Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-14T05:16:51.217Z Has data issue: false hasContentIssue false

1 - Review of semiconductor materials and physics

from Part One - Devices

Published online by Cambridge University Press:  05 August 2012

Sheila Prasad
Affiliation:
Northeastern University, Boston
Hermann Schumacher
Affiliation:
Universität Ulm, Germany
Anand Gopinath
Affiliation:
University of Minnesota
Get access

Summary

Executive summary

Semiconductor devices are fabricated using specific materials that offer the desired physical properties. There are three classes of solid state materials: insulators, semiconductors and conductors. This distinction is based on the electrical conductivity of these materials with insulators having the lowest and conductors having the highest conductivity. Semiconductors fall in between and their conductivity is affected by several factors such as temperature, the incidence of light, the application of a magnetic field and impurities. This versatility makes semiconductors very important in electronics and optoelectronics applications.

Semiconductors themselves are divided into two classes: elemental and compound. Each type has distinctive physical properties which are exploited in device design. Typical elemental semiconductor device materials are silicon and germanium; examples of compound semiconductors are GaAs, InP, AlGaAs and SiGe. The single crystal structure of these materials is that of a periodic lattice and this determines the properties of the semiconductors. Silicon has the diamond crystal structure and the compound semiconductors have the zincblende lattice structure. The bonding between atoms in a crystal of the semiconductors is termed covalent bonding, where electrons are shared between atoms. Fundamental principles of quantum mechanics are applied to determine the energy band structure of the semiconductor.

The basic device physics involves the description of the energy band structure, the density of states, the carrier concentration and the definition of donors and acceptors. Semiconductors are categorised as direct or indirect depending on the bandgap. The absorption mechanism is described and radiation and recombination processes important to device performance are detailed.

Type
Chapter
Information
High-Speed Electronics and Optoelectronics
Devices and Circuits
, pp. 3 - 45
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×