Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-03T07:11:16.164Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 April 2010

David L. Price
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aasland, S. and McMillan, P. F. (1994). Density-driven liquid–liquid phase-separation in the system Al2O3–Y2O3. Nature 369, 633.CrossRefGoogle Scholar
Alatas, A., Said, A. H., Sinn, H.et al. (2005). Elastic modulus of supercooled liquid and hot solid silicon measured by inelastic X-ray scattering. J. Phys. Chem. Solids 66, 2230.CrossRefGoogle Scholar
Aldebert, P., Dianoux, A. J. and Traverse, J. P. (1979). Neutron scattering evidence for fast ionic oxygen diffusion in the high temperature phases of La2O3. J. Phys. Paris 40, 1005.CrossRefGoogle Scholar
Allen, C. H. and Rudnick, I. (1947). A powerful high frequency siren. J. Acoust. Soc. Am. 19, 857.CrossRefGoogle Scholar
Angell, C. A. (1985). Spectroscopy simulation and scattering, and the medium-range order problem in glass. J. Non-Cryst. Solids 73, 1.CrossRefGoogle Scholar
Angell, C. A. (1991). Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13.CrossRefGoogle Scholar
Angell, C. A. and Borick, S. S. (1999). Comment on ‘Structure of supercooled liquid silicon’ by Ansell et al. J. Phys.: Condens. Matt. 11, 8163.Google Scholar
Angell, C. A., Shao, J. and Grabow, M. (1996). Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, ed. Giordano, M., Leporini, D. and Tosi, M. P. (World Scientific, Singapore), p. 50.Google Scholar
Ansell, S., Krishnan, S., Felten, J. J. and Price, D. L. (1998). Structure of supercooled liquid silicon. J. Phys.: Condens. Matt. 10, L73, 11.Google Scholar
Ansell, S., Krishnan, S., Felten, J. J. and Price, D. L. (1999). Reply to the comment of Angell and Borick. J. Phys.: Condens. Matt. 11, 8163.Google Scholar
Ansell, S., Krishnan, S., Weber, J. K. R.et al. (1997). Structure of liquid aluminum oxide. Phys. Rev. Lett. 78, 464.CrossRefGoogle Scholar
Aptekar, L. (1979). Phase transitions in non-crystalline germanium and silicon. Sov. Phys.–Dokl. 24, 993.Google Scholar
Ashcroft, N. W. and Langreth, D. C. (1967). Structure of binary liquid mixtures II. Resistivity of alloys and the ion–ion interaction. Phys. Rev. 159, 500.CrossRefGoogle Scholar
Ashkin, A. and Dziedzic, J. M. (1975). Optical levitation of liquid drops by radiation pressure. Science 187, 1073.CrossRefGoogle ScholarPubMed
Badyal, Y. S., Saboungi, M.-L., Price, D. L., Haeffner, D. R. and Shastri, S. D. (1997). Atomic and electronic structure of liquid iron trichloride. Europhys. Lett. 39, 19.CrossRefGoogle Scholar
Beard, K. V. and Pruppacher, H. R. (1969). A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J. Atmos. Sci. 26, 1066.2.0.CO;2>CrossRefGoogle Scholar
Beaucage, P. and Mousseau, N. (2005). Liquid–liquid phase transition in Stillinger–Weber silicon. J. Phys.: Condens. Matter 17, 2269.Google Scholar
Bengtzelius, U., Götze, W. and Sjolander, A. (1984). Dynamics of supercooled liquids and the glass transition. J. Phys. C 17, 5915.CrossRefGoogle Scholar
Benmore, C. J., Weber, J. K. R., Sampath, S.et al. (2003). A neutron and X-ray diffraction study of calcium aluminate glasses. J. Phys.: Condens. Mat. 15, S2413.Google Scholar
Benmore, C. J., Hart, R. T., Mei, Q.et al. (2005). Intermediate range chemical ordering in amorphous and liquid water, Si and Ge. Phys. Rev. B 72, 132201.CrossRefGoogle Scholar
Benoit, M., Ispas, S. and Tuckerman, M. E. (2001). Structural properties of molten silicates from ab initio molecular-dynamics simulations: comparison between CaO–Al2O3–SiO2 and SiO2. Phys. Rev. B 64, 224205.CrossRefGoogle Scholar
Bermejo, F. J., Saboungi, M.-L., Price, D. L.et al. (2000). Persistence of well-defined collective excitations in a molten transition metal. Phys. Rev. Lett. 85, 106.CrossRefGoogle Scholar
Berne, C. (2000). Solidification hors équilibre et apparition de phases métastables dans les séries de transition 4d et 5d. Ph. D. Thesis, Institut National Polytechnique de Grenoble, France.
Berne, C., Pasturel, A., Sluiter, M. and Vinet, B. (1999). Ab initio study of metastability in refractory metal based systems. Phys. Rev. Lett. 83, 1621.CrossRefGoogle Scholar
Berne, C., Pasturel, A., Sluiter, M. and Vinet, B. (2000). Ab initio study of transitory metastable phases solidified by drop-tube processing. Modelling Simul. Mater. Sci. Eng. 8, 233.CrossRefGoogle Scholar
Berry, M. V. (1996). The Levitron®: an adiabatic trap for spins. Proc. R. Soc. Lond. A 452, 1207.CrossRefGoogle Scholar
Berry, M. V. and Geim, A. (1997). Of flying frogs and levitrons. Eur. J. Phys. 18, 307.CrossRefGoogle Scholar
Berry, M. V. and Geim, A. (2000). IgNobel Prize for Michael Berry and Andrey Geim. University of Bristol press release, 5 October 2000: http://www.phy.bris.ac.uk/people/berry_mv/igberry.html
Bhat, M. H., Molinero, V., Soignard, E.et al. (2007). Vitrification of a monatomic metallic liquid. Nature 448, 787.CrossRefGoogle ScholarPubMed
Bhatia, A. B. and Thornton, D. E. (1970). Structural aspects of the electrical resistivity of binary alloys. Phys. Rev. B 2, 3004.CrossRefGoogle Scholar
Bolsaitis, P., Spjut, R. E. and Elliot, J. F. (1989). High-temperature pulses in small alumina particles. High Temp. High Press. 21, 601.Google Scholar
Brandt, E. H. (1989). Levitation in physics. Science 243, 349.CrossRefGoogle ScholarPubMed
Bratz, A. and Egry, I. (1995). Surface oscillations of electromagnetically levitated viscous metal droplets. J. Fluid Mech. 298, 341.CrossRefGoogle Scholar
Brillo, J., Bytchkov, A., Egry, I.et al. (2006). Local structure in liquid binary Al–Cu and Al–Ni alloys. J. Non-Cryst. Solids 352, 4008.CrossRefGoogle Scholar
Bührer, C., Beckmann, M., Fähnle, M., Grünewald, U. and Maier, K. (2000). The liquid ferromagnet Co80Pd20 and its critical exponent γ. J. Magnetism Mag. Mat. 212, 211.CrossRefGoogle Scholar
Burkel, E. (1991). Inelastic Scattering of X-rays with Very High Energy Resolution (Springer, Berlin).Google Scholar
Cagran, C., Hüpf, T., Pottlacher, G. and Lohöfer, G. (2007). High-temperature metallic melts – resistivity intercomparison for space applications. Int. J. Thermophys. 28, 2176.CrossRefGoogle Scholar
Capron, M., Florian, P., Fayon, F.et al. (2001). Local structure and dynamics of high temperature SrO–Al2O3 liquids studied by 27Al NMR and Sr K-edge XAS spectroscopy. J. Non-Cryst. Solids 293–295, 496.CrossRefGoogle Scholar
Car, R. and Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471.CrossRefGoogle ScholarPubMed
Casimir, H. B. G. (1948). On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793.Google Scholar
Cazzato, S., Scopigno, T., Hosokawa, S.et al. (2008). High frequency dynamics in liquid nickel: an inelastic X-ray scattering study. J. Chem. Phys. 128, 234502.CrossRefGoogle Scholar
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability, 2nd edn (Dover Press, New York).Google Scholar
Chathoth, S. M., Damaschke, B., Samwer, K. and Schneider, S. (2008). Thermophysical properties of Si, Ge, and Si–Ge alloy melts measured under microgravity. Appl. Phys. Lett. 93, 071902.CrossRefGoogle Scholar
Cohen, E. G. D., Westerhuijs, P. and Schepper, I. M. (1987). Half width of neutron spectra. Phys. Rev. Lett. 59, 2872.CrossRefGoogle ScholarPubMed
Cornier-Quiquandon, M., Quivy, A., Lefebvre, S.et al. (1991). Neutron-diffraction study of icosahedral Al–Cu–Fe single quasicrystals. Phys. Rev. B 44, 2071.CrossRefGoogle ScholarPubMed
Cortella, L., Vinet, B., Desré, P.et al. (1993). Evidences of transitory metastable phases in refractory metals solidified from highly undercooled liquids in a drop tube. Phys. Rev. Lett. 70, 1469.CrossRefGoogle Scholar
Coté, B., Massiot, D., Taulelle, F. and Coutures, J.-P. (1992). 27Al NMR spectroscopy of aluminosilicate melts and glasses. Chem. Geol. 96, 367.CrossRefGoogle Scholar
Coutures, J.-P.Coutures, J., Renard, R. and Benezech, G. (1972). Vaporization in controlled atmosphere of liquid lanthanide oxides – study on phases obtained by vapor tempering. C. R. Acad. Sci. Paris 275, 1203.Google Scholar
Coutures, J.-P., Massiot, D., Bessada, C., Echegut, P., Rifflet, J. C. and Taulelle, F. (1990). An 27Al NMR study of liquid aluminates in the 1,600–2,100 °C temperature range. C. R. Acad. Sci. (Paris) 310, 1041.Google Scholar
Coutures, J.-P., Rifflet, J.-C l., Florian, P. and Massiot, D. (1994). Etude par analyse thermique et par RMN très haute temperature de 27Al de la solidification de Al2O3 en l'absence de nucléation hétérogène: effets de la temperature du liquide et de la pression partielle d'oxygène. Rev. Int. Hautes Tempér. Réfract., Fr., 29, 123.Google Scholar
Cristiglio, V., Hennet, L., Cuello, G. J.et al. (2007a). Structural study of levitated liquid Y2O3 using neutron scattering. J. Non-Cryst. Solids 353, 993.CrossRefGoogle Scholar
Cristiglio, V., Hennet, L., Cuello, G. J.et al. (2007b). Ab-initio molecular dynamics simulations of the structure of liquid aluminates. J. Non-Cryst. Solids 353, 1789.CrossRefGoogle Scholar
Cristiglio, V., Hennet, L., Cuello, G. J.et al. (2007c). Structure of molten yttrium aluminates: a neutron diffraction study. J. Phys.: Condens. Matter 19, 415105.Google ScholarPubMed
Cristiglio, V., Hennet, L., Cuello, G. J.et al. (2008). Local structure of liquid CaAl2O4 from ab initio molecular dynamics simulations. J. Non-Cryst. Solids 354, 5337.CrossRefGoogle Scholar
Cummings, D. L. and Blackburn, D. A. (1991). Oscillations of magnetically levitated aspherical droplets. J. Fluid Mech. 224, 395.CrossRefGoogle Scholar
Daisenberger, D., Wilson, M., McMillan, P. F. and Quesada Cabrera, R. (2007). High-pressure X-ray scattering and computer simulation studies of density-induced polyamorphism in silicon. Phys. Rev. B 75, 224118.CrossRefGoogle Scholar
D'Angelo, P., Di Nola, A., Filipponi, A., Pavel, N. V. and Roccatano, D. (1994). An extended X-ray absorption fine structure study of aqueous solutions by employing molecular dynamics simulations. J. Chem. Phys. 100, 985.CrossRefGoogle Scholar
Davis, L. C., Logothetis, E. M. and Soltis, R. E. (1988). Stability of magnets levitated above superconductors. J. Appl. Phys. 64, 4212.CrossRefGoogle Scholar
Deb, S. K., Wilding, M., Somayazulu, M. and McMillan, P. F. (2001). Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon. Nature 414, 528.CrossRefGoogle ScholarPubMed
Gennes, P. G. (1959). Liquid dynamics and inelastic scattering of neutrons. Physica 25, 825.CrossRefGoogle Scholar
Delaplane, R. G., Lundstrom, T., Dahlborg, U. and Howells, W. S. (1991). A neutron diffraction study of amorphous boron. Boron-Rich Solids, ed. Emin, D., Aselage, T. L., Switendick, A. C., Morosin, B. and Beckel, C. L., AIP Conf. Proc. No. 231 (AIP, New York), p. 241.Google Scholar
Delisle, A., Gonzàlez, D. J. and Stott, M. J. (2006). Pressure-induced structural and dynamical changes in liquid Si – an ab initio study. J. Phys.: Condens. Matter 18, 3591.Google Scholar
Del Valle, N., Sanchez, A., Pardo, E., Chen, D.-X. and Navau, C. (2007). Optimizing levitation force and stability in superconducting levitation with translational symmetry. Appl. Phys. Lett. 90, 042503.CrossRefGoogle Scholar
Schepper, I. M., Verkerk, P., Well, A. A. and Graaf, L. A. (1983). Short-wavelength sound modes in liquid argon. Phys. Rev. Lett. 50, 974.CrossRefGoogle Scholar
Devanathan, R., Lam, N. Q., Okamoto, P. R. and Meshii, M. (1993). Molecular-dynamics simulation of electron-irradiation-induced amorphization of NiZr2. Phys. Rev. B 48, 42.CrossRefGoogle ScholarPubMed
Di Cicco, A., Congeduti, A., Coppari, F.et al. (2008). Interplay between morphology and metallization in amorphous–amorphous transitions. Phys. Rev. B 78, 033309.CrossRefGoogle Scholar
Di Cicco, A., Trapananti, A., Faggioni, S. and Filipponi, A. (2003). Is there icosahedral ordering in liquid and undercooled metals?Phys. Rev. Lett. 91, 135505.CrossRefGoogle ScholarPubMed
Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. and Jacobson, D. C. (1985). Calorimetric studies of crystallization and relaxation of amorphous silicon and germanium prepared by ion implantation. J. Appl. Phys. 57, 1795.CrossRefGoogle Scholar
Durandurdu, M. and Drabold, D. A. (2002). Ab initio simulation of first-order amorphous-to-amorphous phase transition of silicon. Phys. Rev. B 65, 104208.CrossRefGoogle Scholar
Dzyaloshinskii, I. E., Lifshitz, E. M. and Pitaevskii, L. P. (1961). The general theory of van der Waals forces. Adv. Phys. 10, 165.CrossRefGoogle Scholar
Earnshaw, S. (1842). On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans. Camb. Phil. Soc. 7, 97.Google Scholar
Egelstaff, P. A. (1992). An Introduction to the Liquid State, 2nd edn (Clarendon, Oxford).Google Scholar
Egry, I. (2005). The surface tension of binary alloys: simple models for complex phenomena. Int. J. Thermophys. 26, 931.CrossRefGoogle Scholar
Egry, I., Hennet, L., Kehr, M.et al. (2008). Chemical short-range order in liquid Al–Ni alloys. J. Chem. Phys. 129, 064508.CrossRefGoogle ScholarPubMed
Egry, I., Lohoefer, G. and Jacobs, G. (1995). Surface tension of liquid metals: results from measurements on ground and in space. Phys. Rev. Lett. 75, 4043.CrossRefGoogle ScholarPubMed
Egry, I., Lohoefer, G., Gorges, E. and Jacobs, G. (1996). Structure and properties of undercooled liquid metals. J. Phys.: Condens. Matter 8, 9363.Google Scholar
Egry, I., Jacobs, G. and Holland-Moritz, D. (1999). EXAFS investigations on quasi-crystal-forming melts. J. Non-Cryst. Solids 250–252, 820.CrossRefGoogle Scholar
Enderby, J. E., Ansell, S., Krishnan, S., Price, D. L. and Saboungi, M.-L. (1997). The electrical conductivity of levitated liquids. Appl. Phys. Lett. 71, 116.CrossRefGoogle Scholar
Enderby, J. E., North, D. and Egelstaff, P. A. (1966). The partial structure factors of liquid Cu–Sn. Phil. Mag. 14, 961.CrossRefGoogle Scholar
Eremets, M. I., Struzhkin, V. V., Mao, H.-K. and Hemley, R. J. (2001). Superconductivity in boron. Science 293, 272.CrossRefGoogle ScholarPubMed
Faber, T. E. and Ziman, J. M. (1965). A theory of the electrical properties of liquid metals III. The resistivity of binary alloys. Phil. Mag. 11, 153.CrossRefGoogle Scholar
Falk, H. and Gehring, G. A. (1975). Correlation function and transition temperature bounds for bond-disordered Ising systems. J. Phys. C 8, L298.CrossRefGoogle Scholar
Faux, D. A. and Ross, D. K. (1987). Tracer and chemical diffusion of hydrogen in BCC metals. J. Phys. C 20, 1441.CrossRefGoogle Scholar
Fecht, H. and Johnson, W. L. (1991). A conceptual approach for noncontact calorimetry in space. Rev. Sci. Instrum. 62, 1299.CrossRefGoogle Scholar
Filipponi, A. and Di Cicco, A. (1995). Shot-range order in crystalline, liquid and supercooled germanium probed by X-ray-absorption spectroscopy. Phys. Rev. B 51, 12322.CrossRefGoogle Scholar
Filipponi, A., Di Cicco, A. and Natoli, C. R. (1995). X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory. Phys. Rev. B 52, 15122.CrossRefGoogle ScholarPubMed
Fischer, H. E., Hennet, L., Cristiglio, V.et al. (2007). Magnetic critical scattering in solid Co80Pd20. J. Phys.: Condens. Matter 19, 415106.Google ScholarPubMed
Foex, M. (1977). Recherche sur le point de fusion de l'oxyde d'yttrium. High Temp. High Press. 9, 269.Google Scholar
Frank, F. C. (1952). Supercooling of liquids. Proc. R. Soc. Lond. A 215, 43.CrossRefGoogle Scholar
Frank, F. C. and Kaspar, J. S. (1958). Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallogr. 11, 184.CrossRefGoogle Scholar
Frank, F. C. and Kaspar, J. S. (1959). Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr. 12, 483.CrossRefGoogle Scholar
Franzese, G., Malescio, G., Skibinsky, A., Buldyrev, S. V. and Stanley, H. E. (2001). Generic mechanism for generating a liquid–liquid phase transition. Nature 409, 692.CrossRefGoogle ScholarPubMed
Fratello, V. J. and Brandle, C. D. (1993). Physical properties of a Y3Al5O12 melt. J. Cryst. Growth 128, 1006.CrossRefGoogle Scholar
Fujii, H., Matsumoto, T., Izutani, S., Kiguchi, S. and Nogi, K. (2006). Surface tension of molten silicon measured by microgravity oscillating drop method and improved sessile drop method. Acta Mater. 54, 1221.CrossRefGoogle Scholar
Fukunaga, T., Hayashi, N., Watanabe, N. and Suzuki, K. (1985). The structure of Cu–Zr and Ni–Zr metallic glasses. Rapidly Quenched Metals, ed. Steeb, S. and Warlimont, V. (Elsevier, New York), vol. 1, p. 475.CrossRefGoogle Scholar
Funamori, N. and Tsuji, K. (2002). Pressure-induced structural change of liquid silicon. Phys. Rev. Lett. 88, 255508.CrossRefGoogle ScholarPubMed
Gagnoud, A., Etay, J. and Garnier, M. (1986). Le problème de frontière libreen lévitation électromagnétique. J. Méc. Théor. Appl. 5, 911.Google Scholar
Ganesh, P. and Widom, M. (2009). Liquid–liquid transition in supercooled silicon determined by first-principles simulation. Phys. Rev. Lett. 102, 075701.CrossRefGoogle ScholarPubMed
Gerlich, D. and Slack, G. A. (1985). Elastic properties of β-boron. J. Mat. Sci. Lett. 4, 639.CrossRefGoogle Scholar
Glorieux, B., Millot, F., Rifflet, J.-C. and Coutures, J.-P. (1999). Density of superheated and undercooled liquid alumina by a contactless method. Int. J. Thermophys. 20, 1085.CrossRefGoogle Scholar
Glorieux, B., Millot, F. and Rifflet, J.-C. (2002). Surface tension of liquid alumina from contactless techniques. Int. J. Thermophys. 23, 1249.CrossRefGoogle Scholar
Glorieux, B., Saboungi, M.-L. and Enderby, J. E. (2001). Electronic conduction in liquid boron. Europhys. Lett. 56, 81.CrossRefGoogle Scholar
Glyde, H. R. (1994). Excitations in Liquid and Solid Helium (Clarendon, Oxford).Google Scholar
Gor'kov, L. P. (1962). On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Dokl. 6, 773.Google Scholar
Götze, W. and Lücke, M. (1975). Dynamical current correlation functions of simple classical liquids for intermediate wave numbers. Phys. Rev. A 11, 2173.CrossRefGoogle Scholar
Götze, W. and Lücke, M. (1976). Self-consistent second-order approximation for the liquid-helium-II excitation spectrum. Phys. Rev. B 13, 3822.CrossRefGoogle Scholar
Granier, B. and Heurtault, S. (1983). Méthode de mesure de la densité de réfractaires liquides. Application à l'alumine et à l'oxyde d'yttrium. Rev. Int. Hautes Tempér. Fr. 20, 61.Google Scholar
Granier, J. and Potard, C. (1987). Containerless processing and molding materials by the gas film technique: early demonstration and modelling. European Space Agency Symposium Proceedings 256, 421.Google Scholar
Greaves, G. N., Wilding, M. C., Fearn, S.et al. (2008). Detection of first-order liquid/liquid phase transitions in yttrium oxide–aluminum oxide melts. Science 322, 566.CrossRefGoogle ScholarPubMed
Greer, A. L. (1994). Nucleation and solidification studies using drop-tubes. Mat. Sci. Eng. A 178, 113.CrossRefGoogle Scholar
Groh, B. and Dietrich, S. (1997). Spatial structures of dipolar ferromagnetic liquids. Phys. Rev. Lett. 79, 749.CrossRefGoogle Scholar
Haumesser, P. H., Garandet, J. P., Bancillon, J.et al. (2002). High-temperature viscosity measurements by the gas film levitation technique: application to various types of materials. Int. J. Thermophys. 23, 1217.CrossRefGoogle Scholar
Hausleitner, Ch. and Hafner, J. (1992). Hybridized nearly free-electron tight-binding-bond approach to interatomic forces in disordered transition-metal alloys. II. Modeling of metallic glasses. Phys. Rev. B 45, 128.CrossRefGoogle ScholarPubMed
Hedler, A., Klaumünzer, S. L. and Wesch, W. (2004). Amorphous silicon exhibits a glass transition. Nature Mater. 3, 804.CrossRefGoogle ScholarPubMed
Hemmati, M., Wilson, M. and Madden, P. A. (1999). Structure of liquid Al2O3 from a computer simulation model. J. Phys. Chem. B 103, 4023.CrossRefGoogle Scholar
Hennet, L., Pozdnyakova, I., Bytchkov, A.et al. (2006). Levitation apparatus for neutron diffraction investigations on high temperature liquids. Rev. Sci. Instrum. 77, 053903.CrossRefGoogle Scholar
Hennet, L., Pozdnyakova, I., Bytchkov, A.et al. (2007a). Development of structural order during supercooling of a fragile oxide melt. J. Chem. Phys. 126, 074906.CrossRefGoogle ScholarPubMed
Hennet, L., Pozdnyakova, I., Cristiglio, V.et al. (2007b). Structure and dynamics of levitated liquid aluminates. J. Non-Cryst. Solids 353, 1705.CrossRefGoogle Scholar
Hennet, L., Pozdnyakova, I., Cristiglio, V.et al. (2007c). Short- and intermediate-range order in levitated liquid aluminates. J. Phys.: Condens. Matter 19, 455210.Google Scholar
Hennet, L., Thiaudière, D., Gailhanou, M.et al. (2002). Fast X-ray scattering measurements on molten alumina using a 120° curved position sensitive detector. Rev. Sci. Instrum. 73, 124.CrossRefGoogle Scholar
Hennet, L., Thiaudière, D., Landron, C.et al. (2003). Melting behavior of levitated Y2O3. Appl. Phys. Lett. 83, 3305.CrossRefGoogle Scholar
Herlach, D., Bührer, C., Herlach, D. M.et al. (1998). Magnetic ordering in a supercooled Co–Pd melt studied by muon-spin rotation. Europhys. Lett. 44, 98.CrossRefGoogle Scholar
Herlach, D. M., Feuerbacher, B. and Schleip, E. (1991). Phase seeding in the solidification of an undercooled melt. Mater. Sci. Eng. A133, 795.CrossRefGoogle Scholar
Higuchi, K., Kimura, K., Mizuno, A.et al. (2005). Precise measurement of density and structure of undercooled molten silicon by using synchrotron radiation combined with electromagnetic levitation technique. Meas. Sci. Technol. 16, 381.CrossRefGoogle Scholar
Hippert, F., Audier, M., Klein, H., Bellissent, R. and Boursier, D. (1996). Localized magnetism in molten icosahedral and approximant AlPdMn phases. Phys. Rev. Lett. 76, 54.CrossRefGoogle ScholarPubMed
Hoekstra, H. R. (1966). Phase relationships in the rare earth sesquioxides at high pressure. Inorg. Chem. 5, 754.CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. 136, B864.CrossRefGoogle Scholar
Holland-Moritz, D. (1998). Short-range order and solid–liquid interfaces in undercooled melts. Int. J. Non-Equilib. Process. 11, 169.Google Scholar
Holland-Moritz, D., Herlach, D. M. and Urban, K. (1993). Observation of the undercoolability of quasicrystal-forming alloys by electromagnetic levitation. Phys. Rev. Lett. 71, 1196.CrossRefGoogle ScholarPubMed
Holland-Moritz, D., Schenk, T., Bellissent, R.et al. (2002a). Short-range order in undercooled Co melts. J. Non-Cryst. Solids 312–314, 47.CrossRefGoogle Scholar
Holland-Moritz, D., Schenk, T., Simonet, V.et al. (2002b). Short-range order in undercooled melts forming quasicrystals and approximants. J. Alloys Compounds 342, 77.CrossRefGoogle Scholar
Holland-Moritz, D., Schenk, T., Convert, P., Hansen, T. and Herlach, D. M. (2005). Electromagnetic levitation apparatus for diffraction investigations on the short-range order of undercooled metallic melts. Meas. Sci. Technol. 16, 372.CrossRefGoogle Scholar
Holland-Moritz, D., Stüber, S., Hartmann, H.et al. (2009). Structure and dynamics of liquid Ni36Zr64 studied by neutron scattering. Phys. Rev. B 79, 064204.CrossRefGoogle Scholar
Honeycutt, J. D. and Andersen, H. C. (1987). Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J. Phys. Chem. 91, 4950.CrossRefGoogle Scholar
Horbach, J., Das, S. K., Griesche, A.et al. (2007). Self-diffusion and interdiffusion in Al80Ni20 melts: simulation and experiment. Phys. Rev. B 75, 174304.CrossRefGoogle Scholar
Hosokawa, S., Pilgrim, W.-C., Kawakita, Y.et al. (2003). Sub-picosecond dynamics in liquid Si. J. Phys.: Condens. Matter 15, L623.Google Scholar
Hull, J. R. (2004). Levitation applications of high-temperature superconductors. High Temperature Superconductivity 2: Engineering Applications, ed. Narlikar, A. V. (Springer, Heidelberg & New York), p. 91.CrossRefGoogle Scholar
Hüpf, T., Cagran, C., Lohöfer, G. and Pottlacher, G. (2008a). Electrical resistivity of high temperature metallic melts – Hf−3%Zr, Re, Fe, Co, and Ni. High Temp. High Press. 37, 239.Google Scholar
Hüpf, T., Cagran, C., Lohöfer, G. and Pottlacher, G. (2008b). Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W). J. Phys.: Conf. Ser. 98, 062002.Google Scholar
Ikezoe, Y., Hirota, N., Nakagawa, J. and Kitazawa, K. (1998). Making water levitate. Nature 393, 749.CrossRefGoogle Scholar
Inatomi, Y., Onishi, F., Nagashio, K. and Kuribayashi, K. (2007). Density and thermal conductivity measurements for silicon melt by electromagnetic levitation under a static magnetic field. Int. J. Thermophys. 28, 44.CrossRefGoogle Scholar
Ishikawa, T., Paradis, P.-F. and Yoda, S. (2001). New sample levitation initiation and imaging techniques for the processing of refractory metals with an electrostatic levitator furnace. Rev. Sci. Instrum. 72, 2490.CrossRefGoogle Scholar
Ito, K., Moynihan, C. T. and Angell, C. A. (1999). Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492.CrossRefGoogle Scholar
Jacobs, G. and Egry, I. (1999). EXAFS studies on undercooled liquid Co80Pd20 alloy. Phys. Rev. B 59, 3961.CrossRefGoogle Scholar
Jacobs, G., Egry, I., Gorges, E. and Langen, M. (1998). Measurement of density and structural short-range order of levitated liquid metals. Int. J. Thermophys. 19, 895.CrossRefGoogle Scholar
Jacobs, G., Egry, I., Maier, K., Platzek, D., Reske, J. and Frahm, R. (1996). Extended X-ray-absorption fine structure studies of levitated undercooled metallic melts. Rev. Sci. Instrum. 67, 3683.CrossRefGoogle Scholar
Jahn, S., Madden, P. A. and Wilson, M. (2004). Dynamic simulation of pressure driven phase transformations in crystalline Al2O3. Phys. Rev. B 69, 020106.CrossRefGoogle Scholar
Jahn, S. and Madden, P. A. (2007). Structure and dynamics in liquid alumina: simulations with an ab initio interaction potential. J. Non-Cryst. Solids 353, 3500.CrossRefGoogle Scholar
Jahn, S. and Madden, P. A. (2008). Atomic dynamics of alumina melt: a molecular dynamics simulation study. Condensed Matter Phys. (Lviv) 11, 169.CrossRefGoogle Scholar
Jakse, N. and Pasturel, A. (2003). Local order of liquid and supercooled zirconium by ab initio molecular dynamics. Phys. Rev. Lett. 91, 195501.CrossRefGoogle ScholarPubMed
Jakse, N. and Pasturel, A. (2005). Molecular-dynamics study of liquid nickel above and below the melting point. J. Chem. Phys. 123, 244512.CrossRefGoogle ScholarPubMed
Jakse, N. and Pasturel, A. (2007a). Modeling the structural, dynamical, and magnetic properties of liquid Al1−xMnx (x = 0.14, 0.2, and 0.4): a first-principles investigation. Phys. Rev. B 76, 024207.CrossRefGoogle Scholar
Jakse, N. and Pasturel, A. (2007b). Liquid–liquid phase transformation in silicon: evidence from first-principles molecular dynamics simulations. Phys. Rev. Lett. 99, 205702.CrossRefGoogle ScholarPubMed
Jakse, N., Hennet, L., Price, D. L.et al. (2003). Structural changes on supercooling liquid silicon. Appl. Phys. Lett. 83, 4734.CrossRefGoogle Scholar
Jakse, N., Becq, O. and Pasturel, A. (2004a). Prediction of the local structure of liquid and supercooled tantalum. Phys. Rev. B 70, 174203.CrossRefGoogle Scholar
Jakse, N., Becq, O. and Pasturel, A. (2004b). Ab initio molecular-dynamics simulations of short-range order in liquid Al80Mn20 and Al80Ni20. Phys. Rev. Lett, 93, 207801.CrossRefGoogle ScholarPubMed
Johnson, S. L., Heimann, P. A., MacPhee, A. G.et al. (2005). Bonding in liquid carbon studied by time-resolved X-ray absorption spectroscopy. Phys. Rev. Lett. 94, 057407.CrossRefGoogle ScholarPubMed
Jones, T. B. (1979). A necessary condition for magnetic levitation. J. Appl. Phys. 50, 5057.CrossRefGoogle Scholar
Kawamura, H., Fukuyama, H., Watanabe, M. and Hibiya, T. (2005). Normal spectral emissivity of undercooled liquid silicon. Meas. Sci. Technol. 16, 386.CrossRefGoogle Scholar
Kelton, K. F., Kim, W. J. and Stroud, R. M. (1997). A stable Ti-based quasicrystal. Appl. Phys. Lett. 70, 3230.CrossRefGoogle Scholar
Kelton, K. F., Gangopadhyay, A. K., Lee, G. W.et al. (2002). X-ray and electrostatic levitation undercooling studies in Ti–Zr–Ni quasicrystal forming alloys. J. Non-Cryst. Solids 312–314, 305.CrossRefGoogle Scholar
Kelton, K. F., Lee, G. W., Gangopadhyay, A. K.et al. (2003). First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504.CrossRefGoogle ScholarPubMed
Kim, T. H., Lee, G. W., Gangopadhyay, A. K.et al. (2007). Structural studies of a Ti–Zr–Ni quasicrystal-forming liquid. J. Phys.: Condens. Matter 19, 455212.Google Scholar
Kim, T. H., Lee, G. W., Sieve, B.et al. (2005). In situ high-energy X-ray diffraction study of the local structure of supercooled liquid Si. Phys. Rev. Lett. 95, 085501.CrossRefGoogle ScholarPubMed
Kimura, H., Watanabe, M., Izumi, K.et al. (2001). X-ray diffraction study of undercooled molten silicon. Appl. Phys. Lett. 78, 604.CrossRefGoogle Scholar
Kitamura, N., Makihara, M., Hamai, M.et al. (2000). Containerless melting of glass by magnetic levitation method. Jpn J. Appl. Phys. 39, L324.CrossRefGoogle Scholar
Kobatake, H., Fukuyama, H., Minato, I., Tsukada, T. and Awaji, S. (2007). Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field. Appl. Phys. Lett. 90, 094102.CrossRefGoogle Scholar
Kohara, S., Suzuya, K., Takeuchi, K.et al. (2004). Glass formation at the limit of insufficient network formers. Science 303, 1649.CrossRefGoogle ScholarPubMed
Kohn, W. and Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133.CrossRefGoogle Scholar
Kouvel, J. S. and Fisher, M. E. (1964). Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. 136, A1626.CrossRefGoogle Scholar
Krishnan, S. and Nordine, P. C. (1993). Optical properties of liquid aluminum in the energy range 1.2–3.5 eV. Phys. Rev. B 47, 11780.CrossRefGoogle ScholarPubMed
Krishnan, S. and Nordine, P. C. (1996). Spectral emissivities in the visible and infrared of liquid Zr, Ni and nickel-based binary alloys. J. Appl. Phys. 80, 1735.CrossRefGoogle Scholar
Krishnan, S. and Price, D. L. (2000). X-ray diffraction from levitated liquids. J. Phys.: Condens. Matter 12, R145.Google Scholar
Krishnan, S., Anderson, C. D., Weber, J. K. R.et al. (1993). Optical properties and spectral emissivities at 632.8 nm in the titanium–aluminum system. Met. Trans. A 24, 67.CrossRefGoogle Scholar
Krishnan, S., Ansell, S., Felten, J. J., Volin, K. J. and Price, D. L. (1998a). The structure of liquid boron. Phys. Rev. Lett. 81, 586.CrossRefGoogle Scholar
Krishnan, S., Ansell, S. and Price, D. L. (1998b). X-ray diffraction from levitated liquid yttrium oxide. J. Am. Ceram. Soc. 81, 1967.CrossRefGoogle Scholar
Krishnan, S., Ansell, S. and Price, D. L. (1999). X-ray diffraction on levitated liquids: application to liquid 80%Co–20%Pd alloy. J. Non-Cryst. Solids 250–252, 286.CrossRefGoogle Scholar
Krishnan, S., Hennet, L., Jahn, S.et al. (2005). Structure of normal and supercooled liquid aluminum oxide. Chem. Mater. 17, 2662.CrossRefGoogle Scholar
Krishnan, S., Hennet, L., Key, T.et al. (2007). The structures of normal and supercooled liquid silicon metal and SiGe alloy. J. Non-Cryst. Solids 353, 2975.CrossRefGoogle Scholar
Krishnan, S., Weber, J. K. R., Ansell, S., Hixson, A. D. and Nordine, P. C. (2000). Structure of liquid Al6Si2O13 (3:2 mullite). J. Am. Ceram. Soc. 83, 2777.CrossRefGoogle Scholar
Krishnan, S., Weber, J. K. R., Nordine, P. C.et al. (1991a). Spectral emissivities and optical properties of liquid silicon, aluminum, titanium and niobium. High Temp. Sci. 30, 137.Google Scholar
Krishnan, S., Weber, J. K. R., Schiffman, R. A. and Nordine, P. C. (1991b). Refractive index of liquid aluminum oxide at 0.6328 μm. J. Am. Ceram. Soc. 74, 881.CrossRefGoogle Scholar
Krishnan, S., Yugawa, K. J. and Nordine, P. C. (1997). Optical properties of liquid nickel and iron. Phys. Rev. B 55, 8201.CrossRefGoogle Scholar
Lacks, D. J. (2000). First-order amorphous–amorphous transition in silica. Phys. Rev. Lett. 84, 4629.CrossRefGoogle Scholar
Landron, C., Hennet, L., Jenkins, T. E.et al. (2001). Liquid alumina: detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement. Phys. Rev. Lett. 86, 4839.CrossRefGoogle ScholarPubMed
Langen, L., Hibiya, T., Eguchi, M. and Egry, I. (1998). Measurement of the density and thermal expansion coefficient of molten silicon using electromagnetic levitation. J. Crystal Growth 186, 550.CrossRefGoogle Scholar
Lee, G. W., Gangopadhyay, A. K., Kelton, K. F.et al. (2004). Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802.CrossRefGoogle ScholarPubMed
Leung, P. K. and Wright, J. G. (1974). Structural investigations of amorphous transition element films I. Scanning electron diffraction study of cobalt. Phil. Mag. 30, 185.CrossRefGoogle Scholar
Levi, C. G., Jayaram, V., Valencia, J. J. and Mehrabian, R. (1988). Phase selection in electrohydrodynamic atomization of alumina. J. Mater. Res. 3, 969.CrossRefGoogle Scholar
Li, D. and Herlach, D. M. (1997). Containerless solidification of germanium by electromagnetic levitation and in a drop-tube. J. Mater. Sci. 32, 1437.CrossRefGoogle Scholar
Lipton, J., Kurz, W. and Trivedi, R. (1987). Rapid dendrite growth in undercooled alloys. Acta Metall. 35, 957.CrossRefGoogle Scholar
Liu, L., Chen, S. H., Faraone, A., Yen, C.-W. and Mou, C.-Y. (2005). Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95, 117802.CrossRefGoogle Scholar
Lohöfer, G. (1994). Magnetization and impedance of an inductively coupled metal sphere. Int. J. Eng. Sci. 32, 107.CrossRefGoogle Scholar
Lohöfer, G. (2005). Electrical resistivity measurement of liquid metals. Meas. Sci. Technol. 16, 417.CrossRefGoogle Scholar
Lohöfer, G., Schneider, S. and Egry, I. (2001). Thermophysical properties of undercooled liquid Co80Pd20. Int. J. Thermophys. 22, 593.CrossRefGoogle Scholar
Lovesey, S. W. (1986). Theory of Neutron Scattering from Condensed Matter (Oxford Science Publications, Oxford), p. 214.Google Scholar
Luedtke, W. D. and Landman, U. (1988). Preparation and melting of amorphous silicon by molecular dynamics simulations. Phys. Rev. B 37, 4656.CrossRefGoogle ScholarPubMed
Luedtke, W. D. and Landman, U. (1989). Preparation, structure, dynamics and energetics of amorphous silicon: a molecular dynamics study. Phys. Rev. B 40, 1164.CrossRefGoogle ScholarPubMed
March, N. H. and Tosi, M. (1992). Atomic Dynamics in Liquids (Dover, New York).Google Scholar
Maret, M., Pasturel, A., Senillou, C., Dubois, J. M. and Chieux, P. (1989). Partial structure factors of liquid Al80(Mnx(FeCr)1−x)20 alloys. J. Phys. (Paris) 50, 295.CrossRefGoogle Scholar
Maret, M., Pomme, T., Pasturel, A. and Chieux, P. (1990). Structure of liquid Al80Ni20 alloy. Phys. Rev. B 42, 1598.CrossRefGoogle ScholarPubMed
Maret, M., Chieux, P., Dubois, J. M. and Pasturel, A. (1991). Composition dependence of topological and chemical orders in liquid Al1−x(Mny(FeCr)1−y)x alloys by neutron diffraction. J. Phys.: Condens. Matter 3, 2801.Google Scholar
Martinez, L.-M. and Angell, C. A. (2001). A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663.CrossRefGoogle ScholarPubMed
Masago, A., Shirai, K. and Katayama-Yoshida, H. (2006). Crystal stability of α- and β-boron. Phys. Rev. B 73, 104102.CrossRefGoogle Scholar
Massiot, D., Trumeau, D., Touzo, B.et al. (1995). Structure and dynamics of CaA12O4 from liquid to glass: a high-temperature 27Al NMR time-resolved study. J. Phys. Chem. 99, 16455.CrossRefGoogle Scholar
Massiot, D., Fayon, F., Montouillout, V.et al. (2008). Structure and dynamics of oxide melts and glasses: a view from multinuclear and high temperature NMR. J. Non-Cryst. Solids 354, 249.CrossRefGoogle Scholar
Mathiak, G., Egry, I., Hennet, L.et al. (2005). Aerodynamic levitation and inductive heating – a new concept for structural investigations of undercooled melts. Int. J. Thermophys. 26, 1151.CrossRefGoogle Scholar
Mathiak, G., Brillo, J., Egry, I.et al. (2006). Versatile levitation facility for structural investigations of liquid metals. Microgravity Sci. Technol. 18, 67.CrossRefGoogle Scholar
Matsumoto, T., Fujii, H., Ueda, T., Kamai, M. and Nogi, K. (2005). Measurement of surface tension of molten copper using the free-fall oscillating drop method. Meas. Sci. Technol. 16, 432.CrossRefGoogle Scholar
McMillan, P. F. (2004). Polyamorphic transformations in liquids and glasses. J. Mater. Chem. 14, 1506.CrossRefGoogle Scholar
McMillan, P. F., Wilson, M., Daisenberger, D. and Machon, D. (2005). A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nature Mater. 4, 680.CrossRefGoogle ScholarPubMed
McMillan, P. F., Wilson, M. and Wilding, M. C. (2003). Polyamorphism in aluminate liquids. J. Phys.: Condens. Matter 15, 6105.Google Scholar
McMillan, P. F., Wilson, M., Wilding, M. C.et al. (2007). Polyamorphism and liquid–liquid phase transitions: challenges for experiment and theory. J. Phys.: Condens. Matter 19, 415101.Google ScholarPubMed
Mei, Q., Benmore, C. J. and Weber, J. K. R. (2007). Structure of liquid SiO2: a measurement by high-energy X-ray diffraction. Phys. Rev. Lett. 98, 057802.CrossRefGoogle ScholarPubMed
Meyer, A., Stüber, S., Holland-Moritz, D., Heinen, O. and Unruh, T. (2008). Determination of self-diffusion coefficients by quasielastic neutron scattering measurements of levitated Ni droplets. Phys. Rev. B 77, 092201.CrossRefGoogle Scholar
Mezei, F. (1972). Neutron spin echo: a new concept in polarized thermal neutron techniques. Z. Phys. 255, 146.CrossRefGoogle Scholar
Miller, J. (2009). Casimir forces between solids can be repulsive. Phys. Today 62, no. 2, 19.Google Scholar
Millot, F., Rifflet, J.-C., Sarou-Kanian, V. and Wille, G. (2002a). High temperature properties of liquid boron from contactless techniques. Int. J. Thermophys. 23, 1185.CrossRefGoogle Scholar
Millot, F., Rifflet, J.-C., Wille, G., Sarou-Kanian, V. and Glorieux, B. (2002b). Analysis of surface tension from aerodynamic levitation of liquids. J. Am. Ceram. Soc. 85, 187.CrossRefGoogle Scholar
Millot, F., Sarou-Kanian, V., Rifflet, J.-C. and Vinet, B. (2008). The surface tension of liquid silicon at high temperature. Mater. Sci. Eng. A 495, 8.CrossRefGoogle Scholar
Miranda, C. R. and Antonelli, A. (2004). Transitions between disordered phases in supercooled liquid silicon. J. Chem. Phys. 120, 11672.CrossRefGoogle ScholarPubMed
Mito, M., Tsukada, T., Hozawa, M.et al. (2005). Sensitivity analyses of the thermophysical properties of silicon melt and crystal. Meas. Sci. Technol. 16, 457.CrossRefGoogle Scholar
Molinero, V., Sastry, S. and Angell, C. A. (2006). Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Phys. Rev. Lett. 97, 075701.CrossRefGoogle Scholar
Morishita, T. (2005). Anomalous diffusivity in supercooled liquid silicon under pressure. Phys. Rev. E 72, 021201.CrossRefGoogle ScholarPubMed
Morishita, T. (2006). How does tetrahedral structure grow in liquid silicon upon supercooling?Phys. Rev. Lett. 97, 165502.CrossRefGoogle ScholarPubMed
Moss, S. C. and Price, D. L. (1985). Random packing of structural units and the first sharp diffraction peak in glasses. Physics of Disordered Materials, ed. Adler, D., Fritzsche, H. and Ovshinsky, S. R. (Plenum, New York), p. 77.CrossRefGoogle Scholar
Mountain, R. D. (1966). Spectral distribution of scattered light in a simple fluid. Rev. Mod. Phys. 38, 205.CrossRefGoogle Scholar
Muck, O. (1923). German Patent 42204.
Mukai, K., Yuan, Z., Nogi, K. and Hibiya, T. (2000). Effect of the oxygen partial pressure on the surface molten silicon and its temperature coefficient. ISIJ Int. Suppl. 40, S148.Google Scholar
Munday, J. N., Capasso, F. and Parsegian, V. A. (2009). Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170.CrossRefGoogle ScholarPubMed
Nagashio, K. and Kuribayashi, K. (2002a). Spherical yttrium aluminum garnet embedded in a glass matrix. J. Am. Ceram. Soc. 85, 2353.CrossRefGoogle Scholar
Nagashio, K. and Kuribayashi, K. (2002b). Metastable phase formation from an undercooled rare-earth orthoferrite melt. J. Am. Ceram. Soc. 85, 2550.CrossRefGoogle Scholar
Nagashio, K. and Kuribayashi, K. (2005). Growth mechanism of twin-related and twin-free facet Si dendrites. Acta Mater. 53, 3021.CrossRefGoogle Scholar
Nagashio, K., Adachi, M., Higuchi, K.et al. (2006a). Real-time X-ray observation of solidification from undercooled Si melt. J. Appl. Phys. 100, 033524.CrossRefGoogle Scholar
Nagashio, K., Kuribayashi, K., Vijaya Kumar, M. S.et al. (2006b). In situ identification of the metastable phase during solidification from the undercooled YFeO3 melt by fast X-ray diffractometry at 250 Hz. Appl. Phys. Lett. 89, 241923.CrossRefGoogle Scholar
Nagashio, K., Nozaki, K. and Kuribayashi, K. (2007). Dynamic process of dendrite fragmentation in solidification from undercooled Si melt using time-resolved X-ray diffraction. Appl. Phys. Lett. 91, 061916.CrossRefGoogle Scholar
Nasch, P. (1996). Elastic and anelastic properties of liquid iron and iron alloys: applications to the earth's core. Ph. D. Dissertation, University of Hawaii, USA.Google Scholar
Neuville, D. R., Cormier, L. and Massiot, D. (2004). Al environment in tectosilicate and peraluminous glasses: a 27Al MQ-MAS NMR, Raman, and XANES investigation. Geochim. Cosmochim. Acta 68, 5071.CrossRefGoogle Scholar
Nordine, P. C., Weber, J. K. R. and Abadie, J. G. (2000). Properties of high-temperature melts using levitation. Pure Appl. Chem. 72, 2127.CrossRefGoogle Scholar
Oganov, A. R., Chen, J., Gatti, C.et al. (2009). Ionic high-pressure form of elemental boron. Nature 457, 863–867.CrossRefGoogle ScholarPubMed
Ohsaka, K., Chung, S. K. and Rhim, W. K. (1998). Specific volumes and viscosities of the Ni–Zr alloys and their correlation with the glass formability of the alloys. Acta Mater. 46, 4535.CrossRefGoogle Scholar
Okress, E. C., Wroughton, D. M., Comenetz, G., Bruce, P. H. and Kelly, J. C. R. (1952). Electromagnetic levitation of molten and solid metals. J. Appl. Phys. 23, 545.CrossRefGoogle Scholar
Oran, W. A., Berge, L. H. and Parker, H. W. (1980). Parametric study of an acoustic levitation system. Rev. Sci. Instrum. 51, 626.CrossRefGoogle Scholar
Panofen, C. and Herlach, D. M. (2006). Rapid solidification of highly undercooled Si and Si–Co melts. Appl. Phys. Lett. 88, 171913.CrossRefGoogle Scholar
Paradis, P.-F., Babin, F. and Gagné, J.-M. (1996). Study of the aerodynamic trap for containerless laser materials processing. Rev. Sci. Instrum. 67, 262.CrossRefGoogle Scholar
Paradis, P.-F., Ishikawa, T. and Yoda, S. (2001a). Non-contact measurements of thermophysical properties of niobium at high temperature. J. Mat. Sci. 36, 5125.CrossRefGoogle Scholar
Paradis, P.-F., Ishikawa, T. and Yoda, S. (2005a). Noncontact density measurements of liquid, undercooled, and high temperature solid boron. Appl. Phys. Lett. 86, 151901.CrossRefGoogle Scholar
Paradis, P.-F., Ishikawa, T. and Yoda, S. (2005b). Non-contact property measurements of liquid and supercooled ceramics with a hybrid electrostatic-aerodynamic levitation furnace. Meas. Sci. Technol. 16, 452.CrossRefGoogle Scholar
Paradis, P.-F., Ishikawa, T. and Yoda, S. (2005c). Electrostatic levitation research and development at JAXA: past and present activities in thermophysics. Int. J. Thermophys. 26, 1031.CrossRefGoogle Scholar
Paradis, P.-F., Ishikawa, T., Yu, J. and Yoda, S. (2001b). Hybrid electrostatic–aerodynamic levitation furnace for the high-temperature processing of oxide materials on the ground. Rev. Sci. Instrum. 72, 2811.CrossRefGoogle Scholar
Parry, D. L. and Brewster, M. Q. (1991). Optical constants of Al2O3 smoke in propellant flames. J. Thermophys. Heat Transfer 5, 142.CrossRefGoogle Scholar
Perkowitz, S. (2009). Castles in the air. Phys. World 22, no. 1, 30.CrossRefGoogle Scholar
Petkov, V., Gerber, Th. and Himmel, B. (1998). Atomic ordering in Cax/2AlxSi1−xO2 glasses (x = 0, 0.34, 0.5, 0.68) by energy-dispersive X-ray diffraction. Phys. Rev. B 58, 11982.CrossRefGoogle Scholar
Pettifor, D. G. (1986). The structures of binary compounds. I. Phenomenological structure maps. J. Phys. C 19, 285.CrossRefGoogle Scholar
Piluso, P., Monerris, J., Journeau, C. and Cognet, G. (2002). Viscosity measurements of ceramic oxides by aerodynamic levitation. Int. J. Thermophys. 23, 1229.CrossRefGoogle Scholar
Platzek, D., Notthoff, C., Herlach, D. M.et al. (1994). Liquid metal undercooled below its Curie temperature. Appl. Phys. Lett. 65, 1723.CrossRefGoogle Scholar
Podkletnov, E. and Nieminen, R. (1992). A possibility of gravitational force shielding by bulk YBa2Cu3O7−x superconductor. Physica C: Superconductivity 203, 441.CrossRefGoogle Scholar
Poe, B. T., McMillan, P. F., Coté, B., Massiot, D. and Coutures, J.-P. (1992). In situ study by high-temperature 27Al NMR spectroscopy and molecular dynamics simulation. J. Phys. Chem. 96, 8220.CrossRefGoogle Scholar
Poe, B. T., McMillan, P. F., Coté, B., Massiot, D. and Coutures, J. P. (1993). Magnesium and calcium aluminate liquids: in situ high-temperature 27Al NMR spectroscopy. Science 259, 768.CrossRefGoogle ScholarPubMed
Poe, B. T., McMillan, P. F., Coté, B., Massiot, D. and Coutures, J. P. (1994). Structure and dynamics in calcium aluminate liquids: high-temperature 27Al NMR and Raman spectroscopy. J. Am. Ceram. Soc. 77, 1832.CrossRefGoogle Scholar
Poole, P. H., Grande, T., Angell, C. A. and McMillan, P. F. (1997). Polymorphic phase transitions in liquids and glasses. Science 275, 322.CrossRefGoogle Scholar
Pozdnyakova, I., Hennet, L., Brun, J.-F.et al. (2007). Longitudinal excitations in Mg–Al–O refractory oxide melts studied by inelastic X-ray scattering. J. Chem. Phys. 126, 114505.CrossRefGoogle ScholarPubMed
Pozdnyakova, I., Hennet, L., Mathiak, G.et al. (2006). Structural properties of molten dilute aluminium–transition metal alloys. J. Phys.: Condens. Matter 18, 6469.Google ScholarPubMed
Pozdnyakova, I., Sadiki, N., Hennet, L.et al. (2008). Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction. J. Non-Cryst. Solids 354, 2038.CrossRefGoogle Scholar
Price, D. L. and Pasquarello, A. (1999). Number of independent partial structure factors of a disordered n-component system. Phys. Rev. B 59, 5.CrossRefGoogle Scholar
Price, D. L. and Saboungi, M.-L. (1998). Anomalous X-ray scattering from disordered materials. Local Structure from Diffraction, ed. Billinge, S. J. L. and Thorpe, M. F. (Plenum, New York), p. 23.Google Scholar
Price, D. L. and Sköld, K. (1986). Introduction to neutron scattering. Neutron Scattering, Methods of Experimental Physics Vol. 23, ed. Sköld, K. and Price, D. L. (Academic, New York), Part A, p. 1.Google Scholar
Price, D. L., Moss, S. C., Reijers, R., Saboungi, M.-L. and Susman, S. (1989). Intermediate-range order in glasses and liquids. J. Phys.: Condens. Matter 1, 1005.Google Scholar
Price, D. L., Saboungi, M.-L., Reijers, R., Kearley, G. and White, R. (1991). Two-stage melting in cesium-lead. Phys. Rev. Lett. 66, 1894.CrossRefGoogle Scholar
Price, D. L., Saboungi, M.-L. and Barnes, A. C. (1998). Structure of vitreous germania. Phys. Rev. Lett. 81, 3207.CrossRefGoogle Scholar
Price, D. L., Saboungi, M.-L. and Bermejo, F. J. (2003). Dynamical aspects of disorder in condensed matter. Rep. Prog. Phys. 66, 407.CrossRefGoogle Scholar
Price, D. L., Alatas, A., Hennet, L.et al. (2009). Liquid boron: X-ray measurements and ab initio molecular dynamics simulations. Phys. Rev. B 79, 134201.CrossRefGoogle Scholar
Principi, E., Di Cicco, A., Decremps, F.et al. (2004). Polyamorphic transition of germanium under pressure. Phys. Rev. B 69, 201201.CrossRefGoogle Scholar
Przyborowski, M., Hibiya, T., Eguchi, M. and Egry, I. (1995). Surface tension measurement of molten silicon by the oscillating drop method using electromagnetic levitation. J. Crystal Growth 151, 60.CrossRefGoogle Scholar
Qin, J., Bian, X., Sliusarenkoyz, S. I. and Wang, W. (1998). Pre-peak in the structure factor of liquid Al–Fe alloy. J. Phys.: Condens. Matter 10, 1211.Google Scholar
Rahman, A. (1967). Collective coordinates in classical systems. Phys. Rev. Lett. 19, 420.CrossRefGoogle Scholar
Raoux, D. (1993). Differential and partial structure factors by X-ray anomalous wide angle scattering. Methods in the Determination of Partial Structure Factors of Disordered Matter by Neutron and Anomalous X-ray Diffraction, ed. Suck, J. B., Raoux, D., Chieux, P. and Riekel, C. (World Scientific, Singapore), p. 130.Google Scholar
Rapoport, E. (1967). Polymorphic phase transitions in liquids and glasses. J. Chem. Phys. 46, 2891.CrossRefGoogle Scholar
Rayleigh, Lord (1879). On the capillary phenomena of jets. Proc. R. Soc. (London) 29, 71.Google Scholar
Reske, J., Herlach, D. M., Keuser, F., Maier, K. and Platzek, D. (1995). Evidence for the existence of long-range magnetic ordering in a liquid undercooled metal. Phys. Rev. Lett. 75, 737.CrossRefGoogle Scholar
Rhim, W.-K. and Ishikawa, T. (1998). Noncontact electrical resistivity measurement technique for molten metals. Rev. Sci. Instrum. 69, 3628.CrossRefGoogle Scholar
Rhim, K. and Ohsaka, K. (2000). Thermophysical properties measurement of molten silicon by high-temperature electrostatic levitator: density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity. J. Crystal Growth 208, 313.CrossRefGoogle Scholar
Rhim, W.-K., Collender, M., Hyson, M. T., Simms, W. T. and Elleman, D. D. (1985). Development of an electrostatic positioner for space material processing. Rev. Sci. Instrum. 56, 307.CrossRefGoogle Scholar
Rhim, W.-K., Chung, S. K., Barber, D.et al. (1993). An electrostatic levitator for high-temperature containerless materials processing in l-g. Rev. Sci. Instrum. 64, 2961.CrossRefGoogle Scholar
Rhim, W.-K., Ohsaka, K., Paradis, P.-F. and Spjut, R. E. (1999). Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796.CrossRefGoogle Scholar
Rogers, J. R., Hyers, R. W., Rathz, T., Savage, L. and Robinson, M. B. (2001). Thermophysical property measurement and materials research in the NASA/MSFC electrostatic levitator. Space Technology and Applications International Forum – 2001, ed. El-Genk, M. S. (American Institute of Physics), p. 332.Google Scholar
Ruiz-Alonso, D., Coombs, T. A. and Campbell, A. M. (2005). Numerical solutions to the critical state in a magnet–high temperature superconductor interaction. Supercond. Sci. Technol. 18, S209.CrossRefGoogle Scholar
Ruiz-Martín, M. D., Jiménez-Ruiz, M., Plazanet, M.et al. (2007). Microscopic dynamics in molten Ni: experimental scrutiny of embedded-atom-potential simulations. Phys. Rev. B 75, 224202.CrossRefGoogle Scholar
Rulison, A. J. and Rhim, W.-K. (1994). A noncontact measurement technique for the specific heat and total hemispherical emissivity of undercooled refractory materials. Rev. Sci. Instrum. 65, 695.CrossRefGoogle Scholar
Saboungi, M.-L. and Glorieux, B. (2005). Method for synthesizing extremely high-temperature melting materials. US Patent 6, 967,011B1, 22 November, 2005.Google Scholar
Saboungi, M.-L., Fortner, J., Howells, W. S. and Price, D. L. (1993). Dynamic enhancement of cation migration in a zintl alloy by polyanion rotation. Nature 365, 237.CrossRefGoogle Scholar
Saboungi, M. L., Enderby, J., Glorieux, B.et al. (2002). What is new on the levitation front?J. Non-Cryst. Solids 312–314, 294.CrossRefGoogle Scholar
Sachdev, S. and Nelson, D. R. (1984). Theory of the structure factor of metallic glasses. Phys. Rev. Lett. 53, 1947.CrossRefGoogle Scholar
Said, A. H., Sinn, H., Alatas, A.et al. (2006). Collective excitations in an early molten transition metal. Phys. Rev. B 74, 172202.CrossRefGoogle Scholar
San Miguel, M. A., Sanz, J. F., Alvarez, L. J. and Odriozola, J. A. (1998). Molecular-dynamics simulations of liquid aluminum oxide. Phys. Rev. B 58, 2369.CrossRefGoogle Scholar
Sarou-Kanian, V., Rifflet, J.-C. and Millot, F. (2005). IR radiative properties of solid and liquid alumina: effects of temperature and gaseous environment. Int. J. Thermophys. 26, 1263.CrossRefGoogle Scholar
Sasaki, H., Tokizaki, E., Huang, X. M., Terashima, K. and Kimura, S. (1995). Temperature dependence of the viscosity of molten silicon measured by the oscillating cup method. Jpn J. Appl. Phys. 34, 3432.CrossRefGoogle Scholar
Sastry, S. and Angell, C. A. (2003). Liquid–liquid phase transition in supercooled silicon. Nature Mater. 2, 739.CrossRefGoogle ScholarPubMed
Sato, Y., Kameda, Y., Nagasawa, T.et al. (2003). Viscosity of molten silicon and the factors affecting measurement. J. Crystal Growth 249, 404.CrossRefGoogle Scholar
Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R. and Herlach, D. M. (2002). Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507.CrossRefGoogle ScholarPubMed
Schenk, T., Simonet, V., Holland-Moritz, D.et al. (2004). Temperature dependence of the chemical short-range order in undercooled and stable Al–Fe–Co liquids. Europhys. Lett. 65, 34.CrossRefGoogle Scholar
Schirmacher, W. and Sinn, H. (2008). Collective dynamics of simple liquids: a mode-coupling description. Condens. Matter Phys. (Kyiv) 11, 127.CrossRefGoogle Scholar
Schneider, S. J. (1970). Cooperative determination of the melting point of alumina. Pure Appl. Chem. 21, 117.CrossRefGoogle Scholar
Schnyders, H. S. and Zytveld, J. (1996). Electrical resistivity and thermopower of liquid Ge and Si. J. Phys.: Condens. Matter 8, 10875.Google Scholar
Schnyders, H. S., Saboungi, M.-L. and Enderby, J. E. (1999). Noninvasive simultaneous determination of conductivity and permeability. Appl. Phys. Lett. 75, 3213.CrossRefGoogle Scholar
Schwarz, M., Karma, A., Eckler, K. and Herlach, D. M. (1994). Physical mechanism of grain refinement in solidification of undercooled melts. Phys. Rev. Lett. 73, 1380.CrossRefGoogle ScholarPubMed
Scopigno, T., Ruocco, G. and Sette, F. (2005). Microscopic dynamics in liquid metals: the experimental point of view. Rev. Mod. Phys. 77, 881.CrossRefGoogle Scholar
Shechtman, D., Blech, I., Gratias, D. and Cahn, J. W. (1984). Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951.CrossRefGoogle Scholar
Shpil'rain, E. E., Kagan, D. N., Barkhatov, L. S and Zhmakin, L. I. (1976). The electrical conductivity of alumina near the melting point. High-Temp. High Press. 8, 177.Google Scholar
Simonet, V., Hippert, F., Audier, M. and Bellissent, R. (2001). Local order in liquids forming quasicrystals and approximant phases. Phys. Rev. B 65, 024203.CrossRefGoogle Scholar
Sinn, H. (2001). Spectroscopy with meV energy resolution. J. Phys.: Condens. Matter 13, 7525.Google Scholar
Sinn, H., Glorieux, B., Hennet, L.et al. (2003). Microscopic dynamics of liquid aluminum oxide. Science 299, 2047.CrossRefGoogle ScholarPubMed
Skinner, L. B., Barnes, A. C. and Crichton, W. A. (2006). Novel behaviour and structure of new glasses of the type Ba–Al–O and Ba–Al–Ti–O produced by aerodynamic levitation and laser heating. J. Phys.: Condens. Matter 18, L407.Google ScholarPubMed
Skinner, L. B., Barnes, A. C., Salmon, P. S. and Crichton, W. A. (2008). Phase separation, crystallization and polyamorphism in the Y2O3–Al2O3 system. J. Phys.: Condens. Matter 20, 205103.Google Scholar
Slichter, C. P. (1980). Principles of Magnetic Resonance (Springer-Verlag, Berlin).Google Scholar
Squires, G. L. (1978). Introduction to the Theory of Thermal Neutron Scattering (Cambridge University Press, Cambridge).Google Scholar
Steinberg, J., Lord, A E., Lacy, L. L. and Johnson, J. (1981). Production of bulk amorphous Pd77.5Si16.5Cu6 in a containerless low-gravity environment. Appl. Phys. Lett. 38, 135.CrossRefGoogle Scholar
Steinhardt, P. H., Nelson, D. R. and Ronchetti, M. (1983). Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784.CrossRefGoogle Scholar
Stich, I., Car, R. and Parrinello, M. (1989a). Bonding and disorder in liquid silicon. Phys. Rev. Lett. 63, 2240.CrossRefGoogle ScholarPubMed
Stich, I., Car, R. and Parrinello, M. (1989b). Structural, bonding, dynamical, and electronic properties of liquid silicon: an ab initio molecular-dynamics study. Phys. Rev. B 44, 4262.CrossRefGoogle Scholar
Stich, I., Parrinello, M. and Holender, J. M. (1996). Dynamics, spin fluctuations and bonding in liquid silicon. Phys. Rev. Lett. 76, 2077.CrossRefGoogle ScholarPubMed
Stillinger, F. H. and Weber, T. A. (1982). Hidden structure in liquids. Phys. Rev. A 25, 978.CrossRefGoogle Scholar
Stillinger, F. H. and Weber, T. A. (1985). Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262.CrossRefGoogle ScholarPubMed
Tamaki, S. and Waseda, Y. (1976). Application of the hard-sphere model to thermodynamic properties of liquid 3d transition metals. J. Phys. F: Met. Phys. 6, L89.CrossRefGoogle Scholar
Tangeman, J. A., Phillips, B. L. and Hart, R. (2007). Nucleation of perovskite nanocrystals in a levitating liquid. J. Am. Ceram. Soc. 90, 758.CrossRefGoogle Scholar
Teichler, H. (1999). Melting transition in molecular-dynamics simulations of the Ni0.5Zr0.5 intermetallic compound. Phys. Rev. B 59, 8473.CrossRefGoogle Scholar
Terashima, K. and Kanno, K. (2001). Silicon melt density – problems of Archimedean technique. Mater. Sci. Semicond. Process. 4, 249.CrossRefGoogle Scholar
Thompson, M. O., Galvin, G. J., Mayer, J. W.et al. (1984). Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 52, 2360.CrossRefGoogle Scholar
Trivedi, R. and Kurz, W. (1994). Solidification microstructures: a conceptual approach. Acta Metall. Mater. 42, 15.CrossRefGoogle Scholar
Trivedi, R., Lipton, J. and Kurz, W. (1987). Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts. Acta Metall. 35, 965.CrossRefGoogle Scholar
Turnbull, D. (1990). The gram-atomic volumes of alloys of transition metals with Al and Si. Acta Metall. Mater. 38, 243.CrossRefGoogle Scholar
Urbain, G. (1983). Viscosités de liquides du système CaO–Al2O3. Rev. Int. Hautes Temp. Refract. (Paris) 20, 135.Google Scholar
Setten, M. J., Uijttewaal, M. A., Wijs, G. A. and Groot, R. A. (2007). Thermodynamic stability of boron: the role of defects and zero point motion. J. Am. Chem. Soc. 129, 2458.CrossRefGoogle ScholarPubMed
Well, A. A., Verkerk, P., Graaf, L. A., Suck, J.-B. and Copley, J. R. D. (1985). Density fluctuations in liquid argon: coherent dynamic structure factor along the 120-K isotherm obtained by neutron scattering. Phys. Rev. A 31, 3391.CrossRefGoogle ScholarPubMed
Vinet, B., Cortella, L., Favier, J. J. and Desré, P. (1991). Highly undercooled W and Re drops in an ultrahigh-vacuum drop tube. Appl. Phys. Lett. 58, 97.CrossRefGoogle Scholar
Voigtmann, Th., Meyer, A., Holland-Moritz, D.et al. (2008). Atomic diffusion mechanisms in a binary metallic melt. EPL 82, 66001.CrossRefGoogle Scholar
Volkmann, T., Wilde, G., Willnecker, R. and Herlach, D. M. (1998). Nonequilibrium solidification of hypercooled Co–Pd melts. J. Appl. Phys. 83, 3028.CrossRefGoogle Scholar
Waltham, C., Bendall, S. and Kotlicki, A. (2003). Bernouilli levitation. Am. J. Phys. 71, 176.CrossRefGoogle Scholar
Waseda, Y. (1980). The Structure of Non-Crystalline Materials (McGraw-Hill, New York).Google Scholar
Waseda, Y. and Suzuki, K. (1975). Structure of molten silicon and germanium by X-ray diffraction. Z. Physik 20, 339.CrossRefGoogle Scholar
Waseda, Y., Shinoda, K., Sugiyama, K.et al. (1995). High temperature X-ray diffraction study of melt structure of silicon. Jpn. J. Appl. Phys., 34, 4124.CrossRefGoogle Scholar
Weber, J. K. R. and Nordine, P. C. (1995). Containerless liquid-phase processing of ceramic materials. Microgravity Sci. Technol. 7, 279.Google Scholar
Weber, J. K. R., Hampton, D. S., Merkley, D. R.et al. (1994). Aero-acoustic levitation: a method for containerless liquid-phase processing at high temperatures. Rev. Sci. Instrum. 65, 456.CrossRefGoogle Scholar
Weber, J. K. R., Krishnan, S., Anderson, C. D. and Nordine, P. C. (1995a). Spectral absorption coefficient of molten aluminum oxide from 0.385 to 0.780 μm. J. Am. Ceram. Soc. 78, 583.CrossRefGoogle Scholar
Weber, J. K. R., Nordine, P. C. and Krishnan, S. (1995b). Effects of melt chemistry on the spectral absorption coefficient of molten aluminum oxide. J. Am. Ceram. Soc. 78, 3067.CrossRefGoogle Scholar
Weber, J. K. R., Anderson, C. D., Merkley, D. R. and Nordine, P. C. (1995c). Solidification behavior of undercooled liquid aluminum oxide. J. Am. Ceram. Soc. 78, 577.CrossRefGoogle Scholar
Weber, J. K. R., Felten, J. J., Cho, B. and Nordine, P. C. (1998). Glass fibres of pure and erbium- or neodymium-doped yttria–alumina compositions. Nature 393, 769.CrossRefGoogle Scholar
Weber, J. K. R., Krishnan, S., Ansell, S., Hixson, A. D. and Nordine, P. C. (2000a). Structure of liquid Y3Al5O12 (YAG). Phys. Rev. Lett. 84, 3622.CrossRefGoogle Scholar
Weber, J. K. R., Abadie, J. G., Hixson, A. D., Nordine, P. C. and Jerman, G. A. (2000b). Glass formation and polyamorphism in rare-earth oxide–aluminum oxide compositions. J. Am. Ceram. Soc. 83, 1868.CrossRefGoogle Scholar
Weber, J. K. R., Abadie, J. G., Key, T. S.et al. (2002). Synthesis and optical properties of rare-earth–aluminum oxide glasses. J. Am. Ceram. Soc. 85, 1309.CrossRefGoogle Scholar
Weber, J. K. R., Benmore, C. J., Tangeman, J. A., Siewenie, J. and Hiera, K. J. (2003). Structure of binary CaO–Al2O3 and SrO–Al2O3 liquids by combined levitation – neutron diffraction. J. Neutron Res. 11, 113.CrossRefGoogle Scholar
Weber, R., Benmore, C. J., Siewenie, J., Urquidi, J. and Key, T. S. (2004). Structure and bonding in single- and two-phase alumina-based glasses. Phys. Chem. Chem. Phys. 6, 2480.CrossRefGoogle Scholar
Whymark, R. R. (1975). Acoustic field positioning for containerless processing. Ultrasonics 13, 251.CrossRefGoogle Scholar
Widom, M. and Mihalkovič, M. (2008). Symmetry-broken crystal structure of elemental boron at low temperature. Phys. Rev. B 77, 064113.CrossRefGoogle Scholar
Wilde, G., Görler, G. P. and Willnecker, R. (1996a). Specific heat capacity of undercooled magnetic melts. Appl. Phys. Lett. 68, 2953.CrossRefGoogle Scholar
Wilde, G., Görler, G. P. and Willnecker, R. (1996b). Hypercooling of completely miscible alloys. Appl. Phys. Lett. 69, 2995.CrossRefGoogle Scholar
Wilding, M. C., Benmore, C. J. and McMillan, P. F. (2002a). A neutron diffraction study of yttrium- and lanthanum-aluminate glasses. J. Non-Cryst. Solids 297, 143.CrossRefGoogle Scholar
Wilding, M. C., McMillan, P. F. and Navrotsky, A. (2002b). Thermodynamic and structural aspects of the polyamorphic transition in yttrium and other rare-earth aluminate liquids. Physica A 314, 379.CrossRefGoogle Scholar
Wille, G., Millot, F. and Rifflet, J.-C. (2002). Thermophysical properties of containerless liquid iron up to 2500 K. Int. J. Thermophys. 23, 1197.CrossRefGoogle Scholar
Willnecker, R., Herlach, D. M. and Feuerbacher, B. (1989). Evidence of nonequilibrium processes in rapid solidification of undercooled metals. Phys. Rev. Lett. 62, 2707.CrossRefGoogle ScholarPubMed
Winborne, D. A., Nordine, P. C., Rosner, D. E. and Marley, N. F. (1976). Aerodynamic levitation technique for containerless high-temperature studies on liquid and solid samples. Metall. Trans. B 7, 711.CrossRefGoogle Scholar
Wunderlich, R. K. and Fecht, H.-J. (2005). Modulated electromagnetic induction calorimetry of reactive metallic liquids. Meas. Sci. Technol. 16, 402.CrossRefGoogle Scholar
Wunderlich, R. K., Lee, D. S., Johnson, W. L. and Fecht, H.-J. (1997). Noncontact modulation calorimetry of metallic liquids in low Earth orbit. Phys. Rev. B 55, 26.CrossRefGoogle Scholar
Wyatt, P. J. and Phillips, D. T. (1972). A new instrument for the study of individual aerosol particles. J. Colloid. Interface Sci. 39, 125.CrossRefGoogle Scholar
Xie, W. J. and Wei, B. (2001). Parametric study of single-axis acoustic levitation. Appl. Phys. Lett. 79, 88.CrossRefGoogle Scholar
Xie, W. J., Cao, C. D., , Y. J. and Wei, B (2002). Levitation of iridium and liquid mercury by ultrasound. Phys. Rev. Lett. 89, 104304.CrossRefGoogle ScholarPubMed
Xie, W. J., Cao, C. D., , Y. J., Hong, Z. Y. and Wei, B. (2006). Acoustic method for levitation of small living animals. Appl. Phys. Lett. 89, 214102.CrossRefGoogle Scholar
Zallen, R. (1983). The Physics of Amorphous Solids (Wiley, New York).CrossRefGoogle Scholar
Zhou, Z., Mukherjee, S. and Rhim, W.-K. (2003). Measurement of thermophysical properties of molten silicon using an upgraded electrostatic levitator. J. Crystal Growth 257, 350.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David L. Price, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: High-Temperature Levitated Materials
  • Online publication: 23 April 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511730306.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David L. Price, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: High-Temperature Levitated Materials
  • Online publication: 23 April 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511730306.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David L. Price, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: High-Temperature Levitated Materials
  • Online publication: 23 April 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511730306.011
Available formats
×