Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-17T11:05:07.701Z Has data issue: false hasContentIssue false

10 - Chemical treatment of water and sediments with special reference to lakes

Published online by Cambridge University Press:  29 December 2009

Martin S⊘ndergaard
Affiliation:
Department of Lake and Estuarine Ecology, National Environmental Research Institute, DK-8600 Silkeborg, Denmark
Klaus-Dieter Wolter
Affiliation:
Department of Limnology, Technische Universität Berlin, HS1, D-14195 Berlin, Germany
Wilhelm Ripl
Affiliation:
Department of Limnology, Technische Universität Berlin, HS1, D-14195 Berlin, Germany
Martin R. Perrow
Affiliation:
University of East Anglia
Anthony J. Davy
Affiliation:
University of East Anglia
Get access

Summary

INTRODUCTION

The impact of human activities on the aquatic environment has increased during the past century. Chemical pollutants have increased in rivers, lakes and coastal areas due to rising population densities, farming and industrialisation. The effects have included acid rain and acidification of surface water over large areas where catchment soils as well as bedrock are poor in limestone, and increased deposition of heavy metals and other chemicals causing contamination and bioaccumulation of toxic products. A marked increase in the use of pesticides and the enhanced production of organic substances used in various industries have led to increased pollution by a wide variety of organic micropollutants (Kristensen & Hansen, 1994).

Measures to combat industrial sources of pollutants have been implemented at least in some parts of the world, although improvements in many areas are still needed, just as the environmental impact of many organic micropollutants remains to be elucidated (Kristensen & Hansen, 1994). However, the influence from nutrient-rich wastewater from cities or aquaculture and the use and leaching of fertilisers in agriculture still constitute significant problems that often overshadow other environmental problems. Apart from more local industrial influences, increased nutrient loading, resulting in eutrophication and a loss of the natural functionality of many ecosystems, is considered to be the most important and widespread environmental problem of lentic and coastal waters.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aku, P. M. K. & Tonn, W. M. (1997). Changes in population structure, growth, and biomass of cisco (Coregonus artedi) during hypolimnetic oxygenation of a deep, eutrophic lake, Amisk Lake, Alberta. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2196–2206CrossRefGoogle Scholar
Andersen, D. O. & Pempkowiak, J. (1999). Sediment content of metals before and after lake water liming. Science of the Total Environment, 244, 107–118CrossRefGoogle Scholar
Ashley, K. I., Hay, S. & Scholten, G. H. (1987). Hypolimnetic aeration: field test of the empirical sizing method. Water Research, 21, 223–227CrossRefGoogle Scholar
Boers, P., Does, J., Quaak, M. & Vlught, J. (1994). Phosphorus fixation with iron(III)chloride: a new method to combat internal phosphorus loading in shallow lakes? Archiv für Hydrobiologie, 129, 339–351Google Scholar
Boström, B., Jansson, M. & Forsberg, C. (1982). Phosphorus release from lake sediments. Archiv für hydrobiologische Ergebnisse der Limnologie, 18, 5–59Google Scholar
Bramryd, T. & Fransman, B. (1995). Silvicultural use of wood ashes: effects on the nutrient and heavy metal balance in a pine (Pinus sylvestris, L.) forest soil. Water, Air and Soil Pollution, 85, 1039–1044CrossRefGoogle Scholar
Brandrud, T. E. & Roelofs, J. G. M. (1995). Enhanced growth of the macrophyte Juncus bulbosus in South Norwegian limed lakes: a regional survey. Water, Air and Soil Pollution, 85, 913–918CrossRefGoogle Scholar
Broberg, O. & Persson, G. (1984). External budgets for phosphorus, nitrogen and dissolved organic carbon for the acidified Lake Gårdsjön. Archiv für Hydrobiologie, 99, 160–175Google Scholar
Brümmer, G. (1974): Phosphatmobilisierung unter reduzierenden Bedingungen: Ein Beitrag zum Problem der Gewässereutrophierung. Mitteilungen deutsche bodenkundliche Gesellschaft, 18, 175–177Google Scholar
Burris, V. L. & Little, J. C. (1998). Bubble dynamics and oxygen transfer in a hypolimnetic aerator. Water Science and Technology, 37, 293–300CrossRefGoogle Scholar
Chow, C. W. K., Leeuwen, J. A., Drikas, M., Fabris, R., Spark, K. M. & Page, D. W. (1999). The impact of the character of natural organic matter in conventional treatment with alum. Water Science and Technology, 40, 97–104CrossRefGoogle Scholar
Connor, J. N. & Martin, M. R. (1989). An assessment of sediment phosphorus inactivation, Kezar Lake, New Hampshire. Water Research Bulletin, 4, 845–853CrossRefGoogle Scholar
Cooke, G. D. & Kennedy, R. H. (1978). Effects of a hypolimnetic application of aluminium sulfate to an eutrophic lake. Verhandlungen internationale Vereinigung für theoretische und angewandte Limnologie, 20, 28–39Google Scholar
Cooke, G. D. & Kennedy, R. H. (1981). Precipitation and Inactivation of Phosphorus as a Lake Restoration Technique, EPA-600/3–81-012. Washington, DC: US Environmental Protection Agency
Cooke, G. D., Welch, E. B., Peterson, S. A. & Newroth, P. R. (1986). Lake and Reservoir Restoration. Boston, MA: Butterworth
Cooke, G. D., Welch, E. B., Peterson, S. A. & Newroth, P. R. (1993). Restoration and Management of Lakes and Reservoirs, 2nd edn. Boca Raton, FL: Lewis Publishers
Daldorph, P. W. G. (1999). A reservoir in management-induced transition between ecological states. Hydrobiologia, 395/396, 325–333CrossRefGoogle Scholar
Deppe, T., Ockenfeld, K., Meybohm, A., Opitz, M. & Benndorf, J. (1999). Reduction of microcystic blooms in a hypertrophic reservoir by a combined ecotechnological strategy. Hydrobiologia, 409, 31–38CrossRefGoogle Scholar
Dickson, W., Borg, H.Ekström, C., Hörnström, E. & Grönlund, T. (1995). Reliming and reacidification effects on lakewater. Water, Air and Soil Pollution, 85, 919–924CrossRefGoogle Scholar
Dinsmore, W. P. & Prepas, E. E. (1997a). Impact of hypolimnetic oxygenation on profundal macroinvertebrates in a eutrophic lake in central Alberta. 1: Changes in macroinvertebrate abundance and diversity. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2157–2169CrossRefGoogle Scholar
Dinsmore, W. P. & Prepas, E. E. (1997b). Impact of hypolimnetic oxygenation on profundal macroinvertebrates in a eutrophic lake in central Alberta. 2: Changes in Chironomus spp. abundance and biomass. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2170–2181CrossRefGoogle Scholar
Dittrich, M., Casper, P. & Koschel, R. (2000). Changes in the porewater chemistry of profundal sediments in response to artificial hypolimnetic calcite precipitation. Archiv für hydrobiologische Ergebnisse der Limnologie, 55, 421–432Google Scholar
Dokulil, M. T., Teubner, K. & Donabaum, K. (2000). Restoration of shallow, ground-water fed urban lake using a combination of internal management strategies: a case study. Archiv für hydrobiologische Ergebnisse der Limnologie, 55, 271–282Google Scholar
Donabaum, K., Schagerl, M. & Dokulil, M. T. (1999). Integrated management to restore macrophyte domination. Hydrobiologia, 395/396, 87–97CrossRefGoogle Scholar
Driscoll, C. T., Effler, S. W., Auer, M. T., Doerr, S. M. & Penn, M. R. (1993). Supply of phosphorus to the water column of a productive hardwater lake: controlling mechanisms and management considerations. Hydrobiologia, 253, 61–72CrossRefGoogle Scholar
Dunst, R., Born, S., Uttormark, P., Smith, S., Nichols, S., Peterson, J., Knauer, D., Serns, S., Winter, D. & Wirth, T. (1974). Survey of Lake Rehabilitation Technique and Experiences, Technical Bulletin no. 75. Madison, WI: Department of Natural Resources
Duursma, E. K. (1967). The mobility of compounds in sediments in relation to exchange between bottom and supernatant water. In Chemical Environment in the Aquatic Habitat, eds. H. L. Goltermann & R. S. Clymo, pp. 288–296. Amsterdam: Noord-Hollandsche Uitgevers Maatsahappij
Field, K. M. & Prepas, E. E. (1997). Increased abundance and depth distribution of pelagic crustacean zooplankton during hypolimnetic oxygenation in a deep, eutrophic Alberta lake. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2146–2156CrossRefGoogle Scholar
Foy, R. H. (1986). Suppression of phosphorus release from lake sediments by the addition of nitrate. Water Research, 11, 1345–1351CrossRefGoogle Scholar
Foy, R. H. & Fitzsimons, A. G. (1987). Phosphorus inactivation in a eutrophic lake by the direct addition of ferric aluminium sulphate: changes in phytoplankton populations. Freshwater Biology, 17, 1–13CrossRefGoogle Scholar
Fransman, B. & Nihlgård, B. (1995). Water chemistry in forested catchments after topsoil treatment with liming agents in south Sweden. Water, Air and Soil Pollution, 85, 895–900CrossRefGoogle Scholar
Gächter, R. (1987). Lake restoration: why oxygenation and artificial mixing cannot substitute for a decrease in the external phosphorus loading. Schweiziche Zeitschrift für Hydrologie, 49, 170–185CrossRefGoogle Scholar
Gächter, R. & Wehrli, B. (1998). Ten years of artificial mixing and oxygenation: no effect on the internal phosphorus loading of two eutrophic lakes. Environmental Science and Technology, 32, 3659–3665CrossRefGoogle Scholar
Gonsiorczyk, T., Casper, P. & Koschel, R. (1998). Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Water Science and Technology, 37, 51–58CrossRefGoogle Scholar
Gorham, E. (1958). Oberservations on the formation and breakdown of the oxidized microzone at the mud surface in lakes. Limnology and Oceanography, 3, 291–298CrossRefGoogle Scholar
Gottfreund, J. & Schweisfurth, R. (1982). Über die Herkunft von Ammonium in Wasser. Vom Wasser, 58, 187–205Google Scholar
Hartley, A. M., House, W. A., Callow, M. E. & Leadbeater, S. C. (1997). Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae. Water Research, 31, 2261–2268CrossRefGoogle Scholar
Hasler, A. D. & Einsele, W. (1948). Fertilization for increasing productivity of natural inland waters. Transactions of the North American Wildlife Conference, 13, 527–555Google Scholar
Hieltjes, A. H. M. & Lijklema, L. (1980). Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality, 9, 405–407CrossRefGoogle Scholar
House, W. A. (1990). The prediction of phosphate coprecipitation with calcite in freshwaters. Water Research, 24, 1017–1023CrossRefGoogle Scholar
Hupfer, M., Pöthig, R., Brüggemann, R. & Geller, W. (2000). Mechanical resuspension of autochthonous calcite (seekreide) failed to control internal phosphorus cycle in a eutrophic lake. Water Research, 34, 859–867CrossRefGoogle Scholar
Jacobsen, O. S. (1978). Sorption, adsorption and chemosorption of phosphate by Danish lake sediments. Vatten, 4, 230–243Google Scholar
Jaeger, D. (1994). Effects of hypolimnetic water aeration and iron–phosphate precipitation on the trophic level of Lake Krupunder. Hydrobiologia, 275/276, 433–444CrossRefGoogle Scholar
Jensen, H. S., Kristensen, P., Jeppesen, E. & Skytthe, A. (1992). Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia, 235/236, 731–743CrossRefGoogle Scholar
Jeppesen, E., Kristensen, P., Jensen, J. P., S⊘ndergaard, M., Mortensen, E. & Lauridsen, T. (1991). Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience. Memorie dell'Istituto italiano di Idrobiologia, 48, 127–148Google Scholar
Jeppesen, E., Jensen, J. P., S⊘ndergaard, M. & Lauridsen, T. (1997). Top–down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342/343, 151–164CrossRefGoogle Scholar
Jeppesen, E., S⊘ndergaard, M., Kronvang, B., Jensen, J. P., Svendsen, L. M. & Lauridsen, T. (1999). Lake and catchment management. In Ecological Basis for Lake and Reservoir Management, eds. D. Harper, A. Ferguson, B. Brierley & G. Phillips. Hydrobiologia, 408/409, 419–432CrossRefGoogle Scholar
Kennedy, R. H. & Cooke, G. D. (1982). Control of lake phosphorus with aluminium sulfate: dose determination and application techniques. Water Research Bulletin, 18, 389–395CrossRefGoogle Scholar
Kleiner, J. (1988). Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modelling phosphorus removal with calcite in Lake Constance. Water Research, 22, 1259–1265CrossRefGoogle Scholar
Kristensen, P. & Hansen, H. O. (eds.) (1994). European Rivers and Lakes. Copenhagen: European Environment Agency
Lindenschmidt, K. E. (1999). Controlling the growth of Microcystis using surged artificial aeration. Internationale Revue der gesamten Biologie, 84, 243–254Google Scholar
Livingstone, D. & Schanz, F. (1994). The effects of deep-water siphoning on a small, shallow lake: a long-term case study. Archiv für Hydrobiologie, 132, 15–44Google Scholar
Lucassen, E., Bobbink, R. & Oonk, M. M. A. (1999). The effects of liming and reacidification on the growth of Juncus bulbosus: a mesocosm experiment. Aquatic Botany, 64, 95–103CrossRefGoogle Scholar
Mackereth, F. J. H. (1966). Some chemical observations on post-glacial lake sediments. Philosophical Transactions of the Royal Society London B, 250 (765), 165–213CrossRefGoogle Scholar
Marsden, M. W. (1989). Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwater Biology, 21, 139–162CrossRefGoogle Scholar
Matinvesi, J. (1996). The change of sediment composition during recovery of two Finnish lakes induced by waste water purification and lake oxygenation. Hydrobiologia, 335, 193–202CrossRefGoogle Scholar
McQueen, D. J., Lean, D. R. S. & Charlton, M. N. (1986). The effects of hypolimnetic aeration on iron–phosphorus interactions. Water Research, 9, 1129–1135CrossRefGoogle Scholar
Miskimmin, B. M., Donahue, W. F. & Watson, D. (1995). Invertebrate community response to experimental lime (Ca(OH)2) treatment of an eutrophic pond. Aquatic Sciences, 57, 20–30CrossRefGoogle Scholar
Moore, B. C., Chen, P. H., Funk, W. H. & Yonge, D. (1996). A model for predicting lake sediment oxygen demand following hypolimnetic aeration. Water Research Bulletin, 32, 723–731CrossRefGoogle Scholar
Mortimer, C. H. (1941). The exchange of dissolved substances between mud and water in lakes. 1. Journal of Ecology, 29, 280–329CrossRefGoogle Scholar
Mortimer, C. H. (1942). The exchange of dissolved substances between mud and water in lakes. 2. Journal of Ecology, 30, 147–201CrossRefGoogle Scholar
Murphy, T. P., Hall, K. G. & Yesaki, I. (1983). Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnology and Oceanography, 28, 58–69CrossRefGoogle Scholar
Murphy, T. P., Hall, K. G. & Northcote, T. G. (1988). Lime treatment of a hardwater lake to reduce eutrophication. Lake and Reservoir Management, 4, 51–62CrossRefGoogle Scholar
Nakamura, Y. & Inoue, T. (1996). A theoretical study on operation conditions of hypolimnetic aerators. Water Science and Technology, 34, 211–218CrossRefGoogle Scholar
Nurnberg, G. (1987). Hypolimnetic withdrawal as lake restoration technique. Journal of Environmental Engineering, 113, 1006–1016CrossRefGoogle Scholar
Nyberg, P. (1998). Biotic effects in planktonic crustacean communities in acidified Swedish forest lakes after liming. Water, Air and Soil Pollution, 101, 257–288CrossRefGoogle Scholar
Ohle, W. (1953). Der Vorgang rasanter Seenalterung in Holstein. Naturwissenschaften, 40, 153–162CrossRefGoogle Scholar
Ohle, W. (1958). Die Stoffwechseldynamik der Seen in Abhängigkeit von der Gasausscheidung ihres Schlammes. Vom Wasser, 25, 127–149Google Scholar
Ohle, W. (1978). Ebullition of gases from sediment, condition, and relationship to primary production of lakes. Verhandlungen internationale Vereinigung der Limnologie, 20, 957–962Google Scholar
Otsuki, A. & Wetzel, R. G. (1972). Coprecipitation of phosphate with carbonates in a marl lake. Limnology and Oceanography, 17, 763–766CrossRefGoogle Scholar
Phillips, G., Jackson, R., Bennet, C. & Chilvers, A. (1994). The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation. Hydrobiologia, 275/276, 445–456CrossRefGoogle Scholar
Prepas, E. E., Field, K. M., Murphy, T. P., Johnson, W. L., Burke, J. M. & Tonn, W. (1997). Introduction to the Amisk Lake Project: oxygenation of a deep, eutrophic lake. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2105–2110CrossRefGoogle Scholar
Priscu, J. C. & Downes, M. T. (1987). Microbial activity in the surficial sediments of an oligotrophic and eutrophic lake, with particular reference to dissimilatory nitrate reduction. Archiv für Hydrobiologie, 108, 385–409Google Scholar
Psenner, R., Boström, B., Dinka, M., Petterson, K., Pucsko, R. & Sager, M. (1988). Fractionation of phosphorus in suspended matter and sediment. Archiv für hydrobiologische Ergebnisse der Limnologie, 30, 98–110Google Scholar
Pulkkinen, K. (1995). Measuring movement and settling of limestone powder after liming using acoustics, beam attenuation and conductivity. Water, Air and Soil Pollution, 85, 1021–1026CrossRefGoogle Scholar
Ripl, W. (1976). Biochemical oxidation of polluted lake sediment: a new lake restoration method. Ambio, 5, 132–135Google Scholar
Ripl, W. (1978). Oxidation of Lake Sediments with Nitrate: A Restoration Method for Former Recipients. Lund, Sweden: Institute of Limnology, University of Lund
Ripl, W. (1985). Oxidation of sapropelic sediments by nitrified effluents from a treatment plant. In Lake and Reservoir Management: Practical Applications, NALMS Symposium EPA, pp. 153–156. Merrifield, VA: North American Lake Management Society
Ripl, W. (1986a). Internal phosphorus recycling mechanisms in shallow lakes. In Lake and Reservoir Management, vol. 2, Proceedings of the 5th Annual Conference and International Symposium on Applied Lake and Watershed Management, 13–16 November 1985, Lake Geneva, pp. 138–142. WI. Merrifield, VA: North American Lake Management Society
Ripl, W. (1986b). Restaurierung der Schlei: Bericht über ein Forschungsvorhaben. In Auftrag des Landesamtes für Wasserhaushalt und Küsten, Kiel, Schriftenreihe des Landesamtes für Wasserhaushalt und Küsten D 5. Berlin: Technische Universität Berlin, Fachgebiet Limnologie
Ripl, W. & Lindmark, G. (1978). Ecosystem control by nitrogen metabolism in sediment. Vatten, 34, 135–144Google Scholar
Roelofs, J. G. M., Smoldersm, A. J. P., Brandrud, T.-E. & Bobbink, R. (1995). The effect of acidification, liming and reacidification on macrophyte development, water quality and sediment characteristics of soft-water lakes. Water, Air and Soil Pollution, 85, 976–972CrossRefGoogle Scholar
Ryding, E. & Welch, E. B. (1998). Dosage of aluminium to absorb mobile phosphate in lake sediments. Water Research, 32, 2969–2976CrossRefGoogle Scholar
Ryding, E., Huser, B. & Welch, E. B. (2000). Amount of phosphorus inactivated by alum treatments in Washington lakes. Limnology and Oceanography, 45, 226–230CrossRefGoogle Scholar
Rzepecki, M. (1997). Bottom sediments in a humic lake with artificially increased calcium content: sink or source for phosphorus? Water, Air and Soil Pollution, 99, 457–464CrossRefGoogle Scholar
Salonen, V.-P. & Varjo, E. (2000). Gypsum treatment as a restoration method for sediments of eutrophied lakes: experiments from southern Finland. Environmental Geology, 39, 353–369CrossRefGoogle Scholar
Sand⊘y, S. & Romundstad, A. J. (1995). Liming of acidified lakes and rivers in Norway: an attempt to preserve and restore biological diversity in the acidified regions. Water, Air and Soil Pollution, 85, 997–1002CrossRefGoogle Scholar
Sas, H. (co-ordinator) (1989). Lake Restoration by Reduction of Nutrient Loading: Expectations, Experiences, Extrapolations. St Augustin, Germany: Academia Verlag Richarz
Schönborn, W. (1992): Flieβgewässerbiologie. Jena, Germany: Gustav Fischer
Simmons, J. (1998). Algal control and destratification at Hanningfield Reservoir. Water Science and Technology, 37, 309–316CrossRefGoogle Scholar
Smayda, T. (1990). The influence of lime and biological activity on sediment, pH, redox and phosphorus dynamics. Hydrobiologia, 192, 191–203CrossRefGoogle Scholar
Soltero, R. A. & Nichols, D. G. (1981). Lake restoration: Medical Lake, Washington. Journal of Freshwater Ecology, 2, 155–165CrossRefGoogle Scholar
S⊘ndergaard, M. (1988). Seasonal variations in the loosely sorbed phosphorus fraction of the sediment of a shallow and hypereutrophic lake. Environmental Geology and Water Sciences, 11, 115–121CrossRefGoogle Scholar
S⊘ndergaard, M., Jeppesen, E., Kristensen, P. & Sortkjær, O. (1990). Interactions between sediment and water in a shallow and hypertrophic lake: a study on phytoplankton collapses in Lake S⊘bygård, Denmark. Hydrobiologia, 191, 139–148CrossRefGoogle Scholar
S⊘ndergaard, M., Kristensen, P. & Jeppesen, E. (1992). Phosphorus release from resuspended sediment in the shallow and wind exposed Lake Arres⊘, Denmark. Hydrobiologia, 228, 91–99CrossRefGoogle Scholar
S⊘ndergaard, M., Kristensen, P. & Jeppesen, E. (1993). Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake S⊘bygaard, Denmark. Hydrobiologia, 253, 345–356CrossRefGoogle Scholar
S⊘ndergaard, M., Windolf, J. & Jeppesen, E. (1996). Phosphorus fractions in the sediment of shallow lakes as related to phosphorus load, sediment composition and lake chemistry. Water Research, 30, 992–1002CrossRefGoogle Scholar
S⊘ndergaard, M., Jensen, J. P. & Jeppesen, E. (1999). Internal phosphorus loading in shallow Danish lakes. Hydrobiologia, 408/409, 145–152CrossRefGoogle Scholar
S⊘ndergaard, M., Jeppesen, E. & Jensen, J. P. (2000). Hypolimnetic nitrate treatment to reduce internal phosphorus loading in a stratified lake. Journal of Lake and Reservoir Management, 16, 195–204CrossRefGoogle Scholar
Stenson, J. A. E. & Svensson, J.-E. (1995). Changes of planktivore fauna and development of zooplankton after liming of the acidified Lake Gårdsjön. Water, Air and Soil Pollution, 85, 979–984CrossRefGoogle Scholar
Stuben, D., Walpersdorf, E., Voss, K., Ronicke, H., Schimmele, M., Baborowski, M., Luther, G. & Elsner, E. (1998). Application of lake marl at Lake Arendsee, NE Germany: first results of a geochemical monitoring during the restoration experiment. Science of the Total Environment, 218, 33–44CrossRefGoogle Scholar
Stumm, W. & Morgan, J. J. (1981). Aquatic Chemistry: An Introduction Emphasising Chemical Equilibria in Natural Waters. New York: John Wiley
Svenson, T., Dickson, W., Hellberg, J., Moberg, G. & Munthe, N. (1995). The Swedish liming programme. Water, Air and Soil Pollution, 85, 1003–1008CrossRefGoogle Scholar
Sweerts, J.-P. R. A., St Louis, V. & Cappenberg, T. E. (1989). Oxygen concentration profiles and exchange in sediment cores with circulated overlying water. Freshwater Biology, 21, 401–409CrossRefGoogle Scholar
Thomas, E. A. (1969). The process of eutrophication in Central European lakes. In Eutrophication: Causes, Consequences, Correctives, pp. 29–49. Washington, DC: National Academy of Science
Welch, E. B. & Cooke, G. D. (1999). Effectiveness and longevity of phosphorus inactivation with alum. Journal of Lake and Reservoir Management, 15, 5–27CrossRefGoogle Scholar
Welch, E. B., DeGasperi, L., Spyrikadis, D. E. & Belnick, T. (1988). Internal phosphorus loading and alum effectiveness in shallow lakes. Journal of Lake and Reservoir Management, 4, 27–33CrossRefGoogle Scholar
Wetzel, R. G. (1983). Limnology. Philadelphia, PA: W. B. Saunders
Williams, J. D. H., Syers, J. K., Harris, R. F. & Armstrong, D. E. (1971). Fractionation of inorganic phosphate in calcareous lake sediments. Soil Science Society of America Proceedings, 35, 250–255CrossRefGoogle Scholar
Wu, R. & Boyd, C. E. (1990). Evaluation of calcium sulfate for use in aquaculture ponds. Progressive Fish-Culturist, 52, 26–312.3.CO;2>CrossRefGoogle Scholar
Yamada, H., Kayama, M., Saito, K. & Hara, M. (1986). A fundamental research on phosphate removal by using slag. Water Research, 20, 547–557CrossRefGoogle Scholar
Yee, K. A., Prepas, E. E., Chambers, P. A., Culp, J. M. & Scrimgeour, G. (2000). Impact of Ca(OH)2 treatment on macroinvertebrate communities in eutrophic hardwater lakes in the Boreal Plain region of Alberta: in situ and laboratory experiments. Canadian Journal of Fisheries and Aquatic Sciences, 57, 125–136CrossRefGoogle Scholar
Zhang, Y. & Prepas, E. E. (1996). Short-term effects of Ca(OH)2 additions on phytoplankton biomass: a comparison of laboratory and in situ experiments. Water Research, 30, 1285–1294CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×