Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-10T10:10:31.578Z Has data issue: false hasContentIssue false

Chapter 21 - Imaging Biomarkers to Study Cognition in Epilepsy

from Part IV - Mapping Consequences of the Disease

Published online by Cambridge University Press:  07 January 2019

Andrea Bernasconi
Affiliation:
Montreal Neurological Institute, McGill University
Neda Bernasconi
Affiliation:
Montreal Neurological Institute, McGill University
Matthias Koepp
Affiliation:
Institute of Neurology, University College London
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Helmstaedter, C. Effects of chronic epilepsy on declarative memory systems. Prog Brain Res. 2002;135:439–53.CrossRefGoogle ScholarPubMed
Helmstaedter, C. Neuropsychological aspects of epilepsy surgery. Epilepsy Behav. 2004;5(suppl 1):S4555.Google Scholar
Witt, JA, Helmstaedter, C. Should cognition be screened in new-onset epilepsies? A study in 247 untreated patients. J Neurol. 2012;259(8):1727–31.Google Scholar
de Tisi, J, Bell, GS, Peacock, JL, et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet. 2011;378(9800):1388–95.CrossRefGoogle ScholarPubMed
Wiebe, S, Blume, WT, Girvin, JP, et al. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311–8.Google Scholar
Duncan, J. The current status of neuroimaging for epilepsy. Curr Opin Neurol. 2009;22:179–84.Google Scholar
Haag, A, Knake, S, Hamer, HM, et al. The Wada test in Austrian, Dutch, German, and Swiss epilepsy centers from 2000 to 2005: a review of 1421 procedures. Epilepsy Behav. 2008;13(1):83–9.Google Scholar
Price, CJ, Friston, KJ. Scanning patients with tasks they can perform. Hum Brain Mapp. 1999;8(2–3):102–8.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Thornton, R, Powell, HW, Lemieux, L. fMRI in epilepsy. fMRI techniques and protocols. Humana. 2009;41:681730.Google Scholar
Jansen, JF, Aldenkamp, AP, Marian, MHJ, et al. Functional MRI reveals declined prefrontal cortex activation in patients with epilepsy on topiramate therapy. Epilepsy Behav. 2006;9(1):181–5.Google Scholar
Duncan, JS. Imaging in the surgical treatment of epilepsy. Nat Rev Neurol. 2010;6(10):537–50.Google Scholar
Fernandez, G, Specht, K, Weis, S, et al. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology. 2003;60(6):969–75.Google Scholar
Wilke, M, Lidzba, K. LI-tool: a new toolbox to assess lateralization in functional MR-data. J Neurosci Methods. 2007;163(1):128–36.Google Scholar
Wilke, M, Schmithorst, VJ. A combined bootstrap/histogram analysis approach for computing a lateralization index from neuroimaging data. NeuroImage. 2006;33(2):522–30.Google Scholar
Woermann, FG, Labudda, K. Clinical application of functional MRI for chronic epilepsy. Radiologe. 2010;50(2):123–30.Google Scholar
Dym, RJ, Burns, J, Freeman, K, Lipton, ML. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test? A meta-analysis. Radiology. 2011;261(2):446–55.Google Scholar
Janecek, JK, Swanson, SL, Sabsevitz, DS, et al. Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia. 2013;54(2):314–22.Google Scholar
Benke, T, Koylu, B, Visani, P, et al. Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada Test. Epilepsia. 2006;47(8):1308–19.Google Scholar
Lee, D, Swanson, SL, Sabsevitz, DS, et al. Functional MRI and Wada studies in patients with interhemispheric dissociation of language functions. Epilepsy Behav. 2008;13(2):350–6.Google Scholar
Gaillard, WD. Functional MR imaging of language, memory, and sensorimotor cortex. Neuroimaging Clin N Am. 2004;14(3):471–85.Google Scholar
Springer, JA, Binder, JR, Hammeke, TA, et al. Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain. 1999;122:2033–46.Google Scholar
Berl, MM, Balsamo, LM, Xu, B, et al. Seizure focus affects regional language networks assessed by fMRI. Neurology. 2005;65(10):1604–11.Google Scholar
Gaillard, WD, Berl, MM, Moore, EN, et al. Atypical language in lesional and nonlesional complex partial epilepsy. Neurology. 2007;69(18):1761–71.Google Scholar
Duke, ES, Tesfaye, M, Berl, MM, et al. The effect of seizure focus on regional language processing areas. Epilepsia. 2012;53(6):1044–50.Google Scholar
Voets, NL, Adcock, JE, Flitney, DE, et al. Distinct right frontal lobe activation in language processing following left hemisphere injury. Brain. 2006;129:754–66.Google Scholar
Weber, B, Wellmer, J, Reuber, M, et al. Left hippocampal pathology is associated with atypical language lateralization in patients with focal epilepsy. Brain. 2006;129:346–51.Google Scholar
Jensen, EJ, Hargreaves, IS, Pexman, PM, et al. Abnormalities of lexical and semantic processing in left temporal lobe epilepsy: an fMRI study. Epilepsia. 2011;52(11):2013–21.Google Scholar
Bonelli, SB, Powell, R, Thompson, PJ, et al. Hippocampal activation correlates with visual confrontation naming: fMRI findings in controls and patients with temporal lobe epilepsy. Epilepsy Res. 2011;95(3):246–54.Google Scholar
Bonelli, SB, Thompson, PJ, Yogarajah, M, et al. Imaging language networks before and after anterior temporal lobe resection—results of a longitudinal fMRI study. Epilepsia. 2012;53:639–50.Google Scholar
Liegeois, F, Connelly, A, Cross, JH, et al. Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain. 2004;127:1229–36.Google Scholar
Wellmer, J, Weber, B, Urbach, H, et al. Cerebral lesions can impair fMRI-based language lateralization. Epilepsia. 2009;50(10):2213–24.CrossRefGoogle ScholarPubMed
Janszky, J, Mertens, M, Janszky, I, Ebner, A, Woermann, FG. Left-sided interictal epileptic activity induces shift of language lateralization in temporal lobe epilepsy: an fMRI study. Epilepsia. 2006;47(5):921–7.CrossRefGoogle ScholarPubMed
Monjauze, C, Broadbent, H, Boyd, SG, Neville, BG, Baldeweg, T. Language deficits and altered hemispheric lateralization in young people in remission from BECTS. Epilepsia. 2011;52(8):e7983.CrossRefGoogle ScholarPubMed
Wang, G, Worrell, G, Yang, L, Wilke, C, He, B. Interictal spike analysis of high-density EEG in patients with partial epilepsy. Clin Neurophysiol. 2011;122(6):1098–105.Google Scholar
Szaflarski, JP, Allendorfer, JB. Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy. Epilepsy Behav. 2012;24(1):7480.Google Scholar
Yasuda, CL, Centeno, M, Vollmar, C, et al. The effect of topiramate on cognitive fMRI. Epilepsy Res. 2013;105(1–2):250–5.CrossRefGoogle ScholarPubMed
Noppeney, U, Price, CJ, Duncan, JS, Koepp, MJ. Reading skills after left anterior temporal lobe resection: an fMRI study. Brain. 2005;128:1377–85.Google Scholar
Helmstaedter, C, Firtz, NE, Gonzalez Perez, PA, et al. Shift-back of right into left hemisphere language dominance after control of epileptic seizures: evidence for epilepsy driven functional cerebral organization. Epilepsy Res. 2006;70(2–3):257–62.Google Scholar
Wong, SW, Jong, L, Bandur, D, et al. Cortical reorganization following anterior temporal lobectomy in patients with temporal lobe epilepsy. Neurology. 2009;73(7):518–25.Google Scholar
Gauffin, H, van Ettinger-Veenstra, H, Landtblom, AM, et al. Impaired language function in generalized epilepsy: inadequate suppression of the default mode network. Epilepsy Behav. 2013;28(1):2635.Google Scholar
Salek-Haddadi, A, Mayer, T, Hamandi, K, et al. Imaging seizure activity: a combined EEG/EMG-fMRI study in reading epilepsy. Epilepsia. 2009;50(2):256–64.Google Scholar
Datta, AN, Oser, N, Bauder, F, et al. Cognitive impairment and cortical reorganization in children with benign epilepsy with centrotemporal spikes. Epilepsia. 2013;54(3):487–94.Google Scholar
Yuan, W, Szaflarski, JP, Schmithorst, VY, et al. fMRI shows atypical language lateralization in pediatric epilepsy patients. Epilepsia. 2006;47(3):593600.Google Scholar
Lillywhite, LM, Saling, MM, Harvey, AS, et al. Neuropsychological and functional MRI studies provide converging evidence of anterior language dysfunction in BECTS. Epilepsia. 2009;50(10):2276–84.CrossRefGoogle ScholarPubMed
Pal, DK. Epilepsy and neurodevelopmental disorders of language. Curr Opin Neurol. 2011;24(2):126–31.Google Scholar
Davies, KG, Bell, BD, Bush, AJ, et al. Naming decline after left anterior temporal lobectomy correlates with pathological status of resected hippocampus. Epilepsia. 1998;39(4):407–19.Google Scholar
Hermann, B, Davies, K, Foley, K, Bell, B. Visual confrontation naming outcome after standard left anterior temporal lobectomy with sparing versus resection of the superior temporal gyrus: a randomized prospective clinical trial. Epilepsia. 1999;40(8):1070–6.Google Scholar
Croft, LJ, Baldeweg, T, Sepeta, L, et al. Vulnerability of the ventral language network in children with focal epilepsy. Brain. 2014;137:2245–57.Google Scholar
Sabsevitz, DS, Swanson, SJ, Hammeke, TA, et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology. 2003;60(11):1788–92.Google Scholar
Binder, JR, Swanson SJ, Sabsevitz DS, et al. A comparison of two fMRI methods for predicting verbal memory decline after left temporal lobectomy: language lateralization versus hippocampal activation asymmetry. Epilepsia. 2010;51(4):618–26.Google Scholar
Labudda, K, Mertens, M, Janszky, J, et al. Atypical language lateralisation associated with right fronto-temporal grey matter increases—a combined fMRI and VBM study in left-sided mesial temporal lobe epilepsy patients. NeuroImage. 2012;59(1):728–37.Google Scholar
Kunii, N, Kamada, K, Ota, T, Kawai, K, Saito, N. A detailed analysis of functional magnetic resonance imaging in the frontal language area: a comparative study with extraoperative electrocortical stimulation. Neurosurgery. 2011;69(3):590–6; discussion 596–7.Google Scholar
Roux, FE, Boulanouar, K, Lotterie, JA, et al. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery. 2003;52(6):1335–45; discussion 1345–7.Google Scholar
Rutten, GJ, Ramsey, NF, van Rijen, PC, et al. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol. 2002;51(3):350–60.Google Scholar
Addis, DR, Moscovitch, M, McAndrews, MP. Consequences of hippocampal damage across the autobiographical memory network in left temporal lobe epilepsy. Brain. 2007;130:2327–42.Google Scholar
Milton, F, Butler, CR, Benattayallah, A, Zeman, AZ. The neural basis of autobiographical memory deficits in transient epileptic amnesia. Neuropsychologia. 2012;50(14):3528–41.Google Scholar
Baddeley, A. The concept of episodic memory. Philos Trans R Soc Lond B Biol Sci. 2001;356(1413):1345–50.CrossRefGoogle ScholarPubMed
Squire, LR, Zola-Morgan, S. The medial temporal lobe memory system. Science. 1991;253(5026):1380–6.Google Scholar
Scoville, WB, Milner, B. Loss of recent memory after bilateral hippocampal lesions. J Neuropsychiatry Clin Neurosci. 2000;12(1):103–13.Google Scholar
Ivnik, RJ, Sharbrough, FW, Laws, ER Jr. Effects of anterior temporal lobectomy on cognitive function. J Clin Psychol. 1987;43(1):128–37.Google Scholar
Spiers, HJ, Burgess, N, Maguire, EA, et al. Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. Brain. 2001;124:2476–89.Google Scholar
Penfield, W, Milner, B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry. 1958;79(5):475–97.Google Scholar
Warrington, EK, Duchen, LW. A re-appraisal of a case of persistent global amnesia following right temporal lobectomy: a clinico-pathological study. Neuropsychologia. 1992;30(5):437–50.Google Scholar
Loring, DW, Hermann, BP, Meador, KJ, et al. Amnesia after unilateral temporal lobectomy: a case report. Epilepsia. 1994;35(4):757–63.Google Scholar
Bonelli, SB, Powell, RH, Yogarajah, M, et al. Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain. 2010;133:1186–99.Google Scholar
Detre, JA, Maccotta, L, King, D, et al. Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology. 1998;50(4):926–32.Google Scholar
Golby, AJ, Poldrack RA, Brewer, JB, et al. Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain. 2001;124:1841–54.Google Scholar
Powell, HW, Koepp, MJ, Symms, MR, et al. Material-specific lateralization of memory encoding in the medial temporal lobe: blocked versus event-related design. NeuroImage. 2005;27(1):231–9.Google Scholar
Jokeit, H, Okujava, M, Woermann, FG. Memory fMRI lateralizes temporal lobe epilepsy. Neurology. 2001;57(10):1786–93.Google Scholar
Powell, HW, Richardson, MP, Symms, MR, et al. Reorganization of verbal and nonverbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia. 2007;48(8):1512–25.Google Scholar
Janszky, J, Jokeit, H, Kontopoulou, K, et al. Functional MRI predicts memory performance after right mesiotemporal epilepsy surgery. Epilepsia. 2005;46(2):244–50.Google Scholar
Richardson, MP, Strange, BA, Duncan, JS, Dolan, RJ. Preserved verbal memory function in left medial temporal pathology involves reorganisation of function to right medial temporal lobe. NeuroImage. 2003;20(suppl 1):S112–9.Google Scholar
Alessio, A, Pereira FR, Sercheli MS, et al. Brain plasticity for verbal and visual memories in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: an fMRI study. Hum Brain Mapp. 2013;34(1):186–99.Google Scholar
Guedj, E, Bettus, G, Barbeau, EJ, et al. Hyperactivation of parahippocampal region and fusiform gyrus associated with successful encoding in medial temporal lobe epilepsy. Epilepsia. 2011;52(6):1100–9.Google Scholar
Sidhu, MK, Stretton, J, Winston, GP, et al. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain. 2013;136:1868–88.Google Scholar
Vannest, J, Szaflarski, JP, Privitera, MD, et al. Medial temporal fMRI activation reflects memory lateralization and memory performance in patients with epilepsy. Epilepsy Behav. 2008;12(3):410–8.Google Scholar
Chelune, GJ. Hippocampal adequacy versus functional reserve: predicting memory functions following temporal lobectomy. Arch Clin Neuropsychol. 1995;10(5):413–32.CrossRefGoogle ScholarPubMed
Trenerry, MR, Jack, CR, Ivnik, RJ, et al. MRI hippocampal volumes and memory function before and after temporal lobectomy. Neurology. 1993;43(9):1800–5.Google Scholar
Baxendale, S, Thompson, P, Harkness, W, Duncan, J. Predicting memory decline following epilepsy surgery: a multivariate approach. Epilepsia. 2006;47(11):1887–94.Google Scholar
Helmstaedter, C, Elger, CE. Cognitive consequences of two-thirds anterior temporal lobectomy on verbal memory in 144 patients: a three-month follow-up study. Epilepsia. 1996;37(2):171–80.Google Scholar
Baxendale, S. The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: a clinical perspective and review. J Clin Exp Neuropsychol. 2002;24(5):664–76.Google Scholar
Binder, JR, Sabsevitz, DS, Swanson, SJ, et al. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia. 2008;49(8):1377–94.Google Scholar
Baxendale, S, Thompson, PJ, Duncan, JS. Improvements in memory function following anterior temporal lobe resection for epilepsy. Neurology. 2008;71(17):1319–25.Google Scholar
Richardson, MP, Strange, BA, Duncan, JS, Dolan, RJ. Memory fMRI in left hippocampal sclerosis: optimizing the approach to predicting postsurgical memory. Neurology. 2006;66(5):699705.Google Scholar
Richardson, MP, Strange, BA, Thompson, PJ, et al. Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain. 2004;127:2419–26.Google Scholar
Powell, HW, Richardson, MP, Symms, MR, et al. Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J Neurol Neurosurg Psychiatry. 2008;79(6):686–93.Google Scholar
Rabin, ML, Narayn, VM, Kimberg, DY, et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain. 2004;127:2286–98.Google Scholar
Dupont, S, Duron, E, Samson, S, et al. Functional MR imaging or Wada test: which is the better predictor of individual postoperative memory outcome? Radiology. 2010;255(1):128–34.Google Scholar
Sidhu, MK, Stretton J, Winston GP, et al. Memory fMRI predicts verbal memory decline after anterior temporal lobe resection. Neurology. 2015;84(15):1512–9.Google Scholar
Stretton, J, Winston, G, Sidhu, M, et al. Neural correlates of working memory in temporal lobe epilepsy—an fMRI study. NeuroImage. 2012;60(3):1696–703.Google Scholar
Stretton, J, Winston G, Sidhu M, et al. Disrupted segregation of working memory networks in temporal lobe epilepsy. NeuroImage Clin. 2013;2:273–81.Google Scholar
Centeno, M, Thompson, PJ, Koepp, MJ, et al. Memory in frontal lobe epilepsy. Epilepsy Res. 2010;91(2–3):123–32.Google Scholar
Braakman, HM, Vaessen, MJ, Jansen, JF, et al. Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy. Epilepsia. 2013;54(3):446–54.Google Scholar
Vlooswijk, MC, Jansen, JF, Jeukens, CR, et al. Memory processes and prefrontal network dysfunction in cryptogenic epilepsy. Epilepsia. 2011;52(8):1467–75.Google Scholar
Vlooswijk, MC, Jansen, JF, Reijs, RP, et al. Cognitive fMRI and neuropsychological assessment in patients with secondarily generalized seizures. Clin Neurol Neurosurg. 2008;110(5):441–50.Google Scholar
Alpherts, WC, Vermeulen, J, van Rijen, PC, et al. Standard versus tailored left temporal lobe resections: differences in cognitive outcome? Neuropsychologia. 2008;46(2):455–60.Google Scholar
Helmstaedter, C, Richter, S, Roske, S, et al. Differential effects of temporal pole resection with amygdalohippocampectomy versus selective amygdalohippocampectomy on material-specific memory in patients with mesial temporal lobe epilepsy. Epilepsia. 2008;49(1):8897.Google Scholar
Helmstaedter, C, Kurthen, M, Lux, S, et al. Chronic epilepsy and cognition: a longitudinal study in temporal lobe epilepsy. Ann Neurol. 2003;54(4):425–32.Google Scholar
Schramm, J. Temporal lobe epilepsy surgery and the quest for optimal extent of resection: a review. Epilepsia. 2008;49(8):1296–307.Google Scholar
Cheung, MC, Chan, AS, Lam, JM, Chan, YL. Pre- and postoperative fMRI and clinical memory performance in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. 2009;80(10):1099–106.Google Scholar
Bonelli, SB, Thompson, PJ, Yogarajah, M, et al. Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study. Brain. 2013;136:1889–900.Google Scholar
Maccotta, L, Buckner, RL, Gilliam, FG, Ojemann, JG. Changing frontal contributions to memory before and after medial temporal lobectomy. Cereb Cortex. 2007;17(2):443–56.Google Scholar
Robinson, S, Windischberger, C, Rauscher, A, Moser, E. Optimized 3 T EPI of the amygdalae. NeuroImage. 2004;22(1):203–10.Google Scholar
Fernandez, G, Effern A, Grunwald T, et al. Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science. 1999;285(5433):1582–5.Google Scholar
Ojemann, JG, Akbudak, E, Snyder, AZ, et al. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. NeuroImage. 1997;6(3):156–67.Google Scholar
Greicius, MD, Krasnow, B, Boyett-Anderson, JM, et al. Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus. 2003;13(1):164–74.CrossRefGoogle ScholarPubMed
Lipschutz, B, Friston, KJ, Ashburner, J, Turner, R, Price, CJ. Assessing study-specific regional variations in fMRI signal. NeuroImage. 2001;13(2):392–8.Google Scholar
Wagner, AD, Koutstaal, W, Schacter, DL. When encoding yields remembering: insights from event-related neuroimaging. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1307–24.Google Scholar
Axmacher, N, Mormann, F, Fernandez, G, et al. Sustained neural activity patterns during working memory in the human medial temporal lobe. J Neurosci. 2007;27(29):7807–16.Google Scholar
Waites, AB, Briellmann, RS, Saling, MM, et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol. 2006;59(2):335–43.Google Scholar
Pravata, E, Sestieri C, Mantini D, et al. Functional connectivity MR imaging of the language network in patients with drug-resistant epilepsy. AJNR Am J Neuroradiol. 2011;32(3):532–40.Google Scholar
Vlooswijk, MC, Jansen, JF, Majoie, HJ, et al. Functional connectivity and language impairment in cryptogenic localization-related epilepsy. Neurology. 2010;75(5):395402.Google Scholar
Rodrigo, S, Oppenheim, C, Chassoux, F, et al. Language lateralization in temporal lobe epilepsy using functional MRI and probabilistic tractography. Epilepsia. 2008;49(8):1367–76.Google Scholar
McCormick, C, Quraan M, Cohn M, et al. Default mode network connectivity indicates episodic memory capacity in mesial temporal lobe epilepsy. Epilepsia. 2013;54(5):809–18.Google Scholar
Pereira, FR, Alessio, A, Sercheli, MS, et al. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci. 2010;11:66.Google Scholar
Voets, NL, Adcock, JE, Stacey, R, et al. Functional and structural changes in the memory network associated with left temporal lobe epilepsy. Hum Brain Mapp. 2009;30(12):4070–81.Google Scholar
Vollmar, C, O’Muircheartaigh, J, Barker, GJ, et al. Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study. Brain. 2011;134:1710–9.Google Scholar
Nimsky, C, Ganslandt, O, Merhof, D, et al. Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. NeuroImage. 2006;30(4):1219–29.Google Scholar
Beisteiner, R, Robinson, S, Wurnig, M, et al. Clinical fMRI: evidence for a 7 T benefit over 3 T. NeuroImage. 2011;57(3):1015–21.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×