 1065–73.Google Scholar
Wickings, E. J., and Dixson, A. F. (1992). Development from birth to sexual maturity in a semi-free-ranging colony of mandrills (Mandrillus sphinx) in Gabon. Journal of Reproduction and Fertility, 95, 129–38.CrossRefGoogle Scholar
Wickings, E. J., and Nieschlag, E. (1980). Seasonality in endocrine and exocrine testicular function of the adult rhesus monkey (Macaca mulatta) maintained in a controlled laboratory environment. International Journal of Andrology, 3, 87104.CrossRefGoogle Scholar
Widdig, A., Bercovitch, F. B., Streich, W. J., Sauermann, U., Nürnberg, P., and Krawczak, M. (2004). A longitudinal analysis of reproductive skew in male rhesus macaques. Proceedings of the Royal Society of London. Series B,Biological Sciences, 271, 819–26.Google ScholarPubMed
Wild, C., Morgan, B. J., and Dixson, A. F. (2005). Conservation of drill populations in Bakossiland, Cameroon: historical trends and current status. International Journal of Primatology, 26, 759–73.CrossRefGoogle Scholar
Yokoyama, S., and Yokoyama, R. (1989). Molecular evolution of human visual pigment genes. Molecular Biology and Evolution, 6, 186–97.Google ScholarPubMed
Zahavi, A. (1975). Mate selection—a selection for a handicap. Journal of Theoretical Biology, 53, 205–14.CrossRefGoogle ScholarPubMed
Zuckerman, S., and Parkes, A. S. (1939). Observations on the secondary sexual characters in monkeys. Journal of Endocrinology, 1, 430–9.CrossRefGoogle Scholar
Zuk, M. (1992). The role of parasites in sexual selection: current evidence and future directions. Advances in the Study of Behavior, 21, 3969.CrossRefGoogle Scholar

References

Alberts, W., and van der Geest, T. M. (2011). Color matters: color as trustworthiness cue in websites. Technical Communication, 58, 149–60.Google Scholar
Allen, M. S., and Jones, M. V. (2014). The home advantage over the first 20 seasons of the English Premier League: effects of shirt colour, team ability and time trends. International Journal of Sport and Exercise Psychology, 12, 1018.CrossRefGoogle Scholar
Andersson, M. (1994). Sexual Selection. Princeton University Press.CrossRefGoogle Scholar
Archer, J. (2006). Testosterone and human aggression: an evaluation of the challenge hypothesis. Neuroscience and Biobehavioral Reviews, 30, 319–45.CrossRefGoogle ScholarPubMed
Aslam, M. M. (2006). Are you selling the right colour? A cross-cultural review of colour as a marketing cue. Journal of Marketing Communications, 12, 1530.CrossRefGoogle Scholar
Attrill, M. J., Gresty, K. A., Hill, R. A., and Barton, R. A. (2008). Red shirt colour is associated with long-term team success in English football. Journal of Sports Sciences, 26, 577–82.CrossRefGoogle Scholar
Bamford, S., and Ward, R. (2008). Predispositions to approach and avoid are contextually sensitive and goal dependent. Emotion, 8, 174–83.CrossRefGoogle ScholarPubMed
Barton, R. A., and Hill, R. A. (2005). Sporting contests: seeing red? Putting sportswear in context (reply). Nature, 437, E1011.CrossRefGoogle Scholar
Bazire, M., and Brézillon, P. (2005). Understanding context before using it. In Dey, A., Kokinov, B., Leake, D., and Turner, R. (eds.), Context, (pp. 2940). Berlin: Springer-Verlag.Google Scholar
Bergman, T. J., Ho., L., and Beehner, J. C. (2009). Chest color and social status in male geladas (Theropithecus gelada). International Journal of Primatology, 30, 791806.CrossRefGoogle Scholar
Bertrams, A., Baumeister, R. F., Englert, C., and Furley, P. (2015). Ego depletion in color priming research: self-control strength moderates the detrimental effect of red on cognitive test performance. Personality and Social Psychology Bulletin, 41, 311–22.CrossRefGoogle ScholarPubMed
Borade, A. B., Bansod, S. V., and Gandhewar, V. R. (2008). Hazard perception based on safety words and colors: an Indian perspective. International Journal of Occupational Safety and Ergonomics, 14, 407–16.CrossRefGoogle ScholarPubMed
Bottomley, P. A., and Doyle, J. R. (2006). The interactive effects of colors and products on perceptions of brand logo appropriateness. Marketing Theory, 6, 6383.CrossRefGoogle Scholar
Bruno, N., Martani, M., Corsini, C., and Oleari, C. (2013). The effect of the color red on consuming food does not depend on achromatic (Michelson) contrast and extends to rubbing cream on the skin. Appetite, 71, 307–13.CrossRefGoogle Scholar
Buiks, T. J. M. (2013). The Influence of Background Color and Type of Graph on Information Retrieval from Graphs. MA thesis, Tilburg University.Google Scholar
Cacioppo, J. T., Gardner, W. L., and Berntson, G. G. (1999). The affect system has parallel and integrative processing components: form follows function. Journal of Personality and Social Psychology, 76, 839–55.CrossRefGoogle Scholar
Caldwell, D. F., and Burger, J. M. (2011). On thin ice: does uniform color really affect aggression in professional hockey? Social Psychological and Personality Science, 2, 306–10.CrossRefGoogle Scholar
Changizi, M. A. (2009). The Color Revolution: How the Latest Research Overturns Everything We Thought We Knew About Human Vision. Dallas, TX: BenBalla Books.Google Scholar
Changizi, M. A., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biological Letters, 2, 217–21.Google ScholarPubMed
Chebat, J. C., and Morrin, M. (2007). Colors and cultures: exploring the effects of mall décor on consumer perceptions. Journal of Business Research, 60, 189–96.CrossRefGoogle Scholar
Chien, Y. H. (2011a). Message framing and color combination in the perception of medical information. Psychological Reports, 108, 667–72.CrossRefGoogle ScholarPubMed
Chien, Y. H. (2011b). Use of message framing and color in vaccine information to increase willingness to be vaccinated. Social Behavior and Personality, 39, 1063–72.CrossRefGoogle Scholar
Clary, R., and Wandersee, J., and Schexnayder, E. (2007). Does the color-coding of examination versions affect college science students’ test performance? Counter claims of bias. Journal of College Science Teaching, 37, 40–7.Google Scholar
Cohn, J. (1894). Experimentelle Untersuchungen über die Gefühlsbetonung der Farben, Helligkeiten und ihrer Kombinationen [Experimental investigation of the emotional effect of color, lightness, and their combinations]. Philosophische Studien, 10, 562603.Google Scholar
Covington, M. V. (1992). Making the Grade: A Self-Worth Perspective on Motivation and School Reform. New York: Cambridge University Press.CrossRefGoogle Scholar
Cuthill, I. C., Hunt, S., Cleary, C., and Clark, C. (1997). Colour bands, dominance, and body mass regulation in male zebra finches (Taeniopygia guttata). Proceedings of the Royal Society of London. Series B, 264, 1093–9.CrossRefGoogle Scholar
Darwin, C. (1874). The Descent of Man, and Selection in Relation to Sex, 2nd edn. London: John Murray.Google Scholar
Derryberry, D., and Reed, M. A. (1998). Anxiety and attentional focusing: trait, state, and hemispheric influences. Personality and Individual Differences, 25, 745–61.CrossRefGoogle Scholar
Diehl, J. J., Wolf, J., Herlihy, L., and Moller, A. C. (2011). Seeing red: color selection as an indicator of implicit social conceptions about the autism spectrum. Disability Studies Quarterly, 31, 114.CrossRefGoogle Scholar
Dijkstra, P. D., and Preenen, P. T. (2008). No effect of blue on winning contests in judo. Proceedings of the Royal Society of London. Series B, 275, 1157–62.Google ScholarPubMed
Dreiskaemper, D., Strauss, B., Hagemann, N., and Büsch, D. (2013). Influence of red jersey color on physical parameters in combat sports. Journal of Sport and Exercise Psychology, 35, 44–9.CrossRefGoogle ScholarPubMed
Drummond, P. D. (1997). Correlates of facial flushing and pallor in anger-provoking situations. Personality and Individual Differences, 23, 575–82.CrossRefGoogle Scholar
Dukes, R. L., and Albanesi, H. (2013). Seeing red: quality of an essay, color of the grading pen and student reactions to the grading process. Social Science Journal, 50, 96100.CrossRefGoogle Scholar
Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational Psychologist, 34, 149–69.CrossRefGoogle Scholar
Elliot, A. J. (2015). Color and psychological functioning: a review of theoretical and empirical work. Frontiers of Psychology, 6(368).CrossRefGoogle ScholarPubMed
Elliot, A. J., and Church, M. A. (2003). A motivational analysis of defensive pessimism and self-handicapping. Journal of Personality, 71, 369–96.CrossRefGoogle ScholarPubMed
Elliot, A. J., and Maier, M. A. (2012). Color-in-context theory. Advances in Experimental Social Psychology, 45, 61125.CrossRefGoogle Scholar
Elliot, A. J., and Maier, M. A. (2014). Color psychology: effects of perceiving color on psychological functioning in humans. Annual Review of Psychology, 65, 95120.CrossRefGoogle ScholarPubMed
Elliot, A. J., Maier, M. A., Binser, M. J., Friedman, R., and Pekrun, R. (2009). The effect of red on avoidance behavior in achievement contexts. Personality and Social Psychology Bulletin, 35, 365–75.CrossRefGoogle ScholarPubMed
Elliot, A. J., Maier, M. A., Moller, A. C., Friedman, R., and Meinhardt, J. (2007). Color and psychological functioning: the effect of red on performance attainment. Journal of Experimental Psychology: General, 136, 154–68.Google ScholarPubMed
Elliot, A. J., and Niesta, D. (2008). Romantic red: red enhances men’s attraction to women. Journal of Personality and Social Psychology, 95, 1150–64.CrossRefGoogle ScholarPubMed
Elliot, A. J., Payen, V., Brisswalter, J., Cury, F., and Thayer, J. F. (2011). A subtle threat cue, heart rate variability, and cognitive performance. Psychophysiology, 48, 1340–5.CrossRefGoogle ScholarPubMed
Ellis, H. (1900). The psychology of red. Popular Science Monthly, 57, 365–75.Google Scholar
Eysenck, M. W., Derakshan, N., Santos, R., and Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7, 336–53.CrossRefGoogle ScholarPubMed
Farrelly, D., Slater, R., Elliott, H. R., Walden, H. R., and Wetherell, M. A. (2013). Competitors who choose to be red have higher testosterone levels. Psychological Science, 24, 2122–4.CrossRefGoogle ScholarPubMed
Feldman Barrett, L., Mesquita, B., and Smith, E. R. (2010). The context principle. In Mesquita, B., Barrett, L. F., and Smith, E. R. (eds.), The Mind in Context (pp. 122). New York: Guilford Press.Google Scholar
Feltman, R., and Elliot, A. J. (2011). The influence of red on perceptions of dominance and threat in a competitive context. Journal of Sport and Exercise Psychology, 33, 308–14.CrossRefGoogle Scholar
Fink, B., Grammer, K., and Matts, P. J. (2006). Visible skin color distribution plays a role in the perception of age, attractiveness, and health in female faces. Evolution and Human Behavior, 27, 433–42.CrossRefGoogle Scholar
Fordham, D. R., and Hayes, D. C. (2009). Worth repeating: paper color may have an effect on student performance. Issues in Accounting Education, 24, 187–94.CrossRefGoogle Scholar
Funk, D., and Ndubisi, N. O. (2006). Colour and product choice: a study of gender roles. Management Research News, 29, 4152.CrossRefGoogle Scholar
Furley, P., Dicks, M., and Memmert, D. (2012). Nonverbal behavior in soccer: the influence of dominant and submissive body language on the impression formation and expectancy of success of soccer players. Journal of Sport and Exercise Psychology, 34, 6182.CrossRefGoogle ScholarPubMed
García-Rubio, M. A., Picazo-Tadeo, A. J., and González-Gómez, F. (2011). Does a red shirt improve sporting performance? Evidence from Spanish football. Applied Economics Letters, 18, 1001–4.CrossRefGoogle Scholar
Geier, A., Wansink, B., and Rozin, P. (2012). Red potato chips: segmentation cues can substantially decrease food intake. Health Psychology, 31, 398401.CrossRefGoogle ScholarPubMed
Genschow, O., Reutner, L., and Wänke, M. (2012). The color red reduces snack food and soft drink intake. Appetite, 58, 699702.CrossRefGoogle ScholarPubMed
Gerald, M. (2003). How color may guide the primate world: possible relationships between sexual selection and sexual dichromatism. In Jones, C. (ed.), Sexual Selection and Reproductive Competition in Primates: New Perspectives and Directions (pp. 141–72). Norman, OK: American Society of Primatologists.Google Scholar
Gerald, M., Waitt, C., and Little, A. C. (2009). Pregnancy coloration in macaques may act as a warning signal to reduce antagonism by conspecifics. Behavioural Processes, 80, 711.CrossRefGoogle ScholarPubMed
Gerend, M. A., and Sias, T. (2009). Message framing and color priming: how subtle threat cues affect persuasion. Journal of Experimental Social Psychology, 45, 9991002.CrossRefGoogle Scholar
Gnambs, T., Appel, M., and Batinic, B. (2010). Color red in web-based knowledge testing. Computers in Human Behavior, 26, 1625–31.CrossRefGoogle Scholar
Goethe, W. (1967/1810). Theory of Colours. London: Frank Cass.Google Scholar
Gollwitzer, P. M., and Bargh, J. A. (2005). Automaticity in goal pursuit. In Elliot, A. and Dweck, C. (eds.), Handbook of Competence and Motivation (pp. 624–46). New York: Guilford.Google Scholar
Gorn, G. J., Chattopadhyay, A., Sengupta, J., and Tripathi, S. (2004). Waiting for the web: how screen color affects time perception. Journal of Marketing Research, 41, 215–25.CrossRefGoogle Scholar
Greenlees, I. A., Eynon, M., and Thelwell, R. C. (2013). Color of soccer goalkeepers’ uniforms influences the outcome of penalty kicks. Perceptual and Motor Skills: Exercise and Sport, 116, 110.CrossRefGoogle Scholar
Greenlees, I. A, Leyland, A., Thelwell, R. C., and Filby, W. (2008). Soccer penalty takers’ uniform colour and pre-penalty kick gaze affect the impressions formed of them by opposing goalkeepers. Journal of Sports Sciences, 26, 569–76.CrossRefGoogle ScholarPubMed
Guéguen, N. (2012). Color and women attractiveness: when red clothed women are perceived to have more intense sexual intent. Journal of Social Psychology, 152, 261–5.CrossRefGoogle ScholarPubMed
Guéguen, N., and Jacob, C. (2014). Coffee cup color and evaluation of a beverage’s “warmth quality.” Color Research & Application, 39, 7981.CrossRefGoogle Scholar
Hackney, A. C. (2006). Testosterone and human performance: influence of the color red. European Journal of Applied Physiology, 96, 330–3.CrossRefGoogle ScholarPubMed
Hagemann, N., Strauss, B., and Leissing, J. (2008). When the referee sees red … Psychological Science, 19, 769–72.CrossRefGoogle ScholarPubMed
Hanss, D., Böhm, G., and Pfister, H. R. (2012). Active red sports car and relaxed purple-blue van: affective qualities predict color appropriateness for car types. Journal of Consumer Behavior, 11, 368–80.CrossRefGoogle Scholar
Healey, M., Uller, T., and Olsson, M. (2007). Seeing red: morph-specific contest success, and survival rates, in a colour-polymorphic agamid lizard. Animal Behaviour, 73, 337–41.Google Scholar
Heckhausen, H., Schmalt, H.-D., and Schneider, K. (1985). Achievement Motivation in Perspective. New York: Academic Press.Google Scholar
Hembree, R. (1988). Correlates, causes, effects, and treatment of test anxiety. Review of Educational Research, 58, 4777.CrossRefGoogle Scholar
Henderson, L. M., Tsogka, N., and Snowling, M. J. (2013). Questioning the benefits that coloured overlays can have for reading in students with and without dyslexia. Journal of Research in Special Educational Needs, 13, 5765.CrossRefGoogle Scholar
Hill, R. A., and Barton, R. A. (2005). Red enhances human performance in contests. Nature, 435, 293.CrossRefGoogle ScholarPubMed
Houtman, F., and Notebaert, W. (2013). Blinded by an error. Cognition, 128, 228–36.CrossRefGoogle ScholarPubMed
Hulshof, B. (2013). The Influence of Colour and Scent on People’s Mood and Cognitive Performance in Meeting Rooms. MA thesis, University of Twente.Google Scholar
Humphrey, N. (1976). The colour currency of nature. In Porter, T. and Mikellides, B. (eds.), Colour for Architecture (pp. 95–8). London: Studio-Vista.Google Scholar
Ilie, A., Ioan, S., Zagrean, L., and Moldovan, M. (2008). Better to be red than blue in virtual competition. CyberPsychology & Behavior, 11, 375–7.CrossRefGoogle ScholarPubMed
Imhof, M. (2004). Effects of color stimulation on handwriting performance of children with ADHD without and with additional learning disabilities. European Child and Adolescent Psychology, 13, 191–8.Google ScholarPubMed
Ioan, S., Sandulache, M., Avramescu, S., Ilie, A., Neacsu, A., Zagrean, L., and Moldovan, M. (2007). Red is a distractor for men in competition. Evolution and Human Behavior, 28, 285–93.CrossRefGoogle Scholar
Jiang, F., Lu, S., Yao, X., Yue, X., and Au, W. (2014). Up for down? How culture and color affect judgments. Journal of Behavioral Decision Making, 27, 226–34.CrossRefGoogle Scholar
Jung, I., Kim, M. S., and Han, K. (2011). Red for romance, blue for memory. In HCI International 2011–Posters’ Extended Abstracts (pp. 284–8). Berlin: Springer.Google Scholar
Kliger, D., and Gilad, D. (2012). Red light, green light: color priming in financial decisions. Journal of Socio-Economics, 41, 738–45.CrossRefGoogle Scholar
Kocher, M. G., and Sutter, M. (2008). Shirt colour and team performance in football. In Andersson, P., Ayton, P., and Schmidt, C. (eds.), Myths and Facts About Football: The Economics and Psychology of the World’s Greatest Sport (pp. 125–30). Newcastle Upon Tyne: Cambridge Scholars Publishing.Google Scholar
Krenn, B. (2014). The impact of uniform color on judging tackles in association football. Psychology of Sport and Exercise, 15, 222–5.CrossRefGoogle Scholar
Kuhbandner, C., and Pekrun, R. (2013). Joint effects of emotion and color on memory. Emotion, 13, 375–9.CrossRefGoogle ScholarPubMed
Küller, R., Mikellides, B., and Janssens, J. (2009). Color, arousal, and performance – a comparison of three experiments. Color Research & Application, 34, 141–52.CrossRefGoogle Scholar
Kumi, R., Conway, C. M., Limayem, M., and Goyal, S. (2013). Learning in color: how color and affect influence learning outcomes. IEEE Transactions on Professional Communication, 56, 215.CrossRefGoogle Scholar
Labrecque, L. I., and Milne, G. R. (2012). Exciting red and competent blue: the importance of color in marketing. Journal of the Academy of Marketing Science, 40, 711–27.CrossRefGoogle Scholar
Labrecque, L. I., and Milne, G. R. (2013). To be or not to be different: exploration of norms and benefits of color differentiation in the marketplace. Marketing Letters, 24, 165–76.CrossRefGoogle Scholar
Lee, S., and Rao, V. S. (2010). Color and store choice in electronic commerce: the explanatory role of trust. Journal of Electronic Commerce Research, 11, 110–26.Google Scholar
Lehrl, S., Gerstmeyer, K., Jacob, J. H., Frieling, H., Henkel, A. W., Meyrer, R., and Wiltfang, J. (2007). Blue light improves cognitive performance. Journal of Neural Transmission, 14, 457–60.Google Scholar
Lichtenfeld, S., Elliot, A. J., Maier, M. A., and Pekrun, R. (2012). Fertile green: green facilitates creative performance. Personality and Social Psychology Bulletin, 38, 784–97.CrossRefGoogle ScholarPubMed
Lichtenfeld, S., Maier, M. A., Elliot, A. J., and Pekrun, R. (2009). The semantic red effect: processing the word red undermines intellectual performance. Journal of Experimental Social Psychology, 45, 1273–6.CrossRefGoogle Scholar
Lin, H. (2014). Red-colored products enhance the attractiveness of women. Displays, 35, 202–5.CrossRefGoogle Scholar
Little, A. C., and Hill, R. A. (2007). Attribution to red suggests special role in dominance signalling. Journal of Evolutionary Psychology, 5, 161–8.CrossRefGoogle Scholar
Magee, R. G. (2012). Impression formation online: how web page colors can interact with physical temperature. Journal of Media Psychology, 24, 124–33.CrossRefGoogle Scholar
Maier, M. A., Barchfeld, P., Elliot, A. J., and Pekrun, R. (2009). Context-specificity of implicit preferences: the case of human preference for red. Emotion, 9, 734–8.CrossRefGoogle ScholarPubMed
Maier, M. A., Elliot, A. J., Lee, B., Lichtenfeld, S., Barchfeld, P., and Pekrun, R. (2013). The influence of red on impression formation in a job application context. Motivation and Emotion, 37, 389401.CrossRefGoogle Scholar
Maier, M. A., Elliot, A. J., and Lichtenfeld, S. (2008). Mediation of the negative effect of red on intellectual performance. Personality and Social Psychology Bulletin, 34, 1530–40.CrossRefGoogle ScholarPubMed
Matsumoto, D., Konno, J., Hata, S., and Takeuchi, M. (2007). Blue judogis may bias competition outcomes. Research Journal of Budo, 39, 17.Google Scholar
Mazur, A. (2005). Biopsychology of Dominance and Deference. London: Rowman and Hudson.Google Scholar
McClelland, D. C. (1985). Human Motivation. New York: Cambridge University Press.Google Scholar
Mehta, R., and Zhu, R. J. (2009). Blue or red? Exploring the effect of color on cognitive task performances. Science, 7, 1226–9.Google Scholar
Meier, B. P., D’Agostino, P. R., Elliot, A. J., Maier, M. A., and Wilkowski, B. M. (2012). Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior. PLoS ONE, 7, 15.CrossRefGoogle ScholarPubMed
Meyer, M. J., and Bagwell, J. (2012). The non-impact of paper color on exam performance. Issues in Accounting Education, 27, 691706.CrossRefGoogle Scholar
Mikulincer, M., Kedem, P., and Paz, D. (1990). Anxiety and categorization. I. The structure and boundaries of mental categories. Personality and Individual Differences, 11, 805–14.Google Scholar
Moller, A. C., Elliot, A. J., and Maier, M. A. (2009). Basic hue-meaning associations. Emotion, 9, 898902.CrossRefGoogle ScholarPubMed
Moscoso del Prado Martín, M. F., Hauk, O., and Pulvermüller, F. (2006). Category specificity in the processing of color-related and form-related words. NeuroImage, 29, 2937.CrossRefGoogle ScholarPubMed
Norem, J. (2002). The Power of Negative Thinking: Using Defensive Pessimism to Harness Anxiety and Perform at Your Peak. Cambridge, MA: Basic Books.Google Scholar
O’Connor, Z. (2010). Colour harmony revisited. Color Research & Application, 35, 267–73.Google Scholar
Osborne, J. W. (1995). Academics, self-esteem, and race: a look at the underlying assumptions of the disidentification hypothesis. Personality and Social Psychology Bulletin, 21, 449–55.CrossRefGoogle Scholar
Osteroth, P. (2012). Seeing Red: The Effect of Color Priming on Detail-Oriented Performance in Achievement Contexts. Master’s thesis, Free University Berlin.Google Scholar
Pedley, A., and Wade, A. R. (2013). No psychological effect of color context in a low level vision task. F1000Research, 2, 247.CrossRefGoogle Scholar
Piatti, M., Savaga, D. A., and Torgler, B. (2012). The red mist? Red shirts, success and team sports. Sport in Society, 15, 1209–27.CrossRefGoogle Scholar
Piotrowski, C., and Armstrong, T. (2012). Color red: implications for applied psychology and marketing. Psychology and Education Journal, 49, 55–7.Google Scholar
Piqueras-Fiszman, B., and Spence, C. (2012). The influence of the color of the cup on consumers’ perceptions of a hot beverage. Journal of Sensory Studies, 27, 324–31.CrossRefGoogle Scholar
Pollet, T. V., and Peperkoorn, L. S. (2013). Fading red? No evidence that color of trunks influences outcomes in the ultimate fighting championship (UFC). Frontiers in Psychology, 4, 643.CrossRefGoogle ScholarPubMed
Pravossoudovitch, K., Cury, F., Young, S. G., and Elliot, A. J. (2014). Is red the colour of danger? Testing an implicit red–danger association. Ergonomics, 57, 503–10.CrossRefGoogle ScholarPubMed
Pryke, S. R., Andersson, S., Lawes, M. J., and Piper, S. E. (2001). Carotenoid status signaling in captive and wild red-collared widowbirds: independent effects of badge size and color. Behavioral Ecology, 13, 622–31.Google Scholar
Pryke, S. R., and Griffith, S. C. (2006). Red dominates black: agonistic signalling among head morphs in the color polymorphic Gouldian finch. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 949–57.Google ScholarPubMed
Puccinelli, N. M., Chandrashekaran, R., Grewal, D., and Suri, R. (2013). Are men seduced by red? The effect of red versus black prices on price perceptions. Journal of Retailing, 89, 115–25.CrossRefGoogle Scholar
Roberts, S. C., Owen, R. C., and Havlicek, J. (2010). Distinguishing between perceiver and wearer effects in clothing color-associated attributions. Evolutionary Psychology, 8, 350–64.CrossRefGoogle ScholarPubMed
Rook, L. (2014). Exposure to the color red enhances creative thinking depending on appetitive-aversive cues. Creativity Research Journal, 26, 124–30.CrossRefGoogle Scholar
Roskes, M., Elliot, A. J., and De Dreu, C. K. W. (2014). Why is avoidance motivation problematic and what can be done about it? Current Directions in Psychological Science, 23, 133–5.CrossRefGoogle Scholar
Ross, C. F., Bohischeid, J., and Weller, K. (2008). Influence of visual masking technique on the assessment of 2 red wines by trained and consumer assessors. Journal of Food Science, 73, S279–85.CrossRefGoogle ScholarPubMed
Rowe, C., Harris, J. M., and Roberts, S. C. (2005). Seeing red? Putting sportswear in context. Nature, 437, E10.CrossRefGoogle ScholarPubMed
Runco, M. A. (2005). Motivation, competence, and creativity. In Elliot, A. and Dweck, C. (eds.), Handbook of Competence and Motivation (pp. 609–23). New York: Guilford Press.Google Scholar
Rutchick, A. M., Slepian, M. L., and Ferris, B. D. (2010). The pen is mightier than the word: object priming of evaluative standards. European Journal of Social Psychology, 40, 704–8.CrossRefGoogle Scholar
Schwartz, N. (2007). Attitude construction: evaluation in context. Social Cognition, 25, 638–56.Google Scholar
Schwarz, S., and Singer, M. (2013). Romantic red revisited: red enhances men’s attraction to young, but not menopausal women. Journal of Experimental Social Psychology, 49, 161–4.CrossRefGoogle Scholar
Setchell, J. M., and Wickings, E. J. (2005). Dominance, status signals, and coloration in male mandrills (Mandrillus sphinx). Ethology, 111, 2550.CrossRefGoogle Scholar
Shapley, R., and Hawkin, M. J. (2011). Color in the cortex: single- and double-opponent cells. Vision Research, 51, 701–17.CrossRefGoogle ScholarPubMed
Shavit, T., Rosenboim, M., and Cohen, C. (2013). Does the color of feedback affect investment decisions? International Journal of Applied Behavioral Economics, 2, 1526.CrossRefGoogle Scholar
Shevell, S. K., and Kingdom, F. A. A. (2008). Color in complex scenes. Annual Review of Psychology, 59, 143–66.CrossRefGoogle ScholarPubMed
Shi, B., Zhang, X., and Jiang, F. (2015). Does red undermine individuals’ intellectual performance? A test in China. International Journal of Psychology, 50, 81–4.CrossRefGoogle ScholarPubMed
Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., and Barsalou, L. W. (2007). A common neural substrate for perceiving and knowing about color. Neuropsychologia, 45, 2802–10.CrossRefGoogle ScholarPubMed
Sinclair, R. C., Soldat, A. S., and Mark, M. M. (1998). Affective cues and processing strategy: color-coded examination forms influence performance. Teaching of Psychology, 25, 130–2.CrossRefGoogle Scholar
Skinner, N. F. (2004). Differential test performance from differently colored paper: white paper works best. Teaching of Psychology, 31, 111–13.Google Scholar
Smajic, A., Merritt, S., Banister, C., and Blinebry, A. (2014). The red effect, anxiety, and exam performance: a multistudy examination. Teaching of Psychology, 41, 3743.CrossRefGoogle Scholar
Soldat, A. S., Sinclair, R. C., and Mark, M. M. (1997). Color as an environmental processing cue: external affective cues can directly affect processing strategy without affecting mood. Social Cognition, 15, 5571.CrossRefGoogle Scholar
Sorokowski, P., and Szmajke, A. (2007). How does the “red win” effect work? The role of sportswear colour during sports competitions. Polish Journal of Applied Psychology, 5, 71–9.Google Scholar
Steele, K. M. (2014). Failure to replicate the Mehta and Zhu (2009) color-priming effect on anagram solution times. Psychonomic Bulletin & Review, 21, 771–76.CrossRefGoogle Scholar
Stephen, I. D., Coetzee, V., Law Smith, M., and Perrett, D. I. (2009). Skin blood perfusion and oxygenation colour affect perceived human health. PLoS ONE, 4, E5083.CrossRefGoogle ScholarPubMed
Stephen, I. D., Law Smith, M. J., Stirrat, M. R., and Perrett, D. I. (2009). Facial skin coloration affects perceived health of human faces. International Journal of Primatology, 30, 845–57.CrossRefGoogle ScholarPubMed
Stephen, I. D., Oldham, F., Perrett, D. I., and Barton, R. A. (2012). Redness enhances perceived aggression, dominance and attractiveness in men’s faces. Evolutionary Psychology, 10, 562–72.CrossRefGoogle ScholarPubMed
Stone, N. J. (2001). Designing effective study environments. Journal of Environmental Psychology, 21, 179–90.CrossRefGoogle Scholar
Szmajke, A., and Sorokowski, P. (2006). Permitted support in sport: the influence of sportsmen’s outfit colour on competitions in sport. Medicina dello Sport, 10, 119–22.Google Scholar
Tal, I. R., Akers, K. G., and Hodge, G. K. (2008). Effect of paper color and question order on exam performance. Teaching of Psychology, 35, 26–8.CrossRefGoogle Scholar
Tanaka, A., and Tokuno, Y. (2011). The effect of the color red on avoidance motivation. Social Behavior and Personality, 39, 287–8.CrossRefGoogle Scholar
Ten Velden, F. S., Baas, M., Shalvi, S., Preenen, P. T. Y., and De Dreu, C. K. W. (2012). In competitive interaction displays of red increase actors’ competitive approach and perceivers’ withdrawal. Journal of Experimental Social Psychology, 48, 1205–8.CrossRefGoogle Scholar
Thorstenson, C. (2015). Functional equivalence of the color red and enacted avoidance behavior: replication and empirical integration. Social Psychology.CrossRefGoogle Scholar
Urdan, T., and Midgley, C. (2001). Academic self-handicapping: what we know, what more there is to learn. Educational Psychology Review, 13, 115–38.CrossRefGoogle Scholar
Valdez, P., and Mehrabian, A. (1994). Effects of color on emotions. Journal of Experimental Psychology: General, 123, 394409.CrossRefGoogle ScholarPubMed
Whitfield, T. W., and Wiltshire, T. J. (1990). Color psychology: a critical review. Genetic, Social, and General Psychology Monographs, 116, 385411.Google ScholarPubMed
Wogalter, M. S., Kaisher, M. J., Frederick, L. J., Magurno, A. B., and Brewster, B. M. (1998). International Journal of Cognitive Ergonomics, 2, 123–43.Google Scholar
Yamazaki, A. K. (2010). An analysis of background-color effects on the scores of a computer-based English test. Lecture Notes in Computer Science, 6277, 630–6.CrossRefGoogle Scholar
Yamazaki, A. K., and Eto, K. (2011). A preliminary examination of background-color effects on the scores of computer-based English grammar tests using near-infrared spectroscopy. Lecture Notes in Computer Science, 6883, 31–9.CrossRefGoogle Scholar
Yüksel, A. (2009). Exterior color and perceived retail crowding: effects on tourists’ shopping quality inferences and approach behaviors. Journal of Quality Assurance in Hospital Tourism, 10, 233–54.Google Scholar
Zhang, T., and Han, B. (2014). Experience reverses the red effect among Chinese stockbrokers. PLoS ONE, 9, E89193.CrossRefGoogle ScholarPubMed
Zimmermann, A., Lorenz, A., and Oppermann, R. (2007). An operational definition of context. In Dey, A., Kokinov, B., Leake, D., and Turner, R. (eds.), Context (pp. 558–71). Berlin: Springer-Verlag.Google Scholar

References

Adamo, S. (2005). Female choice for male immunocompetence: when is it worth it? Behavioral Ecology, 16(5), 871–9.CrossRefGoogle Scholar
Adams, F. M., and Osgood, C. E. (1973). A cross-cultural study of the affective meanings of color. Journal of Cross-Cultural Psychology, 4(2), 135–56.CrossRefGoogle Scholar
Agarwal, A. (2005). Role of oxidative stress in male infertility and antioxidant supplementation. Cleveland Clinic. Business Briefing: US Kidney and Urological Disease, 122–32.Google Scholar
Alaluf, S., Heinrich, U., Stahl, W., Tronnier, H., and Wiseman, S. (2002). Human nutrition and metabolism: dietary carotenoids contribute to normal human skin color and UV photosensitivity. Journal of Nutrition, 132(3), 399403.CrossRefGoogle Scholar
Alexander, M., Newmark, H., and Miller, R. G. (1985). Oral beta-carotene can increase the number of OKT4+ cells in human blood. Immunology Letters, 9, 221–4.CrossRefGoogle ScholarPubMed
Allen, G. (1879). The Color-Sense: Its Origin and Development. London: Trubner and Co.Google Scholar
Armstrong, N., and Welsman, J. (2001). Peak oxygen uptake in relation to growth and maturation in 11- to 17-year-old humans. European Journal of Applied Physiology, 85(6), 546–51.CrossRefGoogle ScholarPubMed
Attrill, M. J., Gresty, K. A., Hill, R. A., and Barton, R. A. (2008). Red shirt color is associated with long-term team success in English football. Journal of Sports Sciences, 26(6), 577–82.CrossRefGoogle Scholar
Bamford, A. J., Monadjem, A., and Hardy, I. C. W. (2010). Associations of avian facial flushing and skin coloration with agonistic interaction outcomes. Ethology, 116(12), 1163–70.CrossRefGoogle Scholar
Bouilly-Gauthier, D., Jeannes, C., Maubert, Y., Duteil, L., Queille-Roussel, C., Piccardi, N., Montastier, C., Manissier, P., Piérard, G., and Ortonne, J.-P. (2010). Clinical evidence of benefits of a dietary supplement containing probiotic and carotenoids on ultraviolet-induced skin damage. British Journal of Dermatology, 163(3), 536–43.CrossRefGoogle ScholarPubMed
Branda, R. F., and Eaton, J. W. (1978). Skin color and nutrient photolysis: an evolutionary hypothesis. Science, 201(4356), 625–6.CrossRefGoogle ScholarPubMed
Bruce, V., and Langton, S. (1994). The use of pigmentation and shading information in recognising the sex and identities of faces. Perception, 23(7), 803–22.CrossRefGoogle ScholarPubMed
Bulygina, E., Mitteroecker, P., and Aiello, L. (2006). Ontogeny of facial dimorphism and patterns of individual development within one human population. American Journal of Physical Anthropology, 131(3), 432–43.CrossRefGoogle ScholarPubMed
Burkhart, C. G., and Burkhart, C. N. (2005). The mole theory: primary function of melanocytes and melanin may be antimicrobial defense and immunomodulation (not solar protection). International Journal of Dermatology, 44(4), 340–2.CrossRefGoogle ScholarPubMed
Burt, D. M., and Perrett, D. I. (1995). Perception of age in adult Caucasian male faces: computer graphic manipulation of shape and color information. Proceedings of the Royal Society of London. Series B, Biological Sciences, 259, 137–43.Google Scholar
Changizi, M., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate color vision. Biology Letters, 2(2), 217–21.CrossRefGoogle Scholar
Charkoudian, N. (2003). Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clinic Proceedings, 78(5), 603–12.CrossRefGoogle ScholarPubMed
Charkoudian, N., Stephens, D. P., Pirkle, K. C., Kosiba, W. A., and Johnson, J. M. (1999). Influence of female reproductive hormones on local thermal control of skin blood flow. Journal of Applied Physiology, 87(5), 1719–23.CrossRefGoogle ScholarPubMed
Coetzee, V., Greeff, J. M., Stephen, I. D., and Perrett, D. I. (2014). Cross-cultural agreement in facial attractiveness preferences: the role of ethnicity and gender. PLoS ONE, 9, e99629.CrossRefGoogle ScholarPubMed
Coetzee, V., and Perrett, D. I. (2014). Effect of beta-carotene supplementation on African skin. Journal of Biomedical Optics, 19(2), 25004.CrossRefGoogle ScholarPubMed
Coetzee, V., Perrett, D. I., and Stephen, I. D. (2009). Facial adiposity: a cue to health? Perception, 38(11), 1700–11.CrossRefGoogle ScholarPubMed
Corson, R. (1972). Fashions in Makeup: From Ancient to Modern Times. London: Owen.Google Scholar
Dowling, D. K., and Simmons, L. W. (2009). Reactive oxygen species as universal constraints in life-history evolution. Proceedings of the Royal Society of London. Series B, Biological Sciences, 276(1663), 1737–45.Google ScholarPubMed
Drummond, P. D., Back, K., Harrison, J., Helgadottir, F. D., Lange, B., Lee, C., and Wheatley, L. (2007). Blushing during social interactions in people with a fear of blushing. Behaviour Research and Therapy, 45(7), 1601–8.CrossRefGoogle ScholarPubMed
Drummond, P. D., and Quah, S. H. (2001). The effect of expressing anger on cardiovascular reactivity and facial blood flow in Chinese and Caucasians. Psychophysiology, 38(2), 190–6.CrossRefGoogle ScholarPubMed
Edwards, E. A., and Duntley, S. Q. (1939). The pigments and color of living human skin. American Journal of Anatomy, 65(1), 133.CrossRefGoogle Scholar
Edwards, R., Xiao, D., Keysers, C., Foldiak, P., and Perrett, D. (2003). Color sensitivity of cells responsive to complex stimuli in the temporal cortex. Journal of Neurophysiology, 90(2), 1245–56.CrossRefGoogle ScholarPubMed
Farkas, L. G. (1981). Anthropometry of the Face and Head in Medicine. New York: Elsevier.Google Scholar
Feather, J. W., Ellis, D. J., and Leslie, G. (1988). A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin. Physics in Medicine and Biology, 33(6), 711–22.CrossRefGoogle ScholarPubMed
Fink, B., Grammer, K., and Matts, P. (2006). Visible skin color distribution plays a role in the perception of age, attractiveness, and health in female faces. Evolution and Human Behavior, 27(6), 433–42.CrossRefGoogle Scholar
Fink, B., Grammer, K., and Thornhill, R. (2001). Human (Homo sapiens) facial attractiveness in relation to skin texture and color. Journal of Comparative Psychology, 115(1), 92–9.CrossRefGoogle ScholarPubMed
Fink, B., Matts, P. J., D’Emiliano, D., Bunse, L., Weege, B., and Röder, S. (2012). Color homogeneity and visual perception of age, health and attractiveness of male facial skin. Journal of the European Academy of Dermatology and Venereology, 26(12), 1486–92.CrossRefGoogle ScholarPubMed
Fink, B., and Neave, N. (2005). The biology of facial beauty. International Journal of Cosmetic Science, 27(6), 317–25.CrossRefGoogle ScholarPubMed
Freiwald, W. A., and Tsao, D. Y. (2012). What makes a cell face selective? The importance of contrast. Neuron, 74(3), 567–81.Google Scholar
Friis, H., Gomo, E., Koestel, P., Ndhlovu, P., Nyazema, N., Krarup, H., and Michaelsen, K. F. (2001). HIV and other predictors of serum beta-carotene and retinol in pregnancy: a cross-sectional study in Zimbabwe. American Journal of Clinical Nutrition, 73(6), 1058–65.Google ScholarPubMed
Gilad, S., Meng, M., and Sinha, P. (2009). Role of ordinal contrast relationships in face encoding. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5353–8.Google ScholarPubMed
Goren, C. C., Sarty, M., and Wu, P. Y. (1975). Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics, 56(4), 544–9.CrossRefGoogle ScholarPubMed
Gunn, D., Rexbye, H., Griffiths, C. E. M., Murray, P. G., Fereday, A., Catt, S. D., and Christensen, K. (2009). Why some women look young for their age. PLoS ONE, 4(12), e8021.CrossRefGoogle ScholarPubMed
Hagemann, N., Strauss, B., and Leissing, J. (2008). When the referee sees red … Psychological Science, 19(8), 769–71.CrossRefGoogle ScholarPubMed
Hill, R. A., and Barton, R. A. (2005). Red enhances human performance in contests. Nature, 435(7040), 293.CrossRefGoogle ScholarPubMed
Hupka, R. B., Zaleski, Z., Otto, J., Reidl, L., and Tarabrina, N. V. (1997). The colors of anger, envy, fear, and jealousy: a cross-cultural study. Journal of Cross-Cultural Psychology, 28(2), 156–71.CrossRefGoogle Scholar
Ilie, A., Ioan, S., Zagrean, L., and Moldovan, M. (2008). Better to be red than blue in virtual competition. Cyberpsychology & Behavior: The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 11(3), 375–7.CrossRefGoogle ScholarPubMed
Jeghers, H. (1943). Skin changes of nutritional origin. New England Journal of Medicine, 228, 678–86.CrossRefGoogle Scholar
Johnson, E. J. (2002). The role of carotenoids in human health. Nutrition in Clinical Care, 5(2), 5665.CrossRefGoogle ScholarPubMed
Johnson, J. M. (1998). Physical training and the control of skin blood flow. Medicine and Science in Sports and Exercise, 30, 382–6.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–11.CrossRefGoogle ScholarPubMed
Kemp, R., Pike, G., White, P., and Musselman, A. (1996). Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues. Perception, 25, 3752.CrossRefGoogle ScholarPubMed
Koutsos, E. A., Calvert, C. C., and Klasing, K. C. (2003). The effect of an acute phase response on tissue carotenoid levels of growing chickens (Gallus gallus domesticus). Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 135, 635–46.Google ScholarPubMed
Lafer-Sousa, R., and Conway, B. R. (2013). Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nature Neuroscience. 16, 1870–8.CrossRefGoogle ScholarPubMed
Langlois, J. H., and Roggman, L. A. (1990). Attractive faces are only average. Psychological Science, 1(2), 115–21.CrossRefGoogle Scholar
Lee, K. J., and Perrett, D. I. (1997). Presentation-time measures of the effects of manipulations in color space on discrimination of famous faces. Perception, 26, 733–52.CrossRefGoogle ScholarPubMed
Lefevre, C. E., Ewbank, M. P., Calder, A. J., Von Hagen, E., and Perrett, D. I. (2013). It is all in the face: carotenoid skin coloration loses attractiveness outside the face. Biology Letters, 9(6), 2013.0633.CrossRefGoogle ScholarPubMed
Liu, D., Moberg, E., Kollind, M., Lins, P.-E., Adamson, U., and Macdonald, I. A. (1992). Arterial, arterialized venous, venous and capillary blood glucose measurements in normal man during hyperinsulinaemic euglycaemia and hypoglycaemia. Diabetologia, 35, 287–90.CrossRefGoogle ScholarPubMed
MacDougall, A. K., and Montgomerie, R. (2003). Assortative mating by carotenoid-based plumage color: a quality indicator in American goldfinches, Carduelis tristis. Die Naturwissenschaften, 90(10), 464–7.CrossRefGoogle ScholarPubMed
Maddox, K. B., and Gray, S. A. (1999). Cognitive representations of black Americans: reexploring the role of skin tone. Personality and Social Psychology Bulletin, 28(2), 250–9.Google Scholar
Margetts, B. M., Cade, J. E., and Osmond, C. (1989). Comparison of a food frequency questionnaire with a diet record. International Journal of Epidemiology, 18(4), 868–73.CrossRefGoogle ScholarPubMed
Matts, P. J., and Fink, B. (2010). Chronic sun damage and the perception of age, health and attractiveness. Photochemical and Photobiological Sciences, 9(4), 421–31.CrossRefGoogle ScholarPubMed
Matts, P. J., Fink, B., Grammer, K., and Burquest, M. (2007). Color homogeneity and visual perception of age, health, and attractiveness of female facial skin. Journal of the American Academy of Dermatology, 57(6), 977–84.CrossRefGoogle ScholarPubMed
McKeefry, D. J., and Zeki, S. (1997). The position and topography of the human color centre as revealed by functional magnetic resonance imaging. Brain, 120, 2229–42.CrossRefGoogle ScholarPubMed
Meinke, M. C., Darvin, M. E., Vollert, H., and Lademann, J. (2010). Bioavailability of natural carotenoids in human skin compared to blood. European Journal of Pharmaceutics and Biopharmaceutics, 76(2), 269–74.CrossRefGoogle ScholarPubMed
Minami, T., Goto, K., Kitazaki, M., and Nakauchi, S. (2011). Effects of color information on face processing using event-related potentials and gamma oscillations. Neuroscience, 176, 265–73.CrossRefGoogle ScholarPubMed
Moeller, S., Freiwald, W. A., and Tsao, D. Y. (2008). Patches with links: a unified system for processing faces in the macaque temporal lobe. Science, 320, 1355–9.CrossRefGoogle Scholar
Montoya, P., Campos, J. J., and Schandry, R. (2005). See red? Turn pale? Unveiling emotions through cardiovascular and hemodynamic changes. Spanish Journal of Psychology, 8(1), 7985.CrossRefGoogle ScholarPubMed
Murray, F. G. (1934). Pigmentation, sunlight and nutritional disease. American Anthropologist, 36(3), 438–48.CrossRefGoogle Scholar
Nakajima, K., Minami, T., and Nakauchi, S. (2012). The face-selective N170 component is modulated by facial color. Neuropsychologia, 50, 24992505.CrossRefGoogle ScholarPubMed
Negro, J. J., Sarasola, J. H., Fariñas, F., and Zorrilla, I. (2006). Function and occurrence of facial flushing in birds. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 143(1), 7884.CrossRefGoogle ScholarPubMed
Ohayon, S., Freiwald, W. A., and Tsao, D. Y. (2012). What makes a cell face selective? The importance of contrast. Neuron, 74(3), 567–81.CrossRefGoogle ScholarPubMed
Panza, J., Quyyumi, A., Brush, J., and Epstein, S. (1990). Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. New England Journal of Medicine, 323(1), 22–7.CrossRefGoogle ScholarPubMed
Paxton, L., Redd, S. C., Steketee, R. W., Otieno, J. O., and Nahlen, B. (1996). An evaluation of clinical indicators for severe paediatric illness. Bulletin of the World Health Organization, 74(6), 613–18.Google ScholarPubMed
Perrett, D. I., Burt, D. M., Penton-Voak, I. S., Lee, K. J., Rowland, D. A., and Edwards, R. (1999). Symmetry and human facial attractiveness. Perception, 307, 295307.Google Scholar
Perrett, D. I., Lee, K. J., Penton-Voak, I., Rowland, D., Yoshikawa, S., Burt, D. M., and Akamatsu, S. (1998). Effects of sexual dimorphism on facial attractiveness. Nature, 394(6696), 884–7.CrossRefGoogle ScholarPubMed
Perrett, D. I., Smith, P. A., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., and Jeeves, M. A. (1984). Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. Human Neurobiology, 3(4), 197208.Google ScholarPubMed
Pike, T. W., Blount, J. D., Bjerkeng, B., Lindström, J., and Metcalfe, N. B. (2007). Carotenoids, oxidative stress and female mating preference for longer lived males. Proceedings of the Royal Society of London. Series B, Biological Sciences, 274(1618), 1591–6.Google ScholarPubMed
Ponsonby, L., Dwyer, T., and Couper, D. (1997). Sleeping position, infant apnea, and cyanosis: a population-based study. Pediatrics, 99(1), e3e3.CrossRefGoogle ScholarPubMed
Porcheron, A., Mauger, E., and Russell, R. (2013). Aspects of facial contrast decrease with age and are cues for age perception. PLoS ONE, 8(3), e57985.CrossRefGoogle ScholarPubMed
Rao, V., and Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207–16.CrossRefGoogle ScholarPubMed
Re, D. E., Whitehead, R. D., Xiao, D., and Perrett, D. I. (2011). Oxygenated-blood color change thresholds for perceived facial redness, health, and attractiveness. PLoS ONE, 6(3), e17859.CrossRefGoogle ScholarPubMed
Rhodes, L., Argersinger, M. E., Gantert, L. T., Friscino, B. H., Hom, G., Pikounis, B., and Rhodes, W. L. (1997). Effects of administration of testosterone, dihydrotestosterone, oestrogen and fadrozole, an aromatase inhibitor, on sex skin color in intact male rhesus macaques. Journal of Reproduction and Fertility, 111(1), 51–7.CrossRefGoogle Scholar
Ribaya-Mercado, J. D., and Blumberg, J. B. (2004). Lutein and zeaxanthin and their potential roles in disease prevention. Journal of the American College of Nutrition, 23(6 Suppl.), 567S–87S.CrossRefGoogle ScholarPubMed
Robins, A. H. (1991). Biological Perspectives on Human Pigmentation. Cambridge University Press.CrossRefGoogle Scholar
Rowe, C., Harris, J. M., and Roberts, S. C. (2005). Sporting contests: seeing red? Putting sportswear in context. Nature, 437, E10.CrossRefGoogle ScholarPubMed
Russell, R. (2003). Sex, beauty, and the relative luminance of facial features. Perception, 32(9), 10931107.CrossRefGoogle ScholarPubMed
Russell, R. (2009). A sex difference in facial contrast and its exaggeration by cosmetics. Perception, 38, 1211–19.CrossRefGoogle ScholarPubMed
Russell, R., Sinha, P., Biederman, I., and Nederhouser, M. (2006). Is pigmentation important for face recognition? Evidence from contrast negation. Perception, 35(6), 749–59.CrossRefGoogle ScholarPubMed
Saks, L., Ots, I., and Hõrak, P. (2003). Carotenoid-based plumage coloration of male greenfinches reflects health and immunocompetence. Oecologia, 134(3), 301–7.CrossRefGoogle ScholarPubMed
Schaffer, S. E. (2007). Reading our lips: the history of lipstick regulation in Western seats of power. Food and Drug Law Journal, 62(1), 165225.Google ScholarPubMed
Scott, I. M. L., Pound, N., Stephen, I. D., Clark, A. P., and Penton-Voak, I. S. (2010). Does masculinity matter? The contribution of masculine face shape to male attractiveness in humans. PLoS ONE, 5(10), e13585.CrossRefGoogle ScholarPubMed
Seifter, E., Rettura, G., and Levenson, S. M. (1981). Carotenoids and cell mediated immune responses. In Charamblois, G. and Inglett, G. (eds.), The Quality of Foods and Beverages: Chemistry and Technology (vol. II, pp. 335–47). New York: Academic Press.Google Scholar
Setchell, J. M. (2005). Do female mandrills prefer brightly colored males? International Journal of Primatology, 26(4), 715–35.CrossRefGoogle Scholar
Setchell, J. M., and Dixson, A. F. (2001). Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39(3), 177–84.CrossRefGoogle ScholarPubMed
Setchell, J. M., Smith, T., Wickings, E. J., and Knapp, L. (2008). Social correlates of testosterone and ornamentation in male mandrills. Hormones and Behavior, 54(3), 365–72.CrossRefGoogle ScholarPubMed
Setchell, J. M., Wickings, E. J., and Knapp, L. (2006). Signal content of red facial coloration in female mandrills (Mandrillus sphinx). Proceedings of the Royal Society of London. Series B, Biological Sciences, 273(1599), 23952400.Google ScholarPubMed
Shardell, M. D., Alley, D. E., Hicks, G. E., El-Kamary, S. S., Miller, R. R., Semba, R. D., and Ferrucci, L. (2011). Low-serum carotenoid concentrations and carotenoid interactions predict mortality in US adults: the Third National Health and Nutrition Examination Survey. Nutrition Research, 31(3), 178–89.CrossRefGoogle ScholarPubMed
Stahl, W., Heinrich, U., Jungmann, H., von Laar, J., Schietzel, M., Sies, H., and Tronnier, H. (1998). Increased dermal carotenoid levels assessed by noninvasive reflection spectrophotometry correlate with serum levels in women ingesting Betatene. Journal of Nutrition, 128(5), 903–7.CrossRefGoogle ScholarPubMed
Stahl, W., and Sies, H. (1996). Lycopene: a biologically important carotenoid for humans? Archives of Biochemistry and Biophysics, 336(1), 19.CrossRefGoogle ScholarPubMed
Stamatas, G. N., Zmudzka, B. Z., Kollias, N., and Beer, J. Z. (2004). Non-invasive measurements of skin pigmentation in situ. Pigment Cell Research, 17, 618–26.CrossRefGoogle ScholarPubMed
Stephen, I. D., Coetzee, V., Law Smith, M., and Perrett, D. I. (2009a). Skin blood perfusion and oxygenation color affect perceived human health. PLoS ONE, 4(4), e5083.CrossRefGoogle ScholarPubMed
Stephen, I. D., Coetzee, V., and Perrett, D. I. (2011). Carotenoid and melanin pigment coloration affect perceived human health. Evolution and Human Behavior, 32(3), 216–27.CrossRefGoogle Scholar
Stephen, I. D., Law Smith, M. J., Stirrat, M. R., and Perrett, D. I. (2009b). Facial skin coloration affects perceived health of human faces. International Journal of Primatology, 30(6), 845–57.CrossRefGoogle ScholarPubMed
Stephen, I. D., and McKeegan, A. M. (2010). Lip color affects perceived sex typicality and attractiveness of human faces. Perception, 39(8), 1104–10.CrossRefGoogle ScholarPubMed
Stephen, I. D., Oldham, F. H., Perrett, D. I., and Barton, R. A. (2012a). Redness enhances perceived aggression, dominance and attractiveness in men’s faces. Evolutionary Psychology, 10(3), 562–72.CrossRefGoogle ScholarPubMed
Stephen, I. D., Scott, I. M. L., Coetzee, V., Pound, N., Perrett, D. I., and Penton-Voak, I. S. (2012b). Cross-cultural effects of color, but not morphological masculinity, on perceived attractiveness of men’s faces. Evolution and Human Behavior, 33(4), 260–7.CrossRefGoogle Scholar
Surridge, A. K., and Mundy, N. I. (2002). Trans-specific evolution of opsin alleles and the maintenance of trichromatic color vision in callitrichine primates. Molecular Ecology, 11(10), 2157–69.CrossRefGoogle ScholarPubMed
Surridge, A. K., Osorio, D., and Mundy, N. I. (2003). Evolution and selection of trichromatic vision in primates. Trends in Ecology and Evolution, 18(4), 198205.CrossRefGoogle Scholar
Tan, K. W., and Stephen, I. D. (2013). Color detection thresholds in faces and color patches. Perception, 42(7), 733–41.CrossRefGoogle Scholar
Thornton, M. J. (2002). The biological actions of estrogens on skin. Experimental Dermatology, 11(6), 487502.CrossRefGoogle ScholarPubMed
Tiddeman, B., Burt, D. M., and Perrett, D. I. (2001). Prototyping and transforming facial textures for perception research. Computer Graphics and Applications, 21(5), 4250.CrossRefGoogle Scholar
Tsao, D. Y., Moeller, S., and Freiwald, W. A. (2008). Comparing face patch systems in macaques and humans. Proceedings of the National Academy of Sciences of the United States of America, 105, 19514–19.Google ScholarPubMed
Van den Berghe, P. L., and Frost, P. (1986). Skin color preference, sexual dimorphism and sexual selection: a case of gene culture co-evolution? Ethnic and Racial Studies, 9(1), 87113.CrossRefGoogle Scholar
Vuong, Q. C., Peissig, J. J., Harrison, M. C., and Tarr, M. J. (2005). The role of surface pigmentation for recognition revealed by contrast reversal in faces and Greebles. Vision Research, 45(10), 1213–23.CrossRefGoogle ScholarPubMed
Waitt, C., Gerald, M. S., and Little, A. C. (2006). Selective attention toward female secondary sexual color in male rhesus macaques. American Journal of Primatology, 744, 738–44.Google Scholar
Waitt, C., Little, A. C., Wolfensohn, S., Honess, P., Brown, A. P., Buchanan-Smith, H. M., and Perrett, D. I. (2003). Evidence from rhesus macaques suggests that male coloration plays a role in female primate mate choice. Proceedings of the Royal Society of London. Series B, Biological Sciences, 270(Suppl.), S144–6.Google Scholar
Whitehead, R. D., Ozakinci, G., and Perrett, D. I. (2012a). Attractive skin coloration: harnessing sexual selection to improve diet and health. Evolutionary Psychology, 10(5), 842–54.CrossRefGoogle ScholarPubMed
Whitehead, R. D., Re, D., Xiao, D., Ozakinci, G., and Perrett, D. I. (2012b). You are what you eat: within-subject increases in fruit and vegetable consumption confer beneficial skin-color changes. PLoS ONE, 7(3), e32988.CrossRefGoogle ScholarPubMed
Yip, A. W., and Sinha, P. (2002). Contribution of color to face recognition. Perception, 31(8), 9951004.CrossRefGoogle ScholarPubMed

References

Anon. (2001). What’s green. Easy to squirt? Ketchup! USA Today, July 10, p. 2b.Google Scholar
Alley, R. L., and Alley, T. R. (1998). The influence of physical state and color on perceived sweetness. Journal of Psychology: Interdisciplinary and Applied, 132, 561–8.Google ScholarPubMed
Bartoshuk, L. M. (2000). Comparing sensory experiences across individuals: recent psychophysical advances illuminate genetic variation in taste perception. Chemical Senses, 25, 447–60.CrossRefGoogle ScholarPubMed
Birren, F. (1963). Color and human appetite. Food Technology, 17(May), 45–7.Google Scholar
Blackwell, L. (1995). Visual clues and their effects on odour assessment. Nutrition and Food Science, 5, 24–8.Google Scholar
Bowers, J. S., and Davis, C. J. (2012). Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin, 138, 389414.CrossRefGoogle ScholarPubMed
Brainard, D. H., and Radonjíc, A. (2013). Color constancy. In Werner, J. S. and Chalupa, L. M. (eds.), The New Visual Neurosciences (pp. 545–56). Cambridge, MA: MIT Press.Google Scholar
Bruno, N., Martani, M., Corsini, C., and Oleari, C. (2013). The effect of the color red on consuming food does not depend on achromatic (Michelson) contrast and extends to rubbing cream on the skin. Appetite, 71, 307–13.CrossRefGoogle Scholar
Calvo, C., Salvador, A., and Fiszman, S. (2001). Influence of color intensity on the perception of color and sweetness in various fruit-flavoured yoghurts. European Food Research and Technology, 213, 99103.CrossRefGoogle Scholar
Cardello, A. V. (1994). Consumer expectations and their role in food acceptance. In MacFie, H. J. H. and Thomson, D. M. H. (eds.), Measurement of Food Preferences (pp. 253–97). London: Blackie Academic and Professional.Google Scholar
Carlsmith, J. M., and Aronson, E. (1963). Some hedonic consequences of the confirmation and disconfirmation of expectancies. Journal of Abnormal and Social Psychology, 66, 151–6.CrossRefGoogle ScholarPubMed
Chan, M. M., and Kane-Martinelli, C. (1997). The effect of color on perceived flavor intensity and acceptance of foods by young adults and elderly adults. Journal of the American Dietetic Association, 97, 657–9.CrossRefGoogle ScholarPubMed
Christensen, C. (1985). Effect of color on judgments of food aroma and food intensity in young and elderly adults. Perception, 14, 755–62.CrossRefGoogle Scholar
Clydesdale, F. M. (1993). Color as a factor in food choice. Critical Reviews in Food Science and Nutrition, 33, 83101.CrossRefGoogle ScholarPubMed
Cohen, N. E. (1934). Equivalence of brightness across modalities. American Journal of Psychology, 46, 117–19.Google Scholar
Cook, W. (2012). Would you eat a ‘gourmet’ burger made with charred bamboo and squid ink? Daily Mail Online, 25 September (www.dailymail.co.uk/news/article-2208321/Burger-King-black-burger-Japan-bamboo-charcoal-squid-ink.html).Google Scholar
Crumpacker, B. (2006). The Sex Life of Food: When Body and Soul Meet to Eat. New York: Thomas Dunne Books.Google Scholar
Davis, R. G. (1981). The role of nonolfactory context cues in odor identification. Perception and Psychophysics, 30, 83–9.CrossRefGoogle ScholarPubMed
Den Ouden, H. E. M., Daunizeau, J., Roiser, J., Friston, K. J., and Stephan, K. E. (2010). Striatal prediction error modulates cortical coupling. Journal of Neuroscience, 30, 3210–19.CrossRefGoogle ScholarPubMed
DuBose, C. N., Cardello, A. V., and Maller, O. (1980). Effects of colorants and flavorants on identification, perceived flavor intensity, and hedonic quality of fruit-flavored beverages and cake. Journal of Food Science, 45, 1393–9, 1415.CrossRefGoogle Scholar
Duncker, K. (1939). The influence of past experience upon perceptual properties. American Journal of Psychology, 52, 255–65.Google Scholar
Elliott, A., and Maier, M. A. (2014). Color psychology: effects of perceiving color on psychological functioning in humans. Annual Review of Psychology, 65, 4.14.26.Google Scholar
Ernst, M. O. (2006). A Bayesian view on multimodal cue integration. In Knoblich, G., Thornton, I. M., Grosjean, M., and Shiffrar, M. (eds.), Human Body Perception from the Inside Out (pp. 105–31). Oxford University Press.Google Scholar
Ernst, M. O. (2007). Learning to integrate arbitrary signals from vision and touch. Journal of Vision, 7(5), 114.CrossRefGoogle ScholarPubMed
Ernst, M. O. (2012). Optimal multisensory integration: assumptions and limits. In Stein, B. E. (ed.), The New Handbook of Multisensory Perception (pp. 527–43). Cambridge, MA: MIT Press.Google Scholar
Ernst, M. O., and Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–33.CrossRefGoogle Scholar
Ernst, M. O., and Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162–9.CrossRefGoogle ScholarPubMed
Evans, D. (2002). Emotion: The Science of Sentiment. Oxford University Press.CrossRefGoogle Scholar
Fernández-Vázquez, R., Hewson, L., Fisk, I., Vila, D., Mira, F., Vicario, I. M., and Hort, J. (2014). Color influences sensory perception and liking of orange juice. Flavour, 3(1).CrossRefGoogle Scholar
Frank, R. A., Ducheny, K., and Mize, S. J. S. (1989). Strawberry odor, but not red color, enhances the sweetness of sucrose solutions. Chemical Senses, 14, 371–7.CrossRefGoogle Scholar
Friston, K. J., and Kiebel, S. J. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 364, 1211–21.Google ScholarPubMed
Gallace, A., Ngo, M. K., Sulaitis, J., and Spence, C. (2012). Multisensory presence in virtual reality: possibilities and limitations. In Ghinea, G., Andres, F., and Gulliver, S. (eds.), Multiple Sensorial Media Advances and Applications: New Developments in MulSeMedia (pp. 140). Hershey, PA: IGI Global.Google Scholar
Garber, L. L. Jr., Hyatt, E. M., and Starr, R. G. Jr. (2000). The effects of food color on perceived flavor. Journal of Marketing Theory and Practice, 8(4), 5972.CrossRefGoogle Scholar
Garber, L. L. Jr., Hyatt, E. M., and Starr, R. G. Jr. (2001). Placing food color experimentation into a valid consumer context. Journal of Food Products Marketing, 7(3), 324.CrossRefGoogle Scholar
Garber, L. L. Jr., Hyatt, E. M., and Starr, R. G. Jr. (2003a). Measuring consumer response to food products. Food Quality and Preference, 14, 315.CrossRefGoogle Scholar
Garber, L. L. Jr., Hyatt, E. M., and Starr, R. G. Jr. (2003b). Reply to commentaries on: “Placing food color experimentation into a valid consumer context”. Food Quality and Preference, 14, 41–3.CrossRefGoogle Scholar
Genschow, O., Reutner, L., and Wanke, M. (2012). The color red reduces snack food and soft drink intake. Appetite, 58, 699702.CrossRefGoogle ScholarPubMed
Gregson, R. A. M. (1964). Modification of perceived relative intensities of acid tastes by ambient illumination changes. Australian Journal of Psychology, 16, 190–9.CrossRefGoogle Scholar
Guéguen, N., and Jacob, C. (2014). Coffee cup color and evaluation of a beverage’s “warmth quality”. Color Research & Application, 39, 7981.CrossRefGoogle Scholar
Hall, R. L. (1958). Flavor study approaches at McCormick and Company, Inc. In Little, A. D., Inc. (ed.), Flavor Research and Food Acceptance: A Survey of the Scope of Flavor and Associated Research, Compiled from Papers Presented in a Series of Symposia Given in 1956–1957 (pp. 224–40). New York: Reinhold.Google Scholar
Harrar, V., Piqueras-Fiszman, B., and Spence, C. (2011). There’s no taste in a white bowl. Perception, 40, 880–92.Google Scholar
Harrar, V., and Spence, C. (2013). The taste of cutlery. Flavour, 2(21).CrossRefGoogle Scholar
Harris, G. (2011). Colorless food? We blanch. New York Times, April 3, p. 3.Google Scholar
Helbig, H. B., and Ernst, M. O. (2008). Visual-haptic cue weighting is independent of modality-specific attention. Journal of Vision, 8(10), 116.CrossRefGoogle ScholarPubMed
Hutchings, J. B. (1977). The importance of visual appearance of foods to the food processor and the consumer. In Birch, G. G., Brennan, J. G., and Parker, K. J. (eds.), Sensory Properties of Foods (pp. 4557). London: Applied Science Publishers.Google Scholar
Hutchings, J. B. (2003). Expectations and the Food Industry: The Impact of Color and Appearance. New York: Plenum Publishers.CrossRefGoogle Scholar
Hyman, A. (1983). The influence of color on the taste perception of carbonated water preparations. Bulletin of the Psychonomic Society, 21, 145–8.CrossRefGoogle Scholar
Imram, N. (1999). The role of visual cues in consumer perception and acceptance of a food product. Nutrition and Food Science, 99, 224–30.CrossRefGoogle Scholar
ISO (2008). Standard 5492: Terms relating to sensory analysis. International Organization for Standardization. Vienna: Austrian Standards Institute.Google Scholar
Johnson, J., and Clydesdale, F. M. (1982). Perceived sweetness and redness in colored sucrose solutions. Journal of Food Science, 47, 747–52.CrossRefGoogle Scholar
Johnson, J. L., Dzendolet, E., and Clydesdale, F. M. (1983). Psychophysical relationships between perceived sweetness and redness in strawberry-flavored beverages. Journal of Food Protection, 46, 21–5, 28.CrossRefGoogle Scholar
Johnson, J. L., Dzendolet, E., Damon, R., Sawyer, M., and Clydesdale, F. M. (1982). Psychophysical relationships between perceived sweetness and color in cherry-flavored beverages. Journal of Food Protection, 45, 601–6.CrossRefGoogle ScholarPubMed
Jones, M., and Love, B. C. (2011). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 34, 169231.CrossRefGoogle ScholarPubMed
Kanig, J. L. (1955). Mental impact of colors in foods studied. Food Field Reporter, 23, 57.Google Scholar
Kappes, S. M., Schmidt, S. J., and Lee, S.-Y. (2006). Color halo/horns and halo-attribute dumping effects within descriptive analysis of carbonated beverages. Journal of Food Science, 71, S590–5.Google Scholar
Koch, C., and Koch, E. C. (2003). Preconceptions of taste based on color. Journal of Psychology: Interdisciplinary and Applied, 137, 233–42.Google ScholarPubMed
Kostyla, A. S. (1978). The Psychophysical Relationships Between Color and Flavor of Some Fruit Flavored Beverages. Ph.D. thesis, University of Massachusetts, Amherst.Google Scholar
Kostyla, A. S., and Clydesdale, F. M. (1978). The psychophysical relationships between color and flavor. CRC Critical Reviews in Food Science and Nutrition, 10, 303–19.Google ScholarPubMed
Koza, B. J., Cilmi, A., Dolese, M., and Zellner, D. A. (2005). Color enhances orthonasal olfactory intensity and reduces retronasal olfactory intensity. Chemical Senses, 30, 643–9.CrossRefGoogle ScholarPubMed
Lavin, J. G., and Lawless, H. T. (1998). Effects of color and odor on judgments of sweetness among children and adults. Food Quality and Preference, 9, 283–9.CrossRefGoogle Scholar
Levitan, C., Zampini, M., Li, R., and Spence, C. (2008). Assessing the role of color cues and people’s beliefs about color-flavor associations on the discrimination of the flavor of sugar-coated chocolates Chemical Senses, 33, 415–23.CrossRefGoogle ScholarPubMed
Lim, J., Urban, L., and Green, B. G. (2008). Measures of individual differences in taste and creaminess perception. Chemical Senses, 33, 493501.CrossRefGoogle ScholarPubMed
Lyman, B. (1989). A Psychology of Food: More Than a Matter of Taste. New York: Van Nostrand Reinhold.Google Scholar
Maga, J. A. (1974). Influence of color on taste thresholds. Chemical Senses and Flavor, 1, 115–19.CrossRefGoogle Scholar
Masurovsky, B. I. (1939). How to obtain the right food color. Food Industries, 11, 55–6.Google Scholar
Miller, E. G., and Kahn, B. E. (2005). Shades of meaning: the effect of color and flavor names on consumer choice. Journal of Consumer Research, 32, 8692.CrossRefGoogle Scholar
Moir, H. C. (1936). Some observations on the appreciation of flavour in foodstuffs. Journal of the Society of Chemical Industry: Chemistry and Industry Review, 14, 145–8.Google Scholar
Morrot, G., Brochet, F., and Dubourdieu, D. (2001). The color of odors. Brain and Language, 79, 309–20.CrossRefGoogle ScholarPubMed
Nath, A. R., and Beauchamp, M. S. (2011). Dynamic changes in superior temporal sulcus connectivity during perception of noisy audiovisual speech. Journal of Neuroscience, 31, 1704–14.CrossRefGoogle ScholarPubMed
Oberfeld, D., Hecht, H., Allendorf, U., and Wickelmaier, F. (2009). Ambient lighting modifies the flavor of wine. Journal of Sensory Studies, 24, 797832.CrossRefGoogle Scholar
O’Mahony, M. (1983). Gustatory responses to nongustatory stimuli. Perception, 12, 627–33.Google ScholarPubMed
Okajima, K., and Spence, C. (2011). Effects of visual food texture on taste perception. i-Perception, 2(8) (http://i-perception.perceptionweb.com/journal/I/article/ic966).CrossRefGoogle Scholar
Oram, N., Laing, D. G., Hutchinson, I., Owen, J., Rose, G., Freeman, M., and Newell, G. (1995). The influence of flavor and color on drink identification by children and adults. Developmental Psychobiology, 28, 239–46.CrossRefGoogle ScholarPubMed
Österbauer, R. A., Matthews, P. M., Jenkinson, M., Beckmann, C. F., Hansen, P. C., and Calvert, G. A. (2005). Color of scents: chromatic stimuli modulate odor responses in the human brain. Journal of Neurophysiology, 93, 3434–41.CrossRefGoogle ScholarPubMed
Pangborn, R. M., Berg, H. W., and Hansen, B. (1963). The influence of color on discrimination of sweetness in dry table-wine. American Journal of Psychology, 76, 492–5.Google Scholar
Parr, W. V., White, K. G., and Heatherbell, D. (2003). The nose knows: influence of color on perception of wine aroma. Journal of Wine Research, 14, 79101.CrossRefGoogle Scholar
Philipsen, D. H., Clydesdale, F. M., Griffin, R. W., and Stern, P. (1995). Consumer age affects response to sensory characteristics of a cherry flavored beverage. Journal of Food Science, 60, 364–8.CrossRefGoogle Scholar
Piqueras-Fiszman, B., Alcaide, J., Roura, E., and Spence, C. (2012). Is it the plate or is it the food? Assessing the influence of the color (black or white) and shape of the plate on the perception of the food placed on it. Food Quality and Preference, 24, 205–8.CrossRefGoogle Scholar
Piqueras-Fiszman, B., Giboreau, A., and Spence, C. (2013). Assessing the influence of the color/finish of the plate on the perception of the food in a test in a restaurant setting. Flavour, 2(24).CrossRefGoogle Scholar
Piqueras-Fiszman, B., and Spence, C. (2012a). Sensory incongruity in the food and beverage sector: art, science, and commercialization. Petits Propos Culinaires, 95, 74118.Google Scholar
Piqueras-Fiszman, B., and Spence, C. (2012b). Does the color of the cup influence the consumer’s perception of a hot beverage? Journal of Sensory Studies, 27, 324–31.CrossRefGoogle Scholar
Piqueras-Fiszman, B., and Spence, C. (2014). Color, pleasantness, and consumption behaviour within a meal. Appetite, 75, 165–72.CrossRefGoogle ScholarPubMed
Posner, M. I., Nissen, M. J., and Klein, R. M. (1976). Visual dominance: an information-processing account of its origins and significance. Psychological Review, 83, 157–71.CrossRefGoogle ScholarPubMed
Raudenbush, B., Meyer, B., Eppich, W., Corley, N., and Petterson, S. (2002). Ratings of pleasantness and intensity for beverages served in containers congruent and incongruent with expectancy. Perceptual and Motor Skills, 94, 671–4.CrossRefGoogle ScholarPubMed
Reardon, P., and Bushnell, E. W. (1988). Infants’ sensitivity to arbitrary pairings of color and taste. Infant Behavior and Development, 11, 245–50.CrossRefGoogle Scholar
Rohm, H., Strobl, M., and Jaros, D. (1997). Butter color affects sensory perception of spreadability. Die Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 205, 108–10.Google Scholar
Roth, H. A., Radle, L. J., Gifford, S. R., and Clydesdale, F. M. (1988). Psychophysical relationships between perceived sweetness and color in lemon- and lime-flavored drinks. Journal of Food Science, 53, 1116–19, 1162.CrossRefGoogle Scholar
Rozin, P. (1982). “Taste-smell confusions” and the duality of the olfactory sense. Perception and Psychophysics, 31, 397401.CrossRefGoogle ScholarPubMed
Sakai, N. (2011). Tasting with eyes. i-Perception, 2 (8) (http://i-perception.perceptionweb.com/journal/I/article/ic945).CrossRefGoogle Scholar
Sauvageot, F., and Struillou, A. (1997). Effet d’une modification de la couleur des échantillons et de l’éclairage sur la flaveur de vins évaluée sur une échelle de similarité (Effect of the modification of wine color and lighting conditions on the perceived flavor of wine, as measured by a similarity scale). Science des Aliments, 17, 4567.Google Scholar
Schifferstein, H. N. J. (2001). Effects of product beliefs on product perception and liking. In Frewer, L., Risvik, E., and Schifferstein, H. (eds.), Food, People and Society: A European Perspective on Consumers’ Food Choices (pp. 7396). Berlin: Springer Verlag.CrossRefGoogle Scholar
Shankar, M. U., Levitan, C. A., Prescott, J., and Spence, C. (2009). The influence of color and label information on flavor perception. Chemosensory Perception, 2, 53–8.CrossRefGoogle Scholar
Shankar, M. U., Levitan, C., and Spence, C. (2010a). Grape expectations: the role of cognitive influences in color-flavor interactions. Consciousness and Cognition, 19, 380–90.CrossRefGoogle ScholarPubMed
Shankar, M., Simons, C., Levitan, C., Shiv, B., McClure, S., and Spence, C. (2010b). An expectations-based approach to explaining the crossmodal influence of color on odor identification: the influence of temporal and spatial factors. Journal of Sensory Studies, 25, 791803.CrossRefGoogle Scholar
Shankar, M., Simons, C., Shiv, B., Levitan, C., McClure, S., and Spence, C. (2010c). An expectations-based approach to explaining the influence of color on odor identification: the influence of degree of discrepancy. Attention, Perception, and Psychophysics, 72, 1981–93.CrossRefGoogle Scholar
Shankar, M., Simons, C., Shiv, B., McClure, S., and Spence, C. (2010d). An expectation-based approach to explaining the crossmodal influence of color on odor identification: the influence of expertise. Chemosensory Perception, 3, 167–73.CrossRefGoogle Scholar
Skrandies, W., and Reuther, N. (2008). Match and mismatch of taste, odor, and color is reflected by electrical activity in the human brain. Journal of Psychophysiology, 22, 175–84.CrossRefGoogle Scholar
Spence, C. (2010). The color of wine. I. The World of Fine Wine, 28, 122–9.Google Scholar
Spence, C. (2011). Crossmodal correspondences: a tutorial review. Attention, Perception, and Psychophysics, 73, 971–95.CrossRefGoogle ScholarPubMed
Spence, C. (2012). The development and decline of multisensory flavour perception. In Bremner, A. J., Lewkowicz, D., and Spence, C. (eds.), Multisensory Development (pp. 6387). Oxford University Press.CrossRefGoogle Scholar
Spence, C. (2013). Sound advice. Cocktail Lovers, Winter (6), 1819.Google Scholar
Spence, C., Levitan, C., Shankar, M. U., and Zampini, M. (2010). Does food color influence taste and flavor perception in humans? Chemosensory Perception, 3, 6884.CrossRefGoogle Scholar
Spence, C., and Piqueras-Fiszman, B. (2012). The multisensory packaging of beverages. In Kontominas, M. G. (ed.), Food Packaging: Procedures, Management and Trends (pp. 187233). Hauppauge, NY: Nova Publishers.Google Scholar
Spence, C., and Piqueras-Fiszman, B. (2014). The Perfect Meal: The Multisensory Science of Food and Dining. Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
Stevenson, R. J. (2009). The Psychology of Flavour. Oxford University Press.CrossRefGoogle Scholar
Stevenson, R. J., and Boakes, R. A. (2004). Sweet and sour smells: learned synaesthesia between the senses of taste and smell. In Calvert, G. A., Spence, C., and Stein, B. E. (eds.), The Handbook of Multisensory Processing (pp. 6983). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Stevenson, R. J., Boakes, R. A., and Prescott, J. (1998). Changes in odor sweetness resulting from implicit learning of a simultaneous odor-sweetness association: an example of learned synaesthesia. Learning and Motivation, 29, 113–32.CrossRefGoogle Scholar
Stevenson, R. J., Boakes, R. A., and Wilson, J. P. (2000). Counter-conditioning following human odor-taste and color-taste learning. Learning and Motivation, 31, 114–27.CrossRefGoogle Scholar
Stevenson, R. J., Rich, A., and Russell, A. (2012). The nature and origin of cross-modal associations to odours. Perception, 41, 606–19.CrossRefGoogle ScholarPubMed
Stewart, P. C., and Goss, E. (2013). Plate shape and color interact to influence taste and quality judgments. Flavour, 2(27).CrossRefGoogle Scholar
Stillman, J. (1993). Color influences flavor identification in fruit-flavored beverages. Journal of Food Science, 58, 810–12.CrossRefGoogle Scholar
Strugnell, C. (1997). Color and its role in sweetness perception. Appetite, 28, 85.Google ScholarPubMed
Teerling, A. (1992). The color of taste. Chemical Senses, 17, 886.Google Scholar
Tepper, B. J. (1993). Effects of a slight color variation on consumer acceptance of orange juice. Journal of Sensory Studies, 8, 145–54.CrossRefGoogle Scholar
Tom, G., Barnett, T., Lew, W., and Selmants, J. (1987). Cueing the consumer: the role of salient cues in consumer perception. Journal of Consumer Marketing, 4(2), 23–7.CrossRefGoogle Scholar
Triplett, T. (1994). Consumers show little taste for clear beverages. Marketing News, 28(11), 2, 11.Google Scholar
Trommershäuser, J., Landy, M. S., and Körding, K. P. (eds.) (2011). Sensory Cue Integration. New York: Oxford University Press.CrossRefGoogle Scholar
Urbányi, G. (1982). Investigation into the interaction of different properties in the course of sensory evaluation. I. The effect of color upon the evaluation of taste in fruit and vegetable products. Acta Alimentaria, 11, 233–43.Google Scholar
Van Doorn, G., Wuillemin, D., and Spence, C. (2014). Does the color of the mug influence the taste of the coffee? Flavour, 3, 10.CrossRefGoogle Scholar
Wadhwani, R., and McMahon, D. J. (2012). Color of low-fat cheese influences flavor perception and consumer liking. Journal of Dairy Science, 95, 2336–46.CrossRefGoogle ScholarPubMed
Wan, X., Velasco, C., Michel, C., Mu, B., Woods, A. T., and Spence, C. (2014). Does the shape of the glass influence the crossmodal association between color and flavour? A cross-cultural comparison. Flavour, 3, 3.CrossRefGoogle Scholar
Wan, X., Zhou, X., Mu, B., Du, D., Velasco, C., Michel, C., and Spence, C. (2014). Crossmodal expectations of tea color based on its flavour. Journal of Sensory Studies, 29, 285–93.CrossRefGoogle Scholar
Wansink, B., and Van Ittersum, K. (2012). Fast food restaurant lighting and music can reduce calorie intake and increase satisfaction. Psychological Reports: Human Resources and Marketing, 111(1), 15.CrossRefGoogle ScholarPubMed
Watson, E. (2013). We eat with our eyes: flavor perception strongly influenced by food color, says DDW (www.foodnavigator-usa.com/Science/We-eat-with-our-eyes-Flavor-perception-strongly-influenced-by-food-color-says-DDW).Google Scholar
Welch, R. B., and Warren, D. H. (1986). Intersensory interactions. In Boff, K. R., Kaufman, L., and Thomas, J. P. (eds.), Handbook of Perception and Performance, vol. I: Sensory Processes and Perception (pp. 2536). New York: Wiley.Google Scholar
Wheatley, J. (1973). Putting color into marketing. Marketing, October, 24–9, 67.Google Scholar
Wilson, G. D., and Gregson, R. A. M. (1967). Effects of illumination on perceived intensity of acid tastes. Australian Journal of Psychology, 19, 6972.CrossRefGoogle Scholar
Yeomans, M., Chambers, L., Blumenthal, H., and Blake, A. (2008). The role of expectancy in sensory and hedonic evaluation: the case of smoked salmon ice-cream. Food Quality and Preference, 19, 565–73.CrossRefGoogle Scholar
Zampini, M., Sanabria, D., Phillips, N., and Spence, C. (2007). The multisensory perception of flavor: assessing the influence of color cues on flavor discrimination responses. Food Quality and Preference, 18, 975–84.CrossRefGoogle Scholar
Zampini, M., Wantling, E., Phillips, N., and Spence, C. (2008). Multisensory flavor perception: assessing the influence of fruit acids and color cues on the perception of fruit-flavored beverages. Food Quality and Preference, 19, 335–43.CrossRefGoogle Scholar
Zellner, D. A. (2013). Color-odor interactions: a review and model. Chemosensory Perception, 6, 155–69.CrossRefGoogle Scholar
Zellner, D. A., Bartoli, A. M., and Eckard, R. (1991). Influence of color on odor identification and liking ratings. American Journal of Psychology, 104, 547–61.Google ScholarPubMed
Zellner, D. A., and Durlach, P. (2002). What is refreshing? An investigation of the color and other sensory attributes of refreshing foods and beverages. Appetite, 39, 185–6.CrossRefGoogle ScholarPubMed
Zellner, D. A., and Durlach, P. (2003). Effect of color on expected and experienced refreshment, intensity, and liking of beverages. American Journal of Psychology, 116, 633–47.Google ScholarPubMed
Zellner, D. A., and Kautz, M. A. (1990). Color affects perceived odor intensity. Journal of Experimental Psychology: Human Perception and Performance, 16, 391–7.Google ScholarPubMed
Zellner, D. A., and Whitten, L. A. (1999). The effect of color intensity and appropriateness on color-induced odor enhancement. American Journal of Psychology, 112, 585604.CrossRefGoogle ScholarPubMed

References

Alpern, M., and Campbell, F. (1962). The spectral sensitivity of the consensual light reflex. Journal of Physiology, 164(3), 478507.CrossRefGoogle ScholarPubMed
Badia, P., Myers, B., Boecker, M., Culpepper, J., and Harsh, J. R. (1991). Bright light effects on body temperature, alertness, EEG and behavior. Physiology and Behavior, 50(3), 583–8.CrossRefGoogle ScholarPubMed
Bailes, H. J., and Lucas, R. J. (2010). Melanopsin and inner retinal photoreception. Cellular and Molecular Life Sciences, 67(1), 99111.CrossRefGoogle ScholarPubMed
Belenky, M. A., Smeraski, C. A., Provencio, I., Sollars, P. J., and Pickard, G. E. (2003). Melanopsin ganglion cells receive bipolar and amacrine cell synapses. Journal of Comparative Neurology, 460, 380–93.Google ScholarPubMed
Berson, D. M., Dunn, F. A., and Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070–3.CrossRefGoogle ScholarPubMed
Borbely, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1(3), 195204.Google ScholarPubMed
Borbely, A. A., and Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. Journal of Biological Rhythms, 14(6), 557–68.Google ScholarPubMed
Brainard, G. C., Hanifin, J. P., Greeson, J. M., Byrne, B., Glickman, G., Gerner, E., and Rollag, M. D. (2001). Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. Journal of Neuroscience, 21(16), 6405–12.CrossRefGoogle ScholarPubMed
Brainard, G. C., Sliney, D., Hanifin, J. P., Glickman, G., Byrne, B., Greeson, J. M., et al. (2008). Sensitivity of the human circadian system to short-wavelength (420-nm) light. Journal of Biological Rhythms, 23(5), 379–86.CrossRefGoogle ScholarPubMed
Bullough, J. D., Figueiro, M. G., Possidente, B. P., Parsons, R. H., and Rea, M. S. (2005). Additivity in murine circadian phototransduction. Zoological Science, 22(2), 223–7.CrossRefGoogle ScholarPubMed
Cahn, B. R., Delorme, A., and Polich, J. (2010). Occipital gamma activation during Vipassana meditation. Cognitive Processing, 11(1), 3956.CrossRefGoogle ScholarPubMed
Cajochen, C., Munch, M., Kobialka, S., Krauchi, K., Steiner, R., Oelhafen, P., et al. (2005). High sensitivity of human melatonin, alertness, thermoregulation and heart rate to short wavelength light. Journal of Clinical Endocrinology and Metabolism, 90, 1311–16.CrossRefGoogle ScholarPubMed
Cajochen, C., Zeitzer, J. M., Czeisler, C. A., and Dijk, D. J. (2000). Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behavioural Brain Research, 115(1), 7583.CrossRefGoogle ScholarPubMed
Chaput, J.-P., Despres, J.-P., Bouchard, C., and Tremblay, A. (2007). Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Quebec family study. Obesity, 15(1), 253–61.CrossRefGoogle ScholarPubMed
Clow, A., Hucklebridge, F., Stalder, T., Evans, P., and Thorn, L. (2010). The cortisol awakening response: more than a measure of HPA axis function. Neuroscience and Biobehavioral Reviews, 35(1), 97103.CrossRefGoogle ScholarPubMed
Clow, A., Thorn, L., Evans, P., and Hucklebridge, F. (2004). The awakening cortisol response: methodological issues and significance. Stress, 7(1), 2937.CrossRefGoogle ScholarPubMed
Dacey, D., Liao, H., Peterson, B., Robinson, F., Smith, V., Pokorny, J., et al. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature, 433, 749–54.CrossRefGoogle Scholar
Eastman, C. I. (1990). What the placebo literature can tell us about light therapy for SAD. Psychopharmacology Bulletin, 26(4), 495504.Google ScholarPubMed
Eastman, C. I., Young, M. A., Fogg, L. F., Liu, L., and Meaden, P. M. (1998). Bright light treatment of winter depression: a placebo-controlled trial. Archives of General Psychiatry, 55(10), 883–9.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Bierman, A., Plitnick, B., and Rea, M. S. (2009). Preliminary evidence that both blue and red light can induce alertness at night. BMC Neuroscience, 10, 105.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Bierman, A., and Rea, M. S. (2008). Retinal mechanisms determine the subadditive response to polychromatic light by the human circadian system. Neuroscience Letters, 438(2), 242–5.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Bullough, J. D., Bierman, A., Fay, C. R., and Rea, M. S. (2007). On light as an alerting stimulus at night. Acta Neurobiologiae Experimentalis, 67(2), 171–8.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Lesniak, N. Z., and Rea, M. S. (2011). Implications of controlled blue light exposure for sleep in older adults. BMC Research Notes, 4, 334.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Plitnick, B., and Rea, M. S. (2012). Light modulates leptin and ghrelin in sleep-restricted adults. International Journal of Endocrinology, Article ID 530726.CrossRefGoogle Scholar
Figueiro, M. G., and Rea, M. S. (2010). The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. International Journal of Endocrinology, Article ID 829351.CrossRefGoogle Scholar
Figueiro, M. G., and Rea, M. S. (2012a). Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset. BMC Research Notes, 5(1), 221.CrossRefGoogle ScholarPubMed
Figueiro, M. G., and Rea, M. S. (2012b). Short-wavelength light enhances cortisol awakening response in sleep-restricted adolescents. International Journal of Endocrinology, Article ID 301935.CrossRefGoogle Scholar
Figueiro, M. G., Rea, M. S., and Bullough, J. D. (2006). Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin. Neuroscience Letters, 406(3), 293–7.CrossRefGoogle ScholarPubMed
Fries, E., Dettenborn, L., and Kirschbaum, C. (2009). The cortisol awakening response (CAR): facts and future directions. International Journal of Psychophysiology, 72(1), 6773.CrossRefGoogle ScholarPubMed
Glickman, G., Byrne, B., Pineda, C., Hauck, W. W., and Brainard, G. C. (2006). Light therapy for seasonal affective disorder with blue narrow-band light-emitting diodes (LEDs). Biological Psychiatry, 59(6), 502–7.CrossRefGoogle ScholarPubMed
Hattar, S., Lucas, R. J., Mrosovsky, N., Thompson, S. H., Douglas, R. H., Hankins, M. W., et al. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature, 424, 7581.CrossRefGoogle ScholarPubMed
Hauri, P. (2014). The Sleep Disorders. National Sleep Foundation ( http://sleepdisorders.sleepfoundation.org/).Google Scholar
Leproult, R., Colecchia, E. F., L’Hermite-Baleriaux, M., and Van Cauter, E. (2001). Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. Journal of Clinical Endocrinology and Metabolism, 86(1), 151–7.Google ScholarPubMed
Lockley, S. W., Evans, E. E., Scheer, F. A., Brainard, G. C., Czeisler, C. A., and Aeschbach, D. (2006). Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, 29(2), 161–8.Google ScholarPubMed
Lucas, R., Freedman, M., and Munoz, M. (1999). Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science, 284, 505–7.CrossRefGoogle ScholarPubMed
Lucas, R., Hattar, S., and Takao, M. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science, 299, 245–7.CrossRefGoogle ScholarPubMed
Lucas, R. J., Douglas, R. H., and Foster, R. G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neuroscience, 4(6), 621–6.CrossRefGoogle ScholarPubMed
Masland, R. (2001). The fundamental plan of the retina. Nature Neuroscience, 4(9), 877–86.CrossRefGoogle ScholarPubMed
McDougal, D. H., and Gamlin, P. D. (2010). The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Research, 50(1), 7287.CrossRefGoogle ScholarPubMed
Motivala, S. J., Tomiyama, A. J., Ziegler, M., Khandrika, S., and Irwin, M. R. (2009). Nocturnal levels of ghrelin and leptin and sleep in chronic insomnia. Psychoneuroendocrinology, 34(4).CrossRefGoogle ScholarPubMed
Nicolson, N. A. (2008). Measurement of cortisol. In Luecken, L. G. (ed.), Handbook of Psychological Research Methods in Health Psychology (pp. 3773). Thousand Oaks, CA: Sage.Google Scholar
Nuboer, J. F. W., van Nuys, W. M., and van Steenbergen, J. C. (1983). Colour changes in a light regimen as synchronizers of circadian activity. Journal of Comparative Physiology, 151, 359–66.Google Scholar
Panda, S., Sato, T. K., Castrucci, A. M., Rollag, M. D., DeGrip, W. J., Hogenesch, J. B., et al. (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science, 298(5601), 2213–16.CrossRefGoogle ScholarPubMed
Pauers, M. J., Kuchenbecker, J. A., Neitz, M., and Neitz, J. (2012). Changes in the colour of light cue circadian activity. Animal Behaviour, 83(5), 1143–51.CrossRefGoogle ScholarPubMed
Perrin, F., Peigneux, P., Fuchs, S., Verhaeghe, S., Laureys, S., Middleton, B., et al. (2004). Nonvisual responses to light exposure in the human brain during the circadian night. Current Issues in Biology, 14(20), 1842–6.Google ScholarPubMed
Phipps-Nelson, J., Redman, J. R., Schlangen, L. J., and Rajaratnam, S. M. (2009). Blue light exposure reduces objective measures of sleepiness during prolonged nighttime performance testing. Chronobiology International, 26(5), 891912.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Wolf, O. T., Hellhammer, D. H., Buske-Kirschbaum, A., von Auer, K., Jobst, S., et al. (1997). Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sciences, 61(26), 2539–49.CrossRefGoogle ScholarPubMed
Rea, M. S. (2013). Value Metrics for Better Lighting. Bellingham, WA: SPIE.CrossRefGoogle Scholar
Rea, M. S., Figueiro, M. G., Bierman, A., and Hamner, R. (2012). Modeling the spectral sensitivity of the human circadian system. Lighting Research and Technology, 44(4), 386–96.CrossRefGoogle Scholar
Rea, M. S., Figueiro, M. G., Bullough, J. D., and Bierman, A. (2005). A model of phototransduction by the human circadian system. Brain Research Reviews, 50(2), 213–28.CrossRefGoogle Scholar
Ruby, N., Brennan, T., and Xie, X. (2002). Role of melanopsin in circadian responses to light. Science, 298, 2211–13.CrossRefGoogle ScholarPubMed
Sahin, L., and Figueiro, M. G. (2013). Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon. Physiology and Behavior, 116–17, 17.CrossRefGoogle ScholarPubMed
Scheer, F. A., and Buijs, R. M. (1999). Light affects morning salivary cortisol in humans. Journal of Clinical Endocrinology and Metabolism, 84(9), 3395–8.CrossRefGoogle ScholarPubMed
Schmid, S. M., Hallschmid, M., Jauch-Chara, K., Born, J., and Schultes, B. (2008). A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. Journal of Sleep Research, 17(3).CrossRefGoogle ScholarPubMed
Spiegel, K., Leproult, R., L’Hermite-Balériaux, M., Copinschi, G., Penev, P. D., and Van Cauter, E. (2004a). Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. Journal of Clinical Endocrinology and Metabolism, 89(11), 5762–71.CrossRefGoogle ScholarPubMed
Spiegel, K., Tasali, E., Penev, P., and Van Cauter, E. (2004b). Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Annals of Internal Medicine, 141(11), 846–50.CrossRefGoogle ScholarPubMed
Strong, R. E., Marchant, B. K., Reimherr, F. W., Williams, E., Soni, P., and Mestas, R. (2009). Narrow-band blue-light treatment of seasonal affective disorder in adults and the influence of additional nonseasonal symptoms. Depression and Anxiety, 26(3), 273–8.CrossRefGoogle ScholarPubMed
Sun, Y., Ahmed, S., and Smith, R. G. (2003). Deletion of ghrelin impairs neither growth nor appetite. Molecular and Cellular Biology, 23(22), 7973–81.CrossRefGoogle ScholarPubMed
Taheri, S., Lin, L., Austin, D., Young, T., and Mignot, E. (2004). Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Medicine, 1(3), e62.CrossRefGoogle ScholarPubMed
Terman, M. (2009). Blue in the face. Sleep Medicine, 10(3), 277.CrossRefGoogle ScholarPubMed
Thapan, K., Arendt, J., and Skene, D. J. (2001). An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. Journal of Physiology, 535(1), 261–7.CrossRefGoogle ScholarPubMed
Vandewalle, G., Collignon, O., Hull, J. T., Daneault, V., Albouy, G., Lepore, F., et al. (2013). Blue light stimulates cognitive brain activity in visually blind individuals. Journal of Cognitive Neuroscience, 25(12), 2072–85.CrossRefGoogle ScholarPubMed
Vandewalle, G., Gais, S., Schabus, M., Balteau, E., Carrier, J., Darsaud, A., et al. (2007). Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure. Cerebral Cortex, 17(12), 2788–95.CrossRefGoogle ScholarPubMed
Vandewalle, G., Schmidt, C., Albouy, G., Sterpenich, V., Darsaud, A., Rauchs, G., et al. (2007). Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem. PLoS ONE, 2(11), e1247.CrossRefGoogle ScholarPubMed
Wirz-Justice, A., Benedetti, F., and Terman, M. (2009). Chronotherapeutics for Affective Disorders. Cambridge University Press.CrossRefGoogle Scholar
Yildiz, B. O., Suchard, M. A., Wong, M. L., McCann, S. M., and Licinio, J. (2004). Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proceedings of the National Academy of Sciences of the United States of America, 101(28), 10434–9.Google ScholarPubMed
Zeitzer, J. M., Dijk, D. J., Kronauer, R., Brown, E., and Czeisler, C. (2000). Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. Journal of Physiology, 526(3), 695702.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×