Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-30T06:01:38.051Z Has data issue: false hasContentIssue false

Chapter 55 - Multiple Pregnancy (Content last reviewed: 14th December 2020)

from Section 6 - Late Prenatal – Obstetric Problems

Published online by Cambridge University Press:  15 November 2017

David James
Affiliation:
University of Nottingham
Philip Steer
Affiliation:
Imperial College London
Carl Weiner
Affiliation:
University of Kansas
Bernard Gonik
Affiliation:
Wayne State University, Detroit
Stephen Robson
Affiliation:
University of Newcastle
Get access

Summary

Multiple pregnancy is not an uncommon occurrence, affecting 2–3% of births. Prevalence rates vary significantly: in England and Wales 15.9 out of every 1000 women giving birth in 2016 had a multiple birth, whereas in the United States the twin rate was 33.4 per 1000 live births (triplet and higher-order births, 101.4 per 100,000 births) in 2016.

Type
Chapter
Information
High-Risk Pregnancy
Management Options
, pp. 1580 - 1622
Publisher: Cambridge University Press
First published in: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyle, B, McConkey, R, Garne, E, et al. Trends in the prevalence, risk and pregnancy outcome of multiple births with congenital anomaly: a registry-based study in 14 European countries 1984–2007. BJOG 2013; 120: 707–16.Google Scholar
Office for National Statistics. Birth characteristics in England and Wales: 2016. Statistical Bulletin October 2017. www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthcharacteristicsinenglandandwales/2016 (accessed September 2018).Google Scholar
Martin, JA, Hamilton, BE, Osterman, MJK, Driscoll, AK, Drake, P. Births: final data for 2016. Natl Vital Stat Rep 2018; 67(1): 155. www.cdc.gov/nchs/data/nvsr/nvsr67/nvsr67_01.pdf (accessed September 2018).Google ScholarPubMed
Vayssiere, C, Benoist, G, Blondel, B, et al. Twin pregnancies: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). Eur J Obstet Gynecol Reprod Biol 2011; 156: 1217.Google Scholar
Hall, JG. Twinning. Lancet 2003; 362: 735–43.CrossRefGoogle ScholarPubMed
Martin, JA, Hamilton, BE, Sutton, PD, et al. Births: final data for 2006. Natl Vital Stat Rep 2009; 57: 1102Google Scholar
Chauhan, SP, Scardo, JA, Hayes, E, Abuhamad, AZ, Berghella, V. Twins: prevalence, problems, and preterm births. Am J Obstet Gynecol 2010; 203: 305–15.Google Scholar
Macfarlane, A, Blondel, B. Demographic trends in Western European countries. In Blickstein, I, Keith, LG (eds), Multiple Pregnancy: Epidemiology, Gestation, and Perinatal Outcome, 2nd edn. London: Taylor & Francis, 2005, pp. 1121.Google Scholar
Human Fertilisation and Embryology Authority. Multiple births and single embryo transfer review, 2013. http://www.hfea.gov.uk/Multiple-births-after-IVF.html (accessed March 2017).Google Scholar
Weber, MA, Sebire, NJ. Genetics and developmental pathology of twinning. Semin Fetal Neonatal Med 2010; 15: 313–18.Google Scholar
Benirschke, K, Kim, CK. Multiple pregnancy. 2. N Engl J Med 1973; 288: 1329–36.Google Scholar
Derom, C, Vlietinck, R, Derom, R, Van den Berghe, H, Thiery, M. Increased monozygotic twinning rate after ovulation induction. Lancet 1987; 1: 1236–8.Google ScholarPubMed
Umranikar, A, Parmar, D, Davies, S, Fountain, S. Multiple births following in vitro fertilization treatment: redefining success. Eur J Obstet Gynecol Reprod Biol 2013; 170: 299304.Google Scholar
National Institute for Health and Care Excellence. Fertility Problems: Assessment and Treatment. Clinical Guideline CG156. London: NICE, 2013. https://www.nice.org.uk/guidance/cg156 (accessed March 2017).Google Scholar
Royal College of Obstetricians and Gynaecologists. Multiple Pregnancy Following Assisted Reproduction. Scientific Impact Paper No. 22. London: RCOG, 2011. https://www.rcog.org.uk/globalassets/documents/guidelines/sip_no_22.pdf (accessed March 2017).Google Scholar
Luke, B, Brown, MB, Wantman, E, Stern, JE. Factors associated with monozygosity in assisted reproductive technology pregnancies and the risk of recurrence using linked cycles. Fertil Steril 2014; 101: 683–9.CrossRefGoogle ScholarPubMed
Busnelli, A, Dallagiovanna, C, Reschini, M, et al. Risk factors for monozygotic twinning after in vitro fertilization: a systematic review and meta-analysis. Fertil Steril 2019; 111: 302–17. https://doi.org/10.1016/j.fertnstert.2018.10.025.CrossRefGoogle ScholarPubMed
Glujovsky, D, Blake, D, Farquhar, C, Bardach, A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev 2012; (7): CD002118.Google Scholar
McLernon, D, Harrild, K, Bergh, C, et al. Clinical effectiveness of elective single versus double embryo transfer: meta-analysis of individual patient data from randomised trials. BMJ 2010; 341: c6945.Google Scholar
Gelbaya, TA, Tsoumpou, I, Nardo, LG. The likelihood of live birth and multiple birth after single versus double embryo transfer at the cleavage stage: a systematic review and meta-analysis. Fertil Steril 2010; 94: 936–45.CrossRefGoogle Scholar
Luke, B, Gopal, D, Cabral, H, et al. Adverse pregnancy, birth, and infant outcomes in twins: effects of maternal fertility status and infant gender combinations; the Massachusetts Outcomes Study of Assisted Reproductive Technology. Am J Obstet Gynecol 2017; 217: 330.e115. doi: 10.1016/j.ajog.2017.04.025.Google ScholarPubMed
Helmerhorst, FM, Perquin, DA, Donker, D, Keirse, MJ. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ 2004; 328: 261.CrossRefGoogle Scholar
Santana, DS, Cecatti, JG, Surita, FG, et al. Twin pregnancy and severe maternal outcomes: the World Health Organization Multicountry Survey on Maternal and Newborn Health. Obstet Gynecol 2016; 127: 631–41. doi: 10.1097/AOG.0000000000001338.Google Scholar
Rao, A, Sairam, S, Shehata, H. Obstetric complications of twin pregnancies. Best Pract Res Clin Obstet Gynaecol 2004; 18: 557–76.Google Scholar
Sibai, BM, Hauth, J, Caritis, S, et al. Hypertensive disorders in twin versus singleton gestations. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol 2000; 182: 938–42.Google Scholar
Laine, K, Murzakanova, G, Sole, KB, et al. Prevalence and risk of pre-eclampsia and gestational hypertension in twin pregnancies: a population-based register study. BMJ Open 2019; 9 (7): e029908. doi: 10.1136/bmjopen-2019-029908.CrossRefGoogle ScholarPubMed
Schwartz, DB, Daoud, Y, Zazula, P, et al. Gestational diabetes mellitus: metabolic and blood glucose parameters in singleton versus twin pregnancies. Am J Obstet Gynecol 1999; 181: 912–14.CrossRefGoogle ScholarPubMed
Goldenberg, RL, Culhane, JF, Iams, JD, Romero, R. Epidemiology and causes of preterm birth. Lancet 2008; 371: 7584.Google Scholar
Blondel, B, Macfarlane, A, Gissler, M, Breart, G, Zeitlin, J. General obstetrics: preterm birth and multiple pregnancy in European countries participating in the PERISTAT project. BJOG 2006; 113: 528–35.Google Scholar
Victoria, A, Mora, G, Arias, F. Perinatal outcome, placental pathology, and severity of discordance in monochorionic and dichorionic twins. Obstet Gynecol 2001; 97: 310–15.Google Scholar
Ross, LE, McQueen, K, Vigod, S, Dennis, CL. Risk for postpartum depression associated with assisted reproductive technologies and multiple births: a systematic review. Hum Reprod Update 2011; 17: 96106.Google Scholar
Confidential Enquiry into Maternal and Child Health (CEMACH). Saving Mothers’ Lives: Reviewing Maternal Deaths to Make Motherhood Safe: 2003–2005. The Seventh Report on Confidential Enquiries into Maternal Deaths in the United Kingdom. London: CEMACH, 2007.Google Scholar
Sebire, N Anomalous development in twins (including monozygotic duplication). In Kilby, M, Baker, P, Critchley, H, Field, D (eds), Multiple Pregnancy. London: RCOG Press; 2006, pp. 5988.Google Scholar
Glinianaia, SV, Rankin, J, Wright, C. Congenital anomalies in twins: a register-based study. Hum Reprod 2008; 23: 1306–11.CrossRefGoogle ScholarPubMed
Morin, L, Lim, K, Bly, S, et al. Ultrasound in twin pregnancies: no. 260, June 2011. Int J Gynecol Obstet 2011; 115: 117–18.Google Scholar
Berghella, V, Saccone, G. Cervical assessment by ultrasound for preventing preterm delivery. Cochrane Database Syst Rev 2019; 9: CD007235. https://doi.org//10.1002/14651858.CD007235.pub4.Google Scholar
Sun, LM, Chen, XK, Wen, SW, et al. Perinatal outcomes of normal cotwins in twin pregnancies with one structurally anomalous fetus: a population-based retrospective study. Am J Perinatol 2009; 26: 51–6.Google Scholar
Pandya, PP, Snijders, RJ, Psara, N, Hilbert, L, Nicolaides, KH. The prevalence of non-viable pregnancy at 10–13 weeks of gestation. Ultrasound Obstet Gynecol 1996; 7: 170–3.Google Scholar
Sebire, NJ, Snijders, RJ, Hughes, K, Sepulveda, W, Nicolaides, KH. The hidden mortality of monochorionic twin pregnancies. Br J Obstet Gynaecol 1997; 104: 1203–7.Google Scholar
D’Antonio, F, Khalil, A, Dias, T, Thilaganathan, B. Early fetal loss in monochorionic and dichorionic twin pregnancies: analysis of the Southwest Thames Obstetric Research Collaborative (STORK) multiple pregnancy cohort. Ultrasound Obstet Gynecol 2013; 41: 632–6.Google Scholar
Sebire, NJ, Thornton, S, Hughes, K, Snijders, RJ, Nicolaides, KH. The prevalence and consequences of missed abortion in twin pregnancies at 10 to 14 weeks of gestation. Br J Obstet Gynaecol 1997; 104: 847–8.CrossRefGoogle ScholarPubMed
Landy, H, Keith, L. The vanishing twin: a review. Hum Reprod Update 1998; 4: 177–83.Google Scholar
Kamath, MS, Antonisamy, B, Selliah, HY, Sunkara, SK. Perinatal outcomes of singleton live births with and without vanishing twin following transfer of multiple embryos: analysis of 113 784 singleton live births. Hum Reprod 2018; 33: 2018–22. doi: 10.1093/humrep/dey284.CrossRefGoogle ScholarPubMed
Ong, S, Zamora, J, Khan, K, Kilby, M. Prognosis for the co-twin following single-twin death: a systematic review. BJOG 2006; 113: 992–8.Google Scholar
Hillman, SC, Morris, RK, Kilby, MD. Co-twin prognosis after single fetal death: a systematic review and meta-analysis. Obstet Gynecol 2011; 118: 928–40.CrossRefGoogle ScholarPubMed
D’Antonio, F, Thilaganathan, B, Dias, T, et al. Influence of chorionicity and gestational age at single fetal loss on risk of preterm birth in twin pregnancy: analysis of STORK multiple pregnancy cohort. Ultrasound Obstet Gynecol 2017; 50: 723–7. doi: 10.1002/uog.17426.Google ScholarPubMed
Breathnach, FM, Malone, FD. Fetal growth disorders in twin gestations. Semin Perinatol 2012; 36: 175–81.CrossRefGoogle ScholarPubMed
Breathnach, FM, McAuliffe, FM, Geary, M, et al. Definition of intertwin birth weight discordance. Obstet Gynecol 2011; 118: 94103.Google Scholar
Lewi, L, Deprest, J. Management of twin pregnancies: where do we go from here? Ultrasound Obstet Gynecol 2013; 41: 601–4.Google Scholar
Kalafat, E, Thilaganathan, B, Papageorghiou, A, Bhide, A, Khalil, A. Significance of placental cord insertion site in twin pregnancy. Ultrasound Obstet Gynecol 2018; 52: 378–84. doi: 10.1002/uog.18914.Google Scholar
Couck, I, Mourad Tawfic, N, Deprest, J, et al. Does site of cord insertion increase risk of adverse outcome, twin-to-twin transfusion syndrome and discordant growth in monochorionic twin pregnancy? Ultrasound Obstet Gynecol 2018; 52: 385–9. doi: 10.1002/uog.18926.Google Scholar
Jones, R, Roberton, N. Small for dates babies: are they really a problem? Arch Dis Child 1986; 61: 877–80.Google Scholar
American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 169: Multifetal gestations: twin, triplet, and higher-order multifetal pregnancies. Obstet Gynecol 2016; 128: e131–46.Google Scholar
Miller, J, Chauhan, SP, Abuhamad, AZ. Discordant twins: diagnosis, evaluation and management. Am J Obstet Gynecol 2012; 206: 1020.Google Scholar
Ananth, CV, Joseph, K, Demissie, K, Vintzileos, AM. Trends in twin preterm birth subtypes in the United States, 1989 through 2000: impact on perinatal mortality. Am J Obstet Gynecol 2005; 193: 1076.e1–9.Google Scholar
Kiely, JL. What is the population-based risk of preterm birth among twins and other multiples? Clin Obstet Gynecol 1998; 41: 311.CrossRefGoogle ScholarPubMed
Stoll, BJ, Hansen, NI, Bell, EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 2010; 126: 443–56.CrossRefGoogle ScholarPubMed
Murphy, D, MacKenzie, I. The mortality and morbidity associated with umbilical cord prolapse. Br J Obstet Gynaecol 1995; 102: 826–30.Google Scholar
Cohen, M, Kohl, S, Rosenthal, A. Fetal interlocking complicating twin gestation. Am J Obstet Gynecol 1965; 91: 407–12.Google Scholar
Pharoah, P. Neurological outcome in twins. Semin Neonatol 2002; 7: 223–30.Google Scholar
MBRRACE-UK. Perinatal Mortality Surveillance Report: UK perinatal deaths for births from January to December 2014. Oxford: National Perinatal Epidemiology Unit, 2016. https://www.npeu.ox.ac.uk/downloads/files/mbrrace-uk/reports/MBRRACE-UK-PMS-Report-2014.pdf (accessed March 2017).Google Scholar
Draper, ES, Gallimore, ID, Kurinczuk, JJ, et al., on behalf of the MBRRACE-UK Collaboration. MBRRACE-UK Perinatal Mortality Surveillance Report, UK Perinatal Deaths for Births from January to December 2016. Leicester: Infant Mortality and Morbidity Studies, Department of Health Sciences, University of Leicester, 2018.Google Scholar
Danon, D, Sekar, R, Hack, KE, Fisk, NM. Increased stillbirth in uncomplicated monochorionic twin pregnancies: a systematic review and meta-analysis. Obstet Gynecol 2013; 121: 1318–26.Google Scholar
Dube, J, Dodds, L, Armson, BA. Does chorionicity or zygosity predict adverse perinatal outcomes in twins? Am J Obstet Gynecol 2002; 186: 579–83.CrossRefGoogle ScholarPubMed
Barigye, O, Pasquini, L, Galea, P, et al. High risk of unexpected late fetal death in monochorionic twins despite intensive ultrasound surveillance: a cohort study. PLoS Med 2005; 2 (6): e172.Google Scholar
Spitz, L. Conjoined twins. Prenat Diagn 2005; 25: 814–19.Google Scholar
Mutchinick, OM, Luna-Muñoz, L, Amar, E, et al. Conjoined twins: a worldwide collaborative epidemiological study of the International Clearinghouse for Birth Defects Surveillance and Research. Am J Med Genet C Semin Med Genet 2011; 157C: 274–87.Google ScholarPubMed
Chen, CP, Hsu, CY, Su, JW, et al. Conjoined twins detected in the first trimester: a review. Taiwan J Obstet Gynecol 2011; 50: 424–31.Google Scholar
Dias, T, Mahsud-Dornan, S, Bhide, A, Papageorghiou, AT, Thilaganathan, B. Cord entanglement and perinatal outcome in monoamniotic twin pregnancies. Ultrasound Obstet Gynecol 2010; 35: 201–4.Google Scholar
Baxi, LV, Walsh, CA. Monoamniotic twins in contemporary practice: a single-center study of perinatal outcomes. J Matern Fetal Neonatal Med 2010; 23: 506–10.Google Scholar
Hack, KE, Derks, JB, Schaap, AH, et al. Perinatal outcome of monoamniotic twin pregnancies. Obstet Gynecol 2009; 113: 353–60.Google Scholar
Rossi, AC, Prefumo, F. Impact of cord entanglement on perinatal outcome of monoamniotic twins: a systematic review of the literature. Ultrasound Obstet Gynecol 2013; 41: 131–5.CrossRefGoogle ScholarPubMed
Sueters, M, Oepkes, D. Diagnosis of twin-to-twin transfusion syndrome, selective fetal growth restriction, twin anaemia-polycythaemia sequence, and twin reversed arterial perfusion sequence. Best Pract Res Clin Obstet Gynaecol 2014; 28: 215–26.Google Scholar
Khalil, A, Beune, I, Hecher, K, et al. Consensus definition and essential reporting parameters of selective fetal growth restriction in twin pregnancy: a Delphi procedure. Ultrasound Obstet Gynecol 2019; 53: 4754. doi: 10.1002/uog.19013.Google Scholar
Royal College of Obstetricians and Gynaecologists. Management of Monochorionic Twin Pregnancy, 2nd edn. Green-top Guideline No. 51. London: RCOG, 2016. https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg51/ (accessed March 2017).Google Scholar
Gratacos, E, Antolin, E, Lewi, L, et al. Monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end-diastolic flow (Type III): feasibility and perinatal outcome of fetoscopic placental laser coagulation. Ultrasound Obstet Gynecol 2008; 31: 669–75.Google Scholar
Gratacos, E, Lewi, L, Muñoz, B, et al. A classification system for selective intrauterine growth restriction in monochorionic pregnancies according to umbilical artery Doppler flow in the smaller twin. Ultrasound Obstet Gynecol 2007; 30: 2834.Google Scholar
Healey, MG. Acardia: predictive risk factors for the co-twin’s survival. Teratology 1994; 50: 205–13.Google Scholar
Lewi, L, Valencia, C, Gonzalez, E, Deprest, J, Nicolaides, KH. The outcome of twin reversed arterial perfusion sequence diagnosed in the first trimester. Am J Obstet Gynecol 2010; 203: 213.e1–4.Google Scholar
National Institute for Health and Care Excellence. Intrauterine laser ablation of placental vessels for the treatment of twin-to-twin transfusion syndrome. NICE Interventional Procedure Guidance IPG198. London: NICE, 2006. https://www.nice.org.uk/guidance/ipg198 (accessed March 2017).Google Scholar
Denbow, M, Fogliani, R, Kyle, P, et al. Haematological indices at fetal blood sampling in monochorionic pregnancies complicated by feto-fetal transfusion syndrome. Prenat Diagn 1998; 18: 941–6.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Stagnati, V, Zanardini, C, Fichera, A, et al. Early prediction of twin-to-twin transfusion syndrome: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2016. doi: 10.1002/uog.15989. [Epub ahead of print]Google Scholar
Mackie, FL, Whittle, R, Morris, RK, et al. First-trimester ultrasound measurements and maternal serum biomarkers as prognostic factors in monochorionic twins: a cohort study. Diagn Progn Res 2019; 3: 9. doi: 10.1186/s41512-019-0054-9.Google Scholar
Simpson, LL. Twin-twin transfusion syndrome. Am J Obstet Gynecol 2013; 208: 318.Google Scholar
Quintero, RA, Morales, WJ, Allen, MH, et al. Staging of twin-twin transfusion syndrome. J Perinatol 1999; 19: 550–5.Google Scholar
Lopriore, E, Oepkes, D, Walther, FJ. Neonatal morbidity in twin–twin transfusion syndrome. Early Hum Dev 2011; 87: 595–9.Google Scholar
Tollenaar, LSA, Lopriore, E, Middeldorp, JM, et al. Improved prediction of twin anemia–polycythemia sequence by delta middle cerebral artery peak systolic velocity: new antenatal classification system. Ultrasound Obstet Gynecol 2019; 53: 788–93. doi: 10.1002/uog.20096.CrossRefGoogle ScholarPubMed
Tavares de Sousa, M, Fonseca, A, Hecher, K. Role of fetal intertwin difference in middle cerebral artery peak systolic velocity in predicting neonatal twin anemia–polycythemia sequence. Ultrasound Obstet Gynecol 2019; 53: 794–7. doi: 10.1002/uog.20116.Google Scholar
Slaghekke, F, Kist, WJ, Oepkes, D, et al. Twin anemia–polycythemia sequence: diagnostic criteria, classification, perinatal management and outcome. Fetal Diagn Ther 2010; 27: 181–90.Google Scholar
Ellings, JM, Newman, RB, Hulsey, TC, Bivins, HA, Keenan, A. Reduction in very low birth weight deliveries and perinatal mortality in a specialized, multidisciplinary twin clinic. Obstet Gynecol 1993; 81: 387–91.Google Scholar
Newman, RB, Ellings, JM. Antepartum management of the multiple gestation: the case for specialized care. Semin Perinatol 1995; 19: 387403.Google Scholar
Ruk, RJ, Brown, CE, Peters, MT, Johnston, AB. Specialized care for twin gestations: improving newborn outcomes und reducing costs. J Obstet Gynecol Neonatal Nurs 2001; 30: 5260.Google Scholar
National Institute for Health and Care Excellence. Multiple pregnancy: twin and triplet pregnancies. NICE Quality Standard QS 46. London: NICE, 2013 (updated September 2019). https://www.nice.org.uk/guidance/qs46 (accessed February 2020).Google Scholar
Twins and Multiple Births Association. NICE Works: Twins and Multiple Births Association Maternity Engagement Project Final Report. Aldershot: TAMBA, 2019. https://twinstrust.org/uploads/assets/afcc44b3-776e-4341-8a16e9bd990c3425/NICE-works-final-report.pdf (accessed February 2020).Google Scholar
Ballard, CK, Bricker, L, Reed, K, Wood, L, Neilson, JP. Nutritional advice for improving outcomes in multiple pregnancies. Cochrane Database Syst Rev 2011; (6): CD008867.Google Scholar
National Institute for Health and Care Excellence. Twin and Triplet Pregnancy. NICE Guideline NG137. London: NICE, 2019. www.nice.org.uk/guidance/ng137 (accessed December 2020).Google Scholar
Lewi, L, Lewi, P, Diemert, A, et al. The role of ultrasound examination in the first trimester and at 16 weeks’ gestation to predict fetal complications in monochorionic diamniotic twin pregnancies. Am J Obstet Gynecol 2008; 199: 493.e1–7.CrossRefGoogle ScholarPubMed
Kurtz, A, Wapner, R, Mata, J, Johnson, A, Morgan, P. Twin pregnancies: accuracy of first-trimester abdominal US in predicting chorionicity and amnionicity. Radiology 1992; 185: 759–62.Google Scholar
Monteagudo, A, Timor-Tritsch, IE, Sharma, S. Early and simple determination of chorionic and amniotic type in multifetal gestations in the first fourteen weeks by high-frequency transvaginal ultrasonography. Am J Obstet Gynecol 1994; 170: 824–9.Google Scholar
Lu, J, Cheng, YKY, Ting, YH, Law, KM, Leung, TY. Pitfalls in assessing chorioamnionicity: novel observations and literature review. Am J Obstet Gynecol 2018; 219: 242–54. doi: 10.1016/j.ajog.2018.02.010.Google Scholar
Dias, T, Ladd, S, Mahsud-Dornan, S, et al. Systematic labeling of twin pregnancies on ultrasound. Ultrasound Obstet Gynecol 2011; 38: 130–3.Google Scholar
National Institute for Health and Care Excellence. Antenatal Care for Uncomplicated Pregnancies. NICE Clinical Guideline CG62. London: NICE, 2008. https://www.nice.org.uk/guidance/cg62 (accessed March 2017).Google Scholar
Spencer, K Screening for trisomy 21 in twin pregnancies in the first trimester using free β-hCG and PAPP-A, combined with fetal nuchal translucency thickness. Prenat Diagn 2000; 20: 91–5.Google Scholar
NHS Screening Programmes. Fetal Anomaly Screening Programme: Programme Handbook. June 2015. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/456654/FASP_programme_handbook_August_2015.pdf (accessed March 2017).Google Scholar
Gil, MM, Quezada, MS, Revello, R, Akolekar, R, Nicolaides, KH. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol 2015; 45: 249–66.Google Scholar
Canick, JA, Kloza, EM, Lambert-Messerlian, GM, et al. DNA sequencing of maternal plasma to identify Down syndrome and other trisomies in multiple gestations. Prenat Diagn 2012; 32: 730–4.Google Scholar
Attilakos, G, Maddocks, DG, Davies, T, et al. Quantification of free fetal DNA in multiple pregnancies and relationship with chorionicity. Prenat Diagn 2011; 31: 967–72.Google Scholar
Leung, TY, Qu, JZ, Liao, GJ, et al. Noninvasive twin zygosity assessment and aneuploidy detection by maternal plasma DNA sequencing. Prenat Diagn 2013; 33: 675–81.Google Scholar
Qu, JZ, Leung, TY, Jiang, P, et al. Noninvasive prenatal determination of twin zygosity by maternal plasma DNA analysis. Clin Chem 2013; 59: 427–35.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. Non-invasive Prenatal Testing for Chromosomal Abnormality using Maternal Plasma DNA. Scientific Impact Paper No. 15. London: RCOG, 2014. https://www.rcog.org.uk/globalassets/documents/guidelines/sip_15_04032014.pdf (accessed March 2017).Google Scholar
American College of Obstetrics and Gynaecologists. Committee Opinion No. 640: Cell-free DNA screening for fetal aneuploidy. Obstet Gynecol 2015; 126: e31–7.Google Scholar
Benn, P, Borrell, A, Chiu, RW, et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat Diagn 2015; 35: 725–34.Google Scholar
Royal College of Obstetricians and Gynaecologists. Amniocentesis and Chorionic Villus Sampling. Green-top Guideline No. 8. London: RCOG, 2010. https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_8.pdf (accessed March 2017).Google Scholar
Yukobowich, E, Anteby, EY, Cohen, SM, et al. Risk of fetal loss in twin pregnancies undergoing second trimester amniocentesis(1). Obstet Gynecol 2001; 98: 231–4.Google Scholar
Millaire, M, Bujold, E, Morency, AM, Gauthier, RJ. Mid-trimester genetic amniocentesis in twin pregnancy and the risk of fetal loss. J Obstet Gynaecol Can 2006; 28: 512–18.Google Scholar
Weisz, B, Rodeck, CH. Invasive diagnostic procedures in twin pregnancies. Prenat Diagn 2005; 25: 751–8.Google Scholar
Antsaklis, A, Daskalakis, G, Souka, AP, Kavalakis, Y, Michalas, S. Fetal blood sampling in twin pregnancies. Ultrasound Obstet Gynecol 2003; 22: 377–9.Google Scholar
D’Antonio, F, Odibo, AO, Prefumo, F, et al. Weight discordance and perinatal mortality in twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018; 52: 1123. doi: 10.1002/uog.18966.Google Scholar
Leombroni, M, Liberati, M, Fanfani, F, et al. Diagnostic accuracy of ultrasound in predicting birth-weight discordance in twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2017; 50: 442–50. doi: 10.1002/uog.17348.Google Scholar
Townsend, R, Duffy, JM, Sileo, F, et al.; International Collaboration to Harmonise Outcomes for Selective Fetal Growth Restriction (CHOOSE-FGR). A core outcome set for studies investigating the management of selective fetal growth restriction in twins. Ultrasound Obstet Gynecol 2019; doi: 10.1002/uog.20388.Google Scholar
Khalil, A, Duffy, JMN, Perry, H, et al.; International Collaboration to Harmonise Outcomes for Selective Fetal Growth Restriction (CHOOSE-FGR). Study protocol: developing, disseminating, and implementing a core outcome set for selective fetal growth restriction in monochorionic twin pregnancies. Trials 2019; 20 (1): 35. doi: 10.1186/s13063-018-3153-y.Google Scholar
Ishii, K, Murakoshi, T, Takahashi, Y, Shinno, T, Matsushita, M, Naruse, H, et al. Perinatal outcome of monochorionic twins with selective intrauterine growth restriction and different types of umbilical artery Doppler under expectant management. Fetal Diagn Ther 2009; 26: 157–61.Google Scholar
Townsend, R, D’Antonio, F, Sileo, FG, et al. Perinatal outcome of monochorionic twin pregnancy complicated by selective fetal growth restriction according to management: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2019; 53: 3646. doi: 10.1002/uog.20114.Google Scholar
Monaghan, C, Kalafat, E, Binder, J, Thilaganathan, B, Khalil, A. Prediction of adverse pregnancy outcome in monochorionic diamniotic twin pregnancy complicated by selective fetal growth restriction. Ultrasound Obstet Gynecol 2019; 53: 200–7. doi: 10.1002/uog.19078.Google Scholar
Martin, JA, Hamilton, BE, Osterman, MJK, Curtin, SC, Mathews, TJ. National vital statistics reports. Births: final data for 2013–2015.Google Scholar
Breathnach, FM, McAuliffe, FM, Geary, M, et al.; Perinatal Ireland Research Consortium. Optimum timing for planned delivery of uncomplicated monochorionic and dichorionic twin pregnancies. Obstet Gynecol 2012; 119: 50–9. https://doi.org/10.1097/AOG.0b013e31823d7b06.Google Scholar
Conde-Agudelo A, Romero, R, Hassan, SS, Yeo, L. Transvaginal sonographic cervical length for the prediction of spontaneous preterm birth in twin pregnancies: a systematic review and metaanalysis. Am J Obstet Gynecol 2010; 203: 128.e112. https://doi.org/10.1016/j.ajog.2010.02.064.Google Scholar
Lee, YM. Delivery of twins. Semin Perinatol 2012; 36: 195200.Google Scholar
Singer, E, Pilpel, S, Bsat, F, Plevyak, M, Healy, A, Markenson, G. Accuracy of fetal fibronectin to predict preterm birth in twin gestations with symptoms of labor. Obstet Gynecol 2007; 109: 1083–7.Google Scholar
Gyamfi, C, Lerner, V, Holzman, I, Stone, JL. Routine cervical length in twins and perinatal outcomes. Am J Perinatol 2007; 24: 65–9.Google Scholar
da Silva Lopes, K, Takemoto, Y, Ota, E, Tanigaki, S, Mori, R. Bed rest with and without hospitalisation in multiple pregnancy for improving perinatal outcomes. Cochrane Database Syst Rev 2017; (3): CD012031. doi: 10.1002/14651858.CD012031.pub2.Google Scholar
Sosa, C, Althabe, F, Belizan, J, Bergel, E. Bed rest in singleton pregnancies for preventing preterm birth. Cochrane Database Syst Rev 2004; (1): CD003581.Google Scholar
Norman, JE, Mackenzie, F, Owen, P, et al. Progesterone for the prevention of preterm birth in twin pregnancy (STOPPIT): a randomised, double-blind, placebo-controlled study and meta-analysis. Lancet 2009; 373: 2034–40.Google Scholar
Dodd, JM, Grivell, RM, O’Brien, CM, Dowswell, T, Deussen, AR. Prenatal administration of progestogens for preventing spontaneous preterm birth in women with a multiple pregnancy. Cochrane Database Syst Rev 2019; (11). doi: 10.1002/14651858.CD012024.pub3.Google Scholar
Schuit, E, Stock, S, Rode, L, et al. Effectiveness of progestogens to improve perinatal outcome in twin pregnancies: an individual participant data meta-analysis. BJOG 2015; 122: 2737.Google Scholar
Romero, R, Conde-Agudelo, A, El-Refaie, W, et al. Vaginal progesterone decreases preterm birth and neonatal morbidity and mortality in women with a twin gestation and a short cervix: an updated meta‐analysis of individual patient data. Ultrasound Obstet Gynecol 2017; 49: 303–14. doi: 10.1002/uog.17397.Google Scholar
Rafael, TJ, Berghella, V, Alfirevic, Z. Cervical stitch (cerclage) for preventing preterm birth in multiple pregnancy. Cochrane Database Syst Rev 2014; (9): CD009166.Google Scholar
Liem, SM, van Pampus, MG, Mol, BW, Bekedam, DJ. Cervical pessaries for the prevention of preterm birth: a systematic review. Obstet Gynecol Int 2013; 2013: 576723.Google Scholar
Liem, S, Schuit, E, Hegeman, M, et al. Cervical pessaries for prevention of preterm birth in women with a multiple pregnancy (ProTWIN): a multicentre, open-label randomised controlled trial. Lancet 2013; 382: 1341–9.Google Scholar
Goya, M, Pratcorona, L, Merced, C, et al. Cervical pessary in 112 pregnant women with a short cervix (PECEP): an open-label randomised controlled trial. Lancet 2012; 379: 1800–6.Google Scholar
Nicolaides, KH, Syngelaki, A, Poon, LC, et al. Cervical pessary placement for prevention of preterm birth in unselected twin pregnancies: a randomized controlled trial. Am J Obstet Gynecol 2016; 214(1): 3.e19. doi: 10.1016/j.ajog.2015.08.051.Google Scholar
Pratcorona, L, Goya, M, Merced, C, et al. Cervical pessary to reduce preterm birth <34 weeks of gestation after an episode of preterm labor and a short cervix: a randomized controlled trial. Am J Obstet Gynecol 2018; 219: 99.e116. doi: 10.1016/j.ajog.2018.04.031.Google Scholar
Thangatorai, R, Lim, FC, Nalliah, S. Cervical pessary in the prevention of preterm births in multiple pregnancies with a short cervix: PRISMA compliant systematic review and meta-analysis. J Matern Fetal Neonatal Med 2018; 31: 1638–45. doi: 10.1080/14767058.2017.1319930.Google Scholar
Norman, JE, Norrie, J, Maclennan, G, et al. Open randomised trial of the (Arabin) pessary to prevent preterm birth in twin pregnancy with health economics and acceptability: STOPPIT-2 – a study protocol. BMJ Open 2018; 8 (12): e026430. doi: 10.1136/bmjopen-2018-026430.Google Scholar
Hashimoto, LN, Hornung, RW, Lindsell, CJ, Brewer, DE, Donovan, EF. Effects of antenatal glucocorticoids on outcomes of very low birth weight multifetal gestations. Am J Obstet Gynecol 2002; 187: 804–10.Google Scholar
Royal College of Obstetricians and Gynaecologists. Preterm Prelabour Rupture of the Membranes. Green-top Guideline No. 44. London: RCOG, 2010. https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_44.pdf (accessed March 2017).Google Scholar
Kenyon, S, Brocklehurst, P, Jones, D, et al.; MRC ORACLE Children Study. Long term outcomes following prescription of antibiotics to pregnant women with either spontaneous preterm labour or preterm rupture of the membranes. BMC Pregnancy Childbirth 2008; 8: 14.Google Scholar
Sela, HY, Simpson, LL. Preterm premature rupture of membranes complicating twin pregnancy: management considerations. Clin Obstet Gynecol 2011; 54: 321–9.CrossRefGoogle ScholarPubMed
Doyle, LW, Crowther, CA, Middleton, P, Marret, S, Rouse, D. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev 2009; (1): CD004661.Google Scholar
Wu, MY, Chen, SU, Lee, CN, Ho, HN, Yang, YS. Use of atosiban in a twin pregnancy with extremely preterm premature rupture in the membrane of one twin: a case report and literature review. Taiwan J Obstet Gynecol 2010; 49: 495–9.Google Scholar
Cheung, KW, Seto, MTY, Wang, W, et al. Effect of delayed interval delivery of remaining fetus(es) in multiple pregnancies on survival: a systematic review and meta-analysis. Am J Obstet Gynecol 2020; 222: 306319.e18. https://doi.org//10.1016/j.ajog.2019.07.046.Google Scholar
Dodd, J, Crowther, C. Multifetal pregnancy reduction of triplet and higher-order multiple pregnancies to twins. Fertil Steril 2004; 81: 1420–2.Google Scholar
Wimalasundera, RC. Selective reduction and termination of multiple pregnancies. Semin Fetal Neonatal Med 2010; 15: 327–35.Google Scholar
Devine, PC, Malone, FD, Athanassiou, A, Harvey-Wilkes, K, D’Alton, ME. Maternal and neonatal outcome of 100 consecutive triplet pregnancies. Am J Perinatol 2001; 18: 225–35.Google Scholar
Petterson, B, Nelson, KB, Watson, L, Stanley, F. Twins, triplets, and cerebral palsy in births in Western Australia in the 1980s. BMJ 1993; 307: 1239–43.Google Scholar
Curado, J, D'antonio, F, Papageorghiou, AT, et al. Perinatal mortality and morbidity in triplet pregnancy according to chorionicity: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2019; 54: 589–95. https://doi.org//10.1002/uog.20209.Google Scholar
Antsaklis, A, Anastasakis, E. Selective reduction in twins and multiple pregnancies. J Perinat Med 2011; 39: 1521.Google Scholar
Zipori, Y, Haas, J, Berger, H, Barzilay, E. Multifetal pregnancy reduction of triplets to twins compared with non-reduced triplets: a meta-analysis. Reprod Biomed Online 2017; 35: 296304. doi: 10.1016/j.rbmo.2017.05.012.Google Scholar
Anthoulakis, C, Dagklis, T, Mamopoulos, A, Athanasiadis, A. Risks of miscarriage or preterm delivery in trichorionic and dichorionic triplet pregnancies with embryo reduction versus expectant management: a systematic review and meta-analysis. Hum Reprod 2017; 32: 1351–9. doi: 10.1093/humrep/dex084.Google Scholar
Dodd, JM, Crowther, CA. Reduction of the number of fetuses for women with a multiple pregnancy. Cochrane Database Syst Rev 2012; (10): CD003932.Google Scholar
Evans, MI, Goldberg, JD, Horenstein, J, et al. Selective termination for structural, chromosomal, and Mendelian anomalies: international experience. Am J Obstet Gynecol 1999; 181: 893–7.Google Scholar
Evans, MI, Goldberg, JD, Dommergues, M, et al. Efficacy of second-trimester selective termination for fetal abnormalities: international collaborative experience among the world’s largest centers. Am J Obstet Gynecol 1994; 171: 90–4.Google Scholar
Rossi, AC, D’Addario, V. Umbilical cord occlusion for selective feticide in complicated monochorionic twins: a systematic review of literature. Am J Obstet Gynecol 2009; 200: 123–9.Google Scholar
Schreiner-Engel, P, Walther, VN, Mindes, J, Lynch, L, Berkowitz, RL. First-trimester multifetal pregnancy reduction: acute and persistent psychologic reactions. Am J Obstet Gynecol 1995; 172: 541–7.Google Scholar
Heyborne, KD, Porreco, RP, Garite, TJ, Phair, K, Abril, D. Improved perinatal survival of monoamniotic twins with intensive inpatient monitoring. Am J Obstet Gynecol 2005; 192: 96101.Google Scholar
Van Mieghem T, De Heus R, Lewi, L, et al. Prenatal management of monoamniotic twin pregnancies. Obstet Gynecol 2014; 124: 498506. https://doi.org//10.1097/AOG.0000000000000409.Google Scholar
MONOMONO Working Group. Inpatient vs outpatient management and timing of delivery of uncomplicated monochorionic monoamniotic twin pregnancy: the MONOMONO study. Ultrasound Obstet Gynecol 2019; 53: 175–83. https://doi.org//10.1002/uog.19179.Google Scholar
Hillman, S, Morris, R, Kilby, M. Single twin demise: consequence for survivors. Semin Fetal Neonat Med 2010; 15: 319–26.Google Scholar
Mackie, FL, Rigby, A, Morris, RK, Kilby, MD. Prognosis of the co-twin following spontaneous single intrauterine fetal death in twin pregnancies: a systematic review and meta-analysis. BJOG 2019; 126: 569–78. https://doi.org//10.1111/1471-0528.15530.CrossRefGoogle ScholarPubMed
Righini, A, Salmona, S, Bianchini, E, et al. Prenatal magnetic resonance imaging evaluation of ischemic brain lesions in the survivors of monochorionic twin pregnancies: report of 3 cases. J Comput Assist Tomogr 2004; 28: 8792.Google Scholar
Senat, MV, Bernard, JP, Loizeau, S, Ville, Y. Management of single fetal death in twin-to-twin transfusion syndrome: a role for fetal blood sampling. Ultrasound Obstet Gynecol 2002; 20: 360–3.Google Scholar
Tanawattanacharoen, S, Taylor, MJ, Letsky, EA, et al. Intrauterine rescue transfusion in monochorionic multiple pregnancies with recent single intrauterine death. Prenat Diagn 2001; 21: 274–8.Google Scholar
Brassard, M, Fouron, JC, Leduc, L, Grignon, A, Proulx, F. Prognostic markers in twin pregnancies with an acardiac fetus. Obstet Gynecol 1999; 94: 409–14.Google Scholar
Malone, FD, D’Alton, ME. Anomalies peculiar to multiple gestations. Clin Perinatol 2000; 27: 1033–46, x.Google Scholar
Mone, F, Devaseelan, P, Ong, S. Intervention versus a conservative approach in the management of TRAP sequence: a systematic review. J Perinat Med 2016; 44: 619–29.Google Scholar
Chaveeva, P, Poon, LC, Sotiriadis, A, Kosinski, P, Nicolaides, KH. Optimal method and timing of intrauterine intervention in twin reversed arterial perfusion sequence: case study and meta-analysis. Fetal Diagn Ther 2014; 35: 267–79.Google Scholar
Cabassa, P, Fichera, A, Prefumo, F, et al. The use of radiofrequency in the treatment of twin reversed arterial perfusion sequence: a case series and review of the literature. Eur J Obstet Gynecol Reprod Biol 2013; 166: 127–32.Google Scholar
Lopriore, E, Sueters, M, Middeldorp, JM, et al. Neonatal outcome in twin-to-twin transfusion syndrome treated with fetoscopic laser occlusion of vascular anastomoses. J Pediatr 2005; 147: 597602.Google Scholar
Khalil, A, Cooper, E, Townsend, R, Thilaganathan, B. Evolution of stage 1 twin-to-twin transfusion syndrome (TTTS): systematic review and meta-analysis. Twin Res Hum Genet 2016; 19: 207–16. doi: 10.1017/thg.2016.33.CrossRefGoogle ScholarPubMed
Roberts, D, Neilson, JP, Kilby, MD, Gates, S. Interventions for the treatment of twin-twin transfusion syndrome. Cochrane Database Syst Rev 2014; (1): CD002073.Google Scholar
Senat, MV, Deprest, J, Boulvain, M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med 2004; 351: 136–44.Google Scholar
Crombleholme, TM, Shera, D, Lee, H, et al. A prospective, randomized, multicenter trial of amnioreduction vs selective fetoscopic laser photocoagulation for the treatment of severe twin-twin transfusion syndrome. Am J Obstet Gynecol 2007; 197: 396.e1–9.Google Scholar
Rossi, AC, D’Addario, V. The efficacy of Quintero staging system to assess severity of twin-twin transfusion syndrome treated with laser therapy: a systematic review with meta-analysis. Am J Perinatol 2009; 26: 537–44.Google Scholar
Lopriore, E, Middeldorp, JM, Oepkes, D, et al. Residual anastomoses after fetoscopic laser surgery in twin-to-twin transfusion syndrome: frequency, associated risks and outcome. Placenta 2007; 28: 204–8.Google Scholar
Robyr, R, Lewi, L, Salomon, LJ, et al. Prevalence and management of late fetal complications following successful selective laser coagulation of chorionic plate anastomoses in twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2006; 194: 796803.Google Scholar
Dhillon, RK, Hillman, SC, Pounds, R, Morris, RK, Kilby, MD. Comparison of Solomon technique against selective laser ablation for twin-twin transfusion syndrome: a systematic review. Ultrasound Obstet Gynecol 2015; 46: 526–31.Google Scholar
van Klink, JM, Koopman, HM, van Zwet, EW, et al. Improvement in neurodevelopmental outcome in survivors of twin-twin transfusion syndrome treated with laser surgery. Am J Obstet Gynecol 2014; 210: 540.e1–7.Google Scholar
Morris, RK, Selman, TJ, Harbidge, A, Martin, WI, Kilby, MD. Fetoscopic laser coagulation for severe twin-to-twin transfusion syndrome: factors influencing perinatal outcome, learning curve of the procedure and lessons for new centres. BJOG 2010; 117: 1350–7.Google Scholar
Beck, V, Lewi, P, Gucciardo, L, Devlieger, R. Preterm prelabor rupture of membranes and fetal survival after minimally invasive fetal surgery: a systematic review of the literature. Fetal Diagn Ther 2012; 31: 19.Google Scholar
Yamamoto, M, El Murr, L, Robyr, R, et al. Incidence and impact of perioperative complications in 175 fetoscopy-guided laser coagulations of chorionic plate anastomoses in fetofetal transfusion syndrome before 26 weeks of gestation. Am J Obstet Gynecol 2005; 193: 1110–16.Google Scholar
Rossi, AC, D’Addario, V. Comparison of donor and recipient outcomes following laser therapy performed for twin-twin transfusion syndrome: a meta-analysis and review of literature. Am J Perinatol 2009; 26: 2732.Google Scholar
Herberg, U, Gross, W, Bartmann, P, et al. Long term cardiac follow up of severe twin to twin transfusion syndrome after intrauterine laser coagulation. Heart 2006; 92: 95100.Google Scholar
Lopriore, E, Slaghekke, F, Oepkes, D, et al. Hematological characteristics in neonates with twin anemia–polycythemia sequence (TAPS). Prenat Diagn 2010; 30: 251–5.CrossRefGoogle ScholarPubMed
Leung, TY, Tam, WH, Leung, TN, Lok, IH, Lau, TK. Effect of twin-to-twin delivery interval on umbilical cord blood gas in the second twins. BJOG 2002; 109: 63–7.Google Scholar
Dodd, JM, Deussen, AR, Grivell, RM, Crowther, CA. Elective birth at 37 weeks’ gestation for women with an uncomplicated twin pregnancy. Cochrane Database Syst Rev 2014; (2): CD003582.Google Scholar
Dodd, JM, Crowther, CA, Haslam, RR, Robinson, JS. Elective birth at 37 weeks of gestation versus standard care for women with an uncomplicated twin pregnancy at term: the Twins Timing of Birth Randomised Trial. BJOG 2012; 119: 964–73.Google Scholar
Morales, WJ, O’BRIEN, WF, Knuppel, RA, Gaylord, S, Hayes, P. The effect of mode of delivery on the risk of intraventricular hemorrhage in nondiscordant twin gestations under 1500 g. Obstet Gynecol 1989; 73: 107–10.Google Scholar
Hofmeyr, GJ, Barrett, JF, Crowther, CA. Planned caesarean section for women with a twin pregnancy. Cochrane Database Syst Rev 2015; (12): CD006553. doi: 10.1002/14651858.CD006553.pub3.Google Scholar
Hogle, KL, Hutton, EK, McBrien, KA, Barrett, JF, Hannah, ME. Cesarean delivery for twins: a systematic review and meta-analysis. Am J Obstet Gynecol 2003; 188: 220–7.Google Scholar
Hannah, ME, Hannah, WJ, Hewson, SA, et al. Planned caesarean section versus planned vaginal birth for breech presentation at term: a randomised multicentre trial. Lancet 2000; 356: 1375–83.Google Scholar
Hofmeyr, GJ, Hannah, M, Lawrie, TA. Planned caesarean section for term breech delivery. Cochrane Database Syst Rev 2015; (7): CD000166.Google Scholar
Rossi, AC, Mullin, PM, Chmait, RH. Neonatal outcomes of twins according to birth order, presentation and mode of delivery: a systematic review and meta-analysis. BJOG 2011; 118: 523–32.Google Scholar
Barrett, JF, Hannah, ME, Hutton, EK, et al.; Twin Birth Study Collaborative Group. A randomized trial of planned cesarean or vaginal delivery for twin pregnancy. N Engl J Med 2013; 369: 1295–305.Google Scholar
Wildschut, H, van Roosmalen, J, van Leeuwen, E, Keirse, MJ. Planned abdominal compared with planned vaginal birth in triplet pregnancies. Br J Obstet Gynaecol 1995; 102: 292–6.Google Scholar
Stutchfield, P, Whitaker, R, Russell, I. Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. BMJ 2005; 331: 662.Google Scholar
Fox, NS, Silverstein, M, Bender, S, et al. Active second-stage management in twin pregnancies undergoing planned vaginal delivery in a US population. Obstet Gynecol 2010; 115: 229–33.Google Scholar
Myles, T. Vaginal birth of twins after a previous Cesarean section. J Matern Fetal Med 2001; 10: 171–4.Google Scholar
D’Antonio, F, Dias, T, Thilaganathan, B; Southwest Thames Obstetric Research Collaborative (STORK). Does antenatal ultrasound labeling predict birth order in twin pregnancies? Ultrasound Obstet Gynecol 2013; 41: 274–7.Google Scholar
Yang, Q, Wen, SW, Chen, Y, et al. Neonatal death and morbidity in vertex-nonvertex second twins according to mode of delivery and birth weight. Am J Obstet Gynecol 2005; 192: 840–7.Google Scholar
Yang, Q, Wen, SW, Chen, Y, et al. Neonatal mortality and morbidity in vertex-vertex second twins according to mode of delivery and birth weight. J Perinatol 2006; 26: 310.Google Scholar
Rydhstrom, H. Prognosis for twins with birth weight less than 1500 gm: the impact of cesarean section in relation to fetal presentation. Am J Obstet Gynecol 1990; 163: 528–33.Google Scholar
Acker, D, Lieberman, M, Holbrook, RH, et al. Delivery of the second twin. Obstet Gynecol 1982; 59: 710–11.Google Scholar
Chervenak, FA, Johnson, RE, Berkowitz, RL, Hobbins, JC. Intrapartum external version of the second twin. Obstet Gynecol 1983; 62: 160–5.Google Scholar
Chauhan, SP, Roberts, WE, McLaren, RA, et al. Delivery of the nonvertex second twin: breech extraction versus external cephalic version. Am J Obstet Gynecol 1995; 173: 1015–20.Google Scholar
Webster, SN, Loughney, AD. Internal podalic version with breech extraction. Obstetrician & Gynaecologist 2011; 13: 714.Google Scholar
Rayburn, WF, Lavin, JP, Miodovnik, M, Varner, MW. Multiple gestation: time interval between delivery of the first and second twins. Obstet Gynecol 1984; 63: 502–6.Google Scholar
Thompson, SA, Lyons, TL, Makowski, EL. Outcomes of twin gestations at the University of Colorado Health Sciences Center, 1973–1983. J Reprod Med 1987; 32: 328–39.Google Scholar
Chervenak, FA, Johnson, RE, Youcha, S, Hobbins, JC, Berkowitz, RL. Intrapartum management of twin gestation. Obstet Gynecol 1985; 65: 119–24.Google Scholar
Rydhstrom, H, Ingemarsson, I. Interval between birth of the first and the second twin and its impact on second twin perinatal mortality. J Perinat Med 1990; 18: 449–53.Google Scholar
Robertson, E, Celasun, N, Stewart, DE. Risk factors for postpartum depression. In Stewart, DE, Robertson, E, Dennis, CL, Grace, SL, Wallington, T (eds), Postpartum Depression: Literature Review of Risk Factors and Interventions. Toronto: Toronto Public Health, 2003. http://www.who.int/mental_health/prevention/suicide/lit_review_postpartum_depression.pdf (accessed March 2017).Google Scholar
Simmons, R, Doyle, P, Maconochie, N. Dramatic reduction in triplet and higher order births in England and Wales. BJOG 2004; 111: 856–8.Google Scholar
ESHRE Capri Workshop Group. Multiple gestation pregnancy. Hum Reprod 2000; 15: 1856–64.Google Scholar
Wen, SW, Demissie, K, Yang, Q, Walker, MC. Maternal morbidity and obstetric complications in triplet pregnancies and quadruplet and higher-order multiple pregnancies. Am J Obstet Gynecol 2004; 191: 254–8.Google Scholar
Pandian, Z, Marjoribanks, J, Ozturk, O, Serour, G, Bhattacharya, S. Number of embryos for transfer following in vitro fertilisation or intracytoplasmic sperm injection. Cochrane Database Syst Rev 2013; (7): CD003416.Google Scholar
Sepulveda, W, Sebire, NJ, Hughes, K, Odibo, A, Nicolaides, KH. The lambda sign at 10–14 weeks of gestation as a predictor of chorionicity in twin pregnancies. Ultrasound Obstet Gynecol 1996; 7: 421–3.Google Scholar
Campbell, DM, Templeton, A. Maternal complications of twin pregnancy. Int J Gynecol Obstet 2004; 84: 71–3.Google Scholar
Cotter, A, Ness, A, Tolosa, J. Prophylactic oxytocin for the third stage of labour (Review). Cochrane Database Syst Rev 2001; (4): CD001808.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×