Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T16:21:20.004Z Has data issue: false hasContentIssue false

3 - Adapting to diversity: climate, food and infection

Published online by Cambridge University Press:  05 March 2012

Tony McMichael
Affiliation:
National Centre for Epidemiology and Population Health, Australian National University
Get access

Summary

It is approximately one hundred years since scientists first understood the basic currency of heredity: the discrete, non-divisible gene. In the 1860s Gregor Mendel discovered ‘particulate’ inheritance with his studies of garden peas in a monastery in Brno (in today's Czech Republic). However, his published findings were ignored by mainstream science for several decades.

Tantalisingly, Mendel's discovery was the crucial clue that eluded Charles Darwin, whose great work The Origin of Species, had been published in 1859. Darwin could only imagine, unsatisfactorily, that inherited characteristics were somehow transmitted by blood-borne ‘gemules’ that blended parental characteristics. But, over several generations, this blending would dilute the originally selected phenotypic character. Mendel's findings provided the answer. He crossed a wrinkled-pea plant with a smooth-pea plant and found that some offspring plants were wrinkled and some were smooth. There was no blending: each plant was either one thing or the other. Mendel inferred that each such character-specifying ‘gene’ comprised alternate all-or-nothing versions that were the irreducible units of inheritance. These alternate versions we recognise today as alleles.

We each carry a unique combination of genetic alleles and a few newly arising non-lethal mutations. Indeed, each of us is one of nature's little experiments, on stand-by for testing against the possibility of unexpected environmental change. Some genes influence susceptibility to particular disease processes. Susceptibility, however, is not predestination; the health outcome usually depends on interactions between genes and environment.

Type
Chapter
Information
Human Frontiers, Environments and Disease
Past Patterns, Uncertain Futures
, pp. 58 - 87
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×