Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-13T01:49:39.763Z Has data issue: false hasContentIssue false

5 - Indian Ocean Variability and Interactions

Published online by Cambridge University Press:  13 January 2021

Carlos R. Mechoso
Affiliation:
University of California, Los Angeles
Get access

Summary

This chapter revisits the variability of the Indian Ocean on interannual to multidecadal timescales. A special focus is given to teleconnections from and to the Indian Ocean and to what extend they modify the Indian Ocean as well as the variability in other oceans. Decadal changes of interannual teleconnections are briefly discussed. Both atmospheric and oceanic pathways for the teleconnections are considered. While the main mode of variability in the Indian Ocean, the basin mode, is mainly externally forced by a teleconnection from ENSO, the second mode of Indian Ocean variability, the Indian Ocean Dipole, is to a large extent an unforced mode of variability. The Indian Ocean can modulate Pacific and, in particular, ENSO variability through oceanic (Indian Ocean Throughflow) and atmospheric (Walker circulation) bridges. The Atlantic Ocean has a modest impact on Indian Ocean interannual variability, mainly in boreal summer. The Indian Ocean is directly connected to the Atlantic Ocean through the Agulhas Current system. At decadal timescales, both Pacific Decadal Variability (Pacific Decadal Oscillation, Interdecadal Pacific Oscillation) and the Atlantic Multidecadal Variability impact the Indian Ocean. While Pacific Decadal Variability influences the Indian Ocean throughout the year, the Atlantic Multidecadal Variability influence is seasonally dependent and strongest in boreal spring season and may have contributed to an accelerated Arabian Sea warming in the recent decades. The Pacific interannual teleconnection to the Indian Ocean shows substantial decadal variations, but further research in this area is necessary and encouraged.

Type
Chapter
Information
Interacting Climates of Ocean Basins
Observations, Mechanisms, Predictability, and Impacts
, pp. 153 - 185
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abram, N. A., Gagan, M. K., Liu, Z., Hantoro, W. S., McCulloch, M. T., Suwargadi, B. W. (2007). Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature, 445, 299302, doi.org/10.1038/nature05477.Google Scholar
Ajayamohan, R. S., Rao, S. A., Yamagata, T. (2008). Influence of Indian Ocean dipole on poleward propagation of boreal summer intraseasonal oscillations. Journal of Climate, 21, 54375454, doi.org/10.1175/2008JCLI1758.Google Scholar
Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-C., Scott, J. D. (2002). The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. Journal of Climate, 15, 22052231.Google Scholar
Allan, R. J. (2000). ENSO and climatic variability in the last 150 years. In: Diaz, HF, Markgraf, V (eds) El Niño and the Southern Oscillation: Multiscale Variability, Global and Regional Impacts. Cambridge: Cambridge University Press, pp. 356.Google Scholar
Amat, H. B, Ashok, K. (2017). Relevance of Indian Summer Monsoon on the Kharif crop production over the Indian region in response to Indo-Pacific climate drivers. Pure and Applied Geophysics. 175(2), doi.org/10.1007/s00024–017-1758-9.Google Scholar
Annamalai, H., Xie, S.-P., McCreary, J. P., Murtugudde, R. (2005). Impact of the Indian Ocean sea surface temperature on developing El Niño. Journal of Climate, 18, 302319, doi:10.1175/JCLI-3268.1.Google Scholar
Arhan, M., Mercier, H., Park, Y.-H. (2003). On the deep water circulation of the eastern South Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50, 889916, doi:10.1016/S0967-0637(03)00072-4.Google Scholar
Ashok, K., Guan, Z., Yamagata, T. (2001). Impact of the Indian Ocean Dipole on the relationship between the Indian Monsoon rainfall and ENSO. Geophysical Research Letters, 26, 44994502, doi:10.1029/2001GL013294.Google Scholar
Ashok, K., Guan, Z., Yamagata, T. (2003a). Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophysical Research Letters, 30(15), 1821, doi:10.1029/2003GL017926.Google Scholar
Ashok, K., Guan, Z., Yamagata, T. (2003b). A look at the relationship between the ENSO and the Indian Ocean dipole. Journal of the Meteorological Society of Japan, 81, 4156. I.F. 1.233.Google Scholar
Ashok, K., Guan, Z., Saji, N. H., Yamagata, T. (2004a). Individual and combined influences of the ENSO and the Indian Ocean dipole on the Indian summer monsoon. Journal of Climate, 17, 31413155, doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.Google Scholar
Ashok, K., Chan, W.-L., Motoi, T., Yamagata, T. (2004b). Decadal variability of the Indian Ocean dipole. Geophysical Research Letters, 31, L24207, doi:10.1029/2004GL021345.Google Scholar
Ashok, K., Nakamura, H., Yamagata, T. (2007). Impacts of ENSO and IOD events on the Southern Hemisphere storm track activity during austral winter. Journal of Climate, 20, 31473163.Google Scholar
Ashok, K., Saji, N. H. (2007). On the Impacts of ENSO and Indian Ocean Dipole events on the sub-regional Indian summer monsoon rainfall, Journal of Natural Hazards, 42(2), 273285.Google Scholar
Ashok, K., Tam, C. Y., Lee, W. J. (2009). ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophysical Research Letters, 36, L12705, doi:10.1029/2009GL038847.Google Scholar
Barimalala, R., Bracco, A., Kucharski, F. (2012). The representation of the South Tropical Atlantic teleconnection to the Indian Ocean in the AR4 coupled models. Climate Dynamics, 38(5–6), 11471166.Google Scholar
Barimalala, R., Bracco, A., Kucharski, F., McCreary, J. P., Crise, A. (2013). Arabian Sea ecosystem responses to the South Tropical Atlantic teleconnection. Journal of Marine Systems, 117, 1430.Google Scholar
Barcikowska, M. J., Knutson, T. R., Zhang, R. (2017). Observed and simulated fingerprints of multidecadal climate variability and their contributions to periods of global SST stagnation. Journal of Climate, 30 (2), 721737.Google Scholar
Beal, L. M. (2009). A Time Series of Agulhas Undercurrent Transport. Journal of Physical Oceanography, 39, 24362450, doi:10.1175/2009JPO4195.1.Google Scholar
Beal, L. M., De Ruijter, W. P. M., Biastoch, A., Zahn, R., 136 members of S.W.G. (2011). On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, doi:10.1038/nature09983.CrossRefGoogle Scholar
Beal, L. M., Elipot, S., Houk, A., Leber, G. M. (2015). Capturing the transport variability of a western boundary jet: Results from the Agulhas current time-series experiment (ACT). Journal of Physical Oceanography, 45, 13021323.Google Scholar
Behera, S. K., Krishnan, R., Yamagata, T. (1999). Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophysical Research Letters, 26, 30013004.Google Scholar
Behera, S. K., Rao, S. A., Saji, H. N., Yamagata, T. (2003). Comments on “A Cautionary note on the interpretation of EOFs.” Journal of Climate, 16(7), 10871093.Google Scholar
Behera, S. K., Yamagata, T. (2003). Influence of the Indian Ocean Dipole on the southern oscillation. Journal of the Meteorological Society of Japan, 81, 169177.Google Scholar
Behera, S. K., Luo, J.-J., Masson, S., Delecluse, P., Gualdi, S., Navarra, A., Yamagata, T. (2005). Paramount impact of the Indian Ocean dipole on the east African short rains: A CGCM study. Journal of Climate, 18(21), 45144530.CrossRefGoogle Scholar
Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., Yamagata, T. (2006). A CGCM study on the interaction between IOD and ENSO. Journal of Climate, 19, 16881705.Google Scholar
Behera, S. K., Luo, J.-J., Yamagata, T. (2008). Unusual IOD event of 2007. Geophysical Research Letters, 35, L14S11, doi:10.1029/2008GL034122.Google Scholar
Biastoch, A., Lutjeharms, J. R. E., Böning, C. W., Scheinert, M. (2008). Mesoscale perturbations control inter-ocean exchange south of Africa. Geophysical Research Letters, 35, doi:10.1029/2008GL035132.Google Scholar
Biastoch, A., Böning, C. W., Schwarzkopf, F. U., Lutjeharms, J. R. E. (2009). Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature, 462, 495498, doi:10.1038/nature08519.Google Scholar
Biastoch, A., Böning, C. W. (2013). Anthropogenic impact on Agulhas leakage. Geophysical Research Letters, 40, 11381143, doi:10.1002/grl.50243.Google Scholar
Biastoch, A., Durgadoo, J. V., Morrison, A. K., Van Sebille, E., Weijer, W., Griffies, S. M. (2015). Atlantic multi-decadal oscillation covaries with Agulhas leakage. Nature Communications, 6, 10082, doi:10.1038/ncomms10082.Google Scholar
Bingham, F. M., Lukas, R. (1994). The southward intrusion of North Pacific Intermediate Water along the Mindanao coast. Journal of Physical Oceanography, 24 (1), 141154.Google Scholar
Cai, W., Cowan, T., Raupach, M. (2009a). Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophysical Research Letters, 36 (19), L19710.Google Scholar
Cai, W., Cowan, T., Sullivan, A. (2009b). Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophysical Research Letters, 36 (11), L11705.Google Scholar
Cai, W., Santoso, A., Wang, G., Weller, E., Wu, L., Ashok, K., Masumoto, Y., Yamagata, T. (2014). Increased occurrences of extreme-Indian Ocean Dipole events due to greenhouse warming. Nature, 510, 254258, doi:10.1038/nature13327.Google Scholar
Cai, W. L. Wu, Lengaigne, M. Li, T., McGregor, S., Kug, J.-S., Yu, J.-Y., Stuecker, M. F., Santoso, A., Li, X., Ham, Y.-G., Chikamoto, Y., Ng, B., McPhaden, M. J., Du, Y., Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside, N. S., Lin, X., Luo, J.-J., Martín del Rey, M., Ruprich-Robert, Y., Wang, G., Xie, S.-P., Yang, Y., Kang, S. M., Choi, J.-Y., Gan, B., Kim, G.-I. Kim, C.-E., Kim, S., Kim, J.-H., Chang, P., (2019) Pan-tropical climate interactions. Science, 36(6430), eaav4236.Google Scholar
Cannon, G. A. (1966). Tropical waters in the western Pacific Ocean, August-September 1957. Deep Sea Research and Oceanographic Abstracts, 13 (6), 11391148.Google Scholar
Casal, T. G. D., Beal, L. M., Lumpkin, R. (2006). A North Atlantic deep-water eddy in the Agulhas Current system. Deep Sea Research Part I: Oceanographic Resarch Papers, 53, 17181728.Google Scholar
Chakraborty, A., Behera, S., Mujumdar, M., Ohba, R., Yamagata, T. (2005). Diagnosis of Tropospheric Moisture over Saudi Arabia and Influences of IOD and ENSO. Monthly Weather Review, doi.org/10.1175/MWR3085.1.Google Scholar
Chan, S. C., Behera, S. K., Yamagata, T. (2008). Indian Ocean Dipole influence on South American rainfall. Geophysical Research Letters, 35, L14S12.Google Scholar
Clarke, A. J., Liu, X. (1994). Interannual sea level in the northern and eastern Indian Ocean. Journal of Physical Oceanography, 24, 12241235.Google Scholar
Clarke, A. J., Van Gorder, S. (2003). Improving El Nino prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophysical Research Letters, 30, 1399, doi:10.1029/2002GL016673.Google Scholar
Clement, A., Bellomo, K., Murphy, L. N., Cane, M. A., Mauritsen, T., Radel, G., Stevens, B. (2015). The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350, 320324, doi:10.1126/science.aab3980.Google Scholar
Crsesswell, G. R., Luick, J. R. (2001). Current measurements in the Maluku Sea. Journal of Geophysical Research, 106, 139513958.Google Scholar
De Ruijter, W. P. M., Biastoch, A., Drijfhout, S. S., Lutjeharms, J. R. E., Matano, R. P., Pichevin, T., van Leeuwen, P. J., Weijer, W. (1999). Indian-Atlantic interocean exchange: Dynamics, estimation and impact. Journal of Geophysical Research, 104, 20885, doi:10.1029/1998JC900099.Google Scholar
De Ruijter, W. P. M., Ridderinkhof, H., Lutjeharms, J. R. E., Schouten, M. W., Veth, C. (2002). Observations of the flow in the Mozambique Channel. Geophysical Research Letters, 29, 140141.Google Scholar
Dommenget, D., Latif, M. (2002). A cautionary note on the interpretation of EOFs. Journal of Climate, 15, 216225.Google Scholar
Dommenget, D., Semenov, V., Latif, M. (2006). Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophysical Research Letters, 33, L11701, doi:10.1029/2006GL025871.Google Scholar
Dong, L., McPhaden, M. J. (2017). Why has the relationship between Indian and Pacific Ocean decadal variability changed in recent decades? Journal of Climate, 30(6), 19711983, doi: 10.1175/JCLI-D-16-0313.1.Google Scholar
Drushka, K., Sprintall, J., Gille, S. T., Brodjonegoro, I. (2010). Vertical structure of Kelvin waves in the Indonesian throughflow exit passages. Journal of Physical Oceanography, 40(9), 19651987.Google Scholar
Du, Y., Jun, X. J., Fu, Y. K. (2014). Tropical Indian Ocean Basin Mode recorded in coral oxygen isotope data from the Seychelles over the past 148 years. Science China Earth Science, 57, 25972605.Google Scholar
Duan, W., Hu, J. (2015), The initial condition errors that induce a significant "spring predictability barrier" for El Niño events and their implications for target observation: Results from an earth system model. Climate Dynamics, 1, 376.Google Scholar
Durgadoo, J. V., Loveday, B. R., Reason, C. J. C., Penven, P., Biastoch, A. (2013). Agulhas Leakage Predominantly Responds to the Southern Hemisphere Westerlies. Journal of Physical Oceanography, 43, 21132131, doi:10.1175/JPO-D-13-047.1Google Scholar
Durgadoo, J. V., Rühs, S., Biastoch, A., Böning, C. W. B. (2017). Indian Ocean sources of Agulhas leakage. Journal of Geophysical Research Ocean, 122, doi:10.1002/2016JC012676.Google Scholar
Durland, T. S., Qiu, B. (2003). Transmission of sub inertial Kelvin Waves through strait. Journal of Physical Oceanography, 33, 13371350.Google Scholar
Elipot, S., Bea, L. M. (2018). Observed Agulhas current sensitivity to interannual and long-term trend atmospheric forcings. Journal of Climate, 31, 30773098.Google Scholar
Enfield, D., Mayer, D. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Nino-Southern oscillation. Journal of Geophysical Research, 102, 929945, doi:10.1029/96JC03296.Google Scholar
Enfield, D. B., Mestas-Nunez, A. M., Mayer, D. A., Cid-Serrano, L. (1999). How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? Journal of Geophysical Research, 104, 78417848Google Scholar
Fang, G. H., Susanto, R. D., Wirasantosa, S., et al. (2010). Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. Journal of Geophysical Research, 115, C12020.Google Scholar
Feng, M., Meyers, G. M., Wijffels, S. (2001). Interannual upper ocean variability in the tropical Indian Ocean. Geophysical Research Letters, 28(21), 41514154.Google Scholar
Feng, M., Meyers, G. M. (2003). Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean Dipole. Deep Sea Research Part II: Topical Studies in Oceanography, 50(12), 22632284.Google Scholar
Ffield, A., Gordon, A. L. (1992). Vertical mixing in the Indonesian thermocline. Journal of Physical Oceanography, 22 (2), 184195.Google Scholar
Fine, R. A., Lukas, R., Bingham, F. M., et al. (1994). The western equatorial Pacific: A water mass crossroads. Journal of Geophysical Research: Oceans, 99(C12), 2506325080.Google Scholar
Folland, C. K., Parker, D. E., Colman, A. W., Washington, R. (1999). Large scale modes of ocean surface temperature since the late nineteenth century. In Navarra, A. (ed.) Beyond El Niño: Decadal and Interdecadal Climate Variability. Berlin: Springer, pp. 73102.Google Scholar
Frauen, C., Dommenget, D. (2012). Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophysical Research Letters, 39, L02706, doi:10.1029/2011GL05.0520.Google Scholar
Gadgil, S., Vinayachandran, P. N., Francis, P. A. (2003). Droughts of the Indian summer monsoon: Role of clouds over the Indian Ocean. Current Sci, 85(12), 17131719.Google Scholar
Gadgil, S., Vinayachandran, P. N., Francis, P. A., Gadgil, S. (2004). Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophysical Research Letters, 31, L12213.Google Scholar
Gordon, A. L. (1986). Interocean exchange of thermocline water. Journal of Geophysical Research, 91, 50375046.Google Scholar
Gordon, A. L., Ffield, A., Ilahude, A. G. (1994). Thermocline of the Flores and Banda seas. Journal of Geophysical Research, 99(99), 1823518242.Google Scholar
Gordon, A. L. (1995) When is appearance reality? A comment on why does the Indonesian throughflow appear to originate from the North Pacific. Journal of Physical Oceanography, 25, 15601567.Google Scholar
Gordon, A. L., Fine, R. A. (1996). Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature, 379(6561), 146149.Google Scholar
Gordon, A. L., Giulivi, C. F., Ilahude, A. G. (2003). Deep topographic barriers within the Indonesian seas. Deep Sea Research Part II: Topical Studies in Oceanography, 50, 22052228.Google Scholar
Gordon, A. L. (2005). Oceanography of the Indonesian Seas and their throughflow. Oceanography, 18 (4), 1427, doi:10.5670/oceanog.2005.01.Google Scholar
Gordon, A. L., Sprintall, J., Van Aken, H. M., et al. (2010). The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50 (2), 115128.Google Scholar
Gordon, A. L., Huber, B. A., Metzger, E. J., Susanto, R. D., Hurlburt, H. E., Adi, T. R. (2012). South China Sea throughflow impact on the Indonesian throughflow. Geophysical Research Letters, 39, L11602, doi:10.1029/2012GL052021.Google Scholar
Guan, Z., Ashok, K., Yamagata, T. (2003). Summertime response of the tropical atmosphere to the Indian Ocean sea surface temperature anomalies. Journal of the Meteorological Society of Japan, 81, 533561.Google Scholar
Guan, Z., Yamagata, T. (2003). The Unusual Summer of 1994 in East Asia: IOD Teleconnections. Geophysical Research Letters, 30 (10), 1544, doi:10.1029/2002GL016831.Google Scholar
Hacker, P., Firing, E., Lukas, R., Richardson, P. L., Collins, C. A., (1989). Observations of the low-latitude, western boundary circulation in the Pacific during WEPOCS III, in Proceedings of the Western Pacific International Meeting and Workshop on TOGA COARE, ORSTOM, Noumea, New Caledonia, 24-30 May, edited by Picaut, J., Lukas, R., Delcroix, T., pp. 135-143, Institute Frangais de Recherche Scientifique pour le Developement en Cooporation, Centre ORSTOM, Noum6a, New Caledonia.Google Scholar
Hamouda, M. E., Kucharski, F. (2018). Ekman pumping mechanism driving precipitation anomalies in response to equatorial heating. Climate Dynamics, 52(1–2), 697711.Google Scholar
Kashino, Y., Atmadipoera, A. Kuroda, Y., Lukijanto, L. (2013). Observed features of the Halmahera and Mindanao Eddies. Journal of Geophysical Research. 118. 10.1002/2013JC009207.Google Scholar
Hasunuma, K. (1978). Formation of the intermediate salinity minimum in the northwestern Pacific Ocean. Bulletin Ocean Research Institute University of Tokyo, 9, 147.Google Scholar
Hautala, S. L., Roemmich, D. H., Schmitz, W. J. Jr (1994). Is the North Pacific in Sverdrup balance along 24N? Journal of Geophysical Research, 99, 604116052.Google Scholar
Hirst, A. C., Godfrey, J. S. (1993). The role of Indonesian throughflow in a global ocean GCM. Journal of Physical Oceanography, 23, 10571086.Google Scholar
Hu, D. X., Cui, M., Qu, T., Li, Y. (1991). A subsurface northward current off Mindanao identified by dynamic calculation. Oceanography Asian Marginal Seas, 54, 359365.Google Scholar
Hu, X., Sprintall, J., Yuan, D., Tranchant, B., Gaspar, P., Koch-Larrouy, A., Reffray, G., Li, X., Wang, Z., Li, Y., Nugroho, D., Corvianawatie, C., Surinati, D. (2019). Interannual variability of the Sulawesi Sea circulation forced by Indo-Pacific planetary waves, Journal of Geophysical Research: Oceans, 124, doi.org/10.1029/2018JC014356.Google Scholar
Huang, B., Schopf, P., Shukla, J. (2004). Intrinsic ocean-atmosphere variability in the tropical Atlantic Ocean. Journal of Climate, 17, 20582077.Google Scholar
Hussain, M. S., Kim, S., Lee, S. (2017). Theoretical and Applied Climatology, 130, 673, doi.org/10.1007/s00704–016-1902-y.Google Scholar
Iizuka, S., Matsuura, T., Yamagata, T. (2000). The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophysical Research Letters, 27 (20), 33693372.Google Scholar
Ilahude, A. G., Gordon, A. L. (1996). Thermocline stratification within the Indonesian Seas. Journal of Geophysical Research: Oceans, 101 (C5), 1240112409.Google Scholar
Izumo, T., Vialard, J., Lengaigne, M., de Boyer Montegut, C., Behera, S. K., Luo, J.-J., Cravatte, S., Masson, S., Yamagata, T. (2010). Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nature Geoscience., 3, 168172, doi:10.1038/NGEO760.Google Scholar
Izumo, T., Lengaigne, M., Vialard, J., Luo, J.-J., Yamagata, T., Madec, G. (2014). Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: Interdecadal robustness. Climate Dynamics, 42, 291310, doi: 10.1007/s00382–012-1628-1.Google Scholar
Jansen, M. F., Dommenget, D., Keenlyside, N. (2009). Tropical atmosphere-ocean interactions in a conceptual framework. Journal of Climate, 22, 550567.Google Scholar
Joshi, M. K., Kucharski, F. (2017) Impact of Interdecadal Pacific Oscillation on Indian summer monsoon rainfall: An assessment from CMIP5 climate models. Climate Dynamics, 48, 23752391, doi.org/10.1007/s00382–016-3210-8.Google Scholar
Kang, I.-S., Rashid, I.-U., Kucharski, F., Almazroui, M., Alkhalaf, A. K. (2015). Multidecadal changes in the relationship between ENSO and wet-season precipitation in the Arabian Peninsula. Journal of Climate, 28(12), 47434752.Google Scholar
Kao, H. Y., Yu, J.-Y. (2009). Contrasting Eastern-Pacific and Central-Pacific types of ENSO. Journal of Climate, 22, 615632, doi.org/10.1175/2008JCLI2309.1.Google Scholar
Kashino, Y., Aoyama, M., Kawano, T., Hendiarti, N., Anantasena, Y., Muneyama, K., Watanabe, H. (1996). The water masses between Mindanao and New Guinea. Journal of Geophysical Research, 101(C5), 1239112400.Google Scholar
Kashino, Y., Watanabe, H., Herunadi, B., Aoyama, M., Hartoyo, D. (1999). Current variability at the Pacific entrance of the Indonesian Throughflow. Journal of Geophysical Research: Oceans, 104(C5), 1102111035.Google Scholar
Kashino, Y., Firing, E., Hacker, P., Sulaiman, A., Lukiyanto, (2001). Currents in the Celebes and Maluku seas, February 1999. Geophysical Research Letters, 28(7), 12631266.Google Scholar
Kashino, Y., Ishida, A., Kuroda, Y. (2005). Variability of the Mindanao current: Mooring observation results. Geophysical Research Letters 32, L18611, doi.org/10.1029/2005GL023880.Google Scholar
Kayanne, H., Iijima, H., Nakamura, N., McClanahan, T. R., Behera, S., Yamagata, T. (2006). Indian Ocean Dipole index recorded in Kenyan coral annual density bands. Geophysical Research Letters, 33, L19709, doi:10.1029/2006GL027168.Google Scholar
Klein, S. A., Soden, B. J., Lau, N. C. (1999). Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate, 12(4), 917932.Google Scholar
Kriplani, R. H., Kumar, P. (2004). Monsoon rainfall variability and Indian Ocean Dipole, non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. International Journal of Climatology, 24, 12671282, doi:10.1002/joc.1071.Google Scholar
Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., et al. (2015). Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain event, Climate Dynamics, 45, doi.org/10.1007/s00382–014-2288-0.Google Scholar
Kucharski, F., Bracco, A., Yoo, J.-H., Molteni, F. (2007). Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: The “weakening” of the 1980s and 1990s. Journal of Climate, 20(16), 42554266.Google Scholar
Kucharski, F., Bracco, A., Yoo, J. H., Molteni, F. (2008). Atlantic forced component of the Indian monsoon interannual variability. Geophysical Research Letters, 35, L04706, doi:10.1029/2007GL033037.Google Scholar
Kucharski, F., Bracco, A., Yoo, J. H., Tompkins, A. M., Feudale, L., Ruti, P., Dell’Aquila, A. (2009). A Gill–Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quarterly Journal of the Royal Meteorological Society, 135, 569579, doi:10.1002/qj.406.Google Scholar
Kucharski, F., Parvin, A., Rodriguez-Fonseca, B., Farneti, R., Martin-Rey, M., Polo, I., Mohino, E., Losada, T., Mechoso, C. R. (2016). The Teleconnection of the Tropical Atlantic to Indo-Pacific Sea Surface Temperatures on Interannual to Centennial Time Scales: A Review of Recent Findings. Atmosphere, 7(2), 29, doi:10.3390/atmos7020029.Google Scholar
Kucharski, F., Joshi, M. K. (2017). Influence of tropical South Atlantic sea-surface temperatures on the Indian summer monsoon in CMIP5 models. Quarterly Journal of the Royal Meteorological Society, 143, 13511363.Google Scholar
Kug, J.-S., Li, T., An, S.-I., Kang, I.-S., Luo, J.-J., Masson, S., Yamagata, T. (2006). Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophysical Research Letters. 33(9), L09710, doi:10.1029/2005GL024916.Google Scholar
Kug, J.-S., Kang, I.-S. (2006). Interactive feedback between ENSO and the Indian Ocean, Journal of Climate, 19, 17841801, doi:10.1175/JCLI3660.1.Google Scholar
Kug, J. S., Jin, F.-F., An, S.-I. (2009). Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. Journal of Climate, 22, 14991515, doi.org/10.1175/2008JCLI2624.1Google Scholar
Lau, N. C., Nath, M. J. (2003). Atmosphere–Ocean variations in the Indo-Pacific sector during ENSO episodes. Journal of Climate, 16, 320.Google Scholar
Lau, N. C., Leetmaa, A., Nath, M. J., Wang, H. L. (2005). Influence of ENSO-induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. Journal of Climate, 18, 29222942.Google Scholar
Lee, T., Fukumori, I., Menemenlis, D., Xing, Z., Fu, L.-L. (2002). Effects of the Indonesian throughflow on the Pacific and Indian Oceans, Journal of Physical Oceanography, 32(5), 14041429.Google Scholar
Lee, S.-K., Park, W., van Sebille, E., Baringer, M. O., Wang, C., Enfield, D. B., Yeager, S. G., Kirtman, B. P. (2011). What caused the significant increase in Atlantic Ocean heat content since the mid-20th century? Geophysical Research Letters, 38, L17607, doi:10.1029/2011GL048856.Google Scholar
Li, X., Yuan, D., Wang, Z., Li, Y., Corvianawatie, C., Surinati, D., Sandra, A., Bayhaq, A., Avianto, P., Kusmanto, E., Dirhamsyah, D., Arifin, Z. (2019). Moored observations of transport and variability of Halmahera Sea currents. Journal of Physical Oceanography.Google Scholar
Lindstrom, E., Lukas, R., Fine, E., et al. (1987). The western Equatorial Pacific ocean circulation study. Nature, 330, 533537.Google Scholar
Liu, Z. (2002). A simple model study of ENSO suppression by external periodical forcing. Journal of Climate, 15, 10881098.Google Scholar
Lübbecke, J. F., Durgadoo, J. V., Biastoch, A. (2015). Contribution of increased Agulhas leakage to tropical Atlantic warming. Journal of Climate, 28, doi:10.1175/JCLI-D-15-0258.1.Google Scholar
Lukas, R., Lindstrom, E. (1991). The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research, 96 (Suppl.), 33433357.Google Scholar
Lukas, R., Yamagata, T., McCreary, J. P. (1996). Pacific low-latitude western boundary currents and the Indonesian throughflow. Journal of Geophysical Research, 101, 1220912216.Google Scholar
Luo, J.-J., Ruochao Zhang, R., Behera, S. K., Masumoto, Y. (2010). Interaction between El Niño and Extreme Indian Ocean Dipole. Journal of Climate, doi:10.1175/2009JCLI3104.1.Google Scholar
Lutjeharms, J. R. E., Ansorge, I. J. (1997). The Agulhas return current. Journal of Marine Systems, 30, 115138.Google Scholar
Lutjeharms, J. R. E. (2006). The Agulhas Current. Berlin: Springer.Google Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., Francis, R. C. (1997). A Pacific Interdecadal Climate Oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6), 10691079, doi:10.1175/1520-0477(1997)078<1069:apicow>2.0.co;2.Google Scholar
Marathe, S., Ashok, K., Swapna, P., Sabin, T. P. (2015). Revisiting El Niño modoki. Climate Dynamics, 45, 35273545, doi.org/10.1007/s00382–015-2555-8.Google Scholar
Masumoto, Y., Yamagata, T. (1993) Simulated seasonal circulation in the Indonesian Seas. Journal of Geophysical Research, 98, 1250112509.Google Scholar
Masumoto, Y., Yamagata, T. (1996) Seasonal variations of the Indonesian throughflow in a general circulation ocean model. Journal of Geophysical Research, 101, 1228712293.Google Scholar
Masumoto, Y. (2002). Effects of interannual variability in the eastern Indian Ocean on the Indonesian Throughflow. Journal of Oceanography, 58, 175182.Google Scholar
McClean, J. L., Ivanova, D. P., Sprintall, J. (2005). Remote origins of interannual variability in the Indonesian throughflow region from data and a global Parallel Ocean Program simulation. Journal of Geophysical Research, 110, C10013, doi:10.1029/2004JC002477.Google Scholar
McCreary, J. P. (1976). Eastern tropical ocean response to changing wind systems: With application to El Niño. Journal of Physical Oceanography, 6(5), 632645.Google Scholar
Meyers, G., Bailey, R. J., Worby, A. P. (1995). Geostrophic transport of Indonesian throughflow. Deep Sea Research, Part I, 42, 11631174.Google Scholar
Meyers, G. (1996). Variation of Indonesian throughflow and the El Niño-Southern Oscillation. Journal of Geophysical Research, 101, 1225512263.Google Scholar
Murtugudde, R., Busalacchi, A. J., Beauchamp, J. (1998). Seasonal to-interannual effects of the Indonesian throughflow on the tropical Indo-Pacific basin. Journal of Geophysical Research, 103, 2142521441.Google Scholar
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, , Di Lorenzo, C. E., Mantua, N. J. Miller, A. J., Minobe, S., Nakamura, H., Schneider, N., Vimont, D. J., Phillips, A. S., Scott, J. D., Smith, C. A. (2016). The Pacific Decadal Oscillation, Revisited. Journal of Climate, 29, 43994427.Google Scholar
Murtugudde, R., McCreary, J. P., Busalacchi, A. J. (2000). Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. Journal of Geophysical Research: Oceans, 105(C2), 32953306.Google Scholar
Ng, B., Cai, W. (2016). Present-day zonal wind influences projected Indian Ocean Dipole skewness. Geophysical Research Letters, 43(21), 1139211399.Google Scholar
Nitani, H. (1972). Beginning of the Kuroshio. In Kuroshio: Its Physical Aspects. Stommel, H. and Yoshida, K. (eds.) Tokyo: University of Tokyo Press, 129163.Google Scholar
Nnamchi, H. C., Li, J. P., Kucharski, F., Kang, I.-S., Keenlyside, N. S., Chang, P., Farneti, R. (2015). Thermodynamic controls of the Atlantic Niño. Nature Communications 6, 8895.CrossRefGoogle ScholarPubMed
Ottera, O. H., Bentsen, M., Drange, H., Suo, L. (2010). External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, doi:10.1038/NGEO955.Google Scholar
Paris, M. L., Subrahmanyam, B., Trott, C. B., Murty, V. S. N. (2018). Influence of ENSO events on the Agulhas leakage region. Remote Sensing in Earth System Sciences, 1, 7988.Google Scholar
Parker, D., Folland, C., Scaife, A., Knight, J., Colman, A., Baines, P. Dong, B. (2007). Decadal to multidecadal variability and the climate change background. Journal of Geophysical Research, 112, doi:10.1029/2007JD008411.Google Scholar
Ponsoni, L., Aguiar-González, B., Maas, L. R. M., van Aken, H. M., Ridderinkhof, H. (2015). Long-term observations of the East Madagascar Undercurrent. Deep Sea Research Part I: Oceanographic Research Papers, 100, 6478, doi:10.1016/J.DSR.2015.02.004Google Scholar
Power, S., Tseitkin, F., Torok, S., Lavery, B., Dahni, R., McAvaney, B. (1998). Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: Coherent variability and recent changes. Australian Meteorology Magazine, 47(2), 85101.Google Scholar
Power, S., Casey, T., Folland, C., Colman, A., Mehta, V. (1999). Inter-decadal modulation of the impact of ENSO on Australia. Climate Dynamics, 15(5), 319324, doi:10.1007/s003820050284.CrossRefGoogle Scholar
Potemra, J. T. (1999). Seasonal variations of upper-ocean transport from the Pacific to the Indian Ocean via Indonesian Straits. Journal of Physical Oceanography, 29, 29302944.Google Scholar
Pradhan, P. K., Preethi, B., Ashok, K., Krishnan, R., Sahai, A. K. (2011). ENSO Modoki, Indian Ocean Dipole, and western North Pacific typhoons: Possible implications for extreme events, Journal of Geophysical Research, 116, D18108, doi:10.1029/2011JD015666.Google Scholar
Preethi, B., Sabin, T., Adedoyan, J., Ashok, K. (2015). Recent impacts of the tropical Indo-Pacific climate drivers on African rainfall variability. Scientific Reports, 5, doi:10.1038/srep16653.Google Scholar
Pujiana, K., Gordon, A. L., Sprintall, J., Susanto, R. D. (2009). Intraseasonal variability in the Makassar strait thermocline. Journal of Marine Research, 67(6), 757777.Google Scholar
Pujiana, K., Gordon, A. L., Metzger, E. J., Ffield, A. L. (2012). The Makassar Strait Pycnocline Variability at 20-40 Days. Dynamics of Atmospheres and Oceans, 53 –54, 1735.Google Scholar
Pujiana, K., Gordon, A. L., Sprintall, J. (2013). Intraseasonal Kelvin wave in Makassar Strait. Journal of Geophysical Research Oceans, 118, 20232034, doi:10.1002/jgrc.20069.Google Scholar
Putrasahan, D., Kirtman, B. P., Beal, L. M., Putrasahan, D., Kirtman, B. P., Beal, L. M. (2016). Modulation of SST Interannual Variability in the Agulhas Leakage Region Associated with ENSO. Journal of Climate, 29, 70897102.Google Scholar
Qu, T. D., Lindstrom, E. J. (2004). Northward intrusion of Antarctic Intermediate Water in the western Pacific. Journal of Physical Oceanography, 34(9), 21042118.Google Scholar
Rao, S. A., Behera, S. K., Masumoto, Y., Yamagata, T. (2002). Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep Sea Research Part II: Topical Studies in Oceanography, 49, 15491572.Google Scholar
Rao, S. A., Yamagata, T. (2004). Abrupt termination of Indian Ocean Dipole events in response to intraseasonal disturbances. Geophysical Research Letters, 31(19), L19306, doi:10.1029/2004GL020842.Google Scholar
Rao, S. A., Behera, S. K. (2005). Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dynamics of Atmospheres and Oceans, 39, 103135.Google Scholar
Richardson, P. L. (2007). Agulhas leakage into the Atlantic estimated with subsurface floats and surface drifters. Deep Sea Research Part I: Oceanographic Resarch Papers, 54, 13611389.Google Scholar
Rodríguez-Fonseca, B., Polo, I., García-Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., Kucharski, F. (2009). Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophysical Research Letters, 36, L20705, doi:10.1029/2009GL040048.Google Scholar
Rühs, S., Schwarzkopf, F. U., Speich, S., Biastoch, A. (2019). Cold vs. warm water route – Sources for the upper limb of the AMOC revisited in a high-resolution ocean model. Ocean Science, 15, 489512. https://doi.org/10.5194/os-15-1-2019.Google Scholar
Saha, K. (1970). Zonal anomaly of sea surface temperature in equatorial Indian ocean and its possible effect upon monsoon Circulation. Tellus, 22, 403409.Google Scholar
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.Google Scholar
Saji, N. H., Yamagata, T. (2003). Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25(2), 151169.Google Scholar
Saji, N. H. (2018). The Indian Ocean dipole. Oxford Research Encyclopedia, Climate Science, 35, doi:10.1093/acrefore/9780190228620.013.619.Google Scholar
Schiller, A., Godfrey, J. S., McIntosh, P. C., et al. (2000). Interannual dynamics and thermodynamics of the Indo-Pacific Oceans. Journal of Physical Oceanography, 30(5), 9871012.Google Scholar
Shinoda, T., Hendon, H. H., Alexander, M. A. (2004). Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Research I, 51, 619635.Google Scholar
Schneider, N. (1998). Indonesian throughflow and the global climate system. Journal of Climate, 11, 676689.Google Scholar
Schneider, N., Cornuelle, B. D. (2005). The forcing of the Pacific decadal oscillation. Journal of Climate, 18, 43554373.Google Scholar
Schouten, M. W., de Ruijter, W. P. M., van Leeuwen, P. J. (2002). Upstream control of Agulhas Ring shedding. Journal of Geophysical Research Oceans, 107, 23-1-23-11.Google Scholar
Schwarzkopf, F. U., Böning, C. W. (2011). Contribution of Pacific wind stress to multi-decadal variations in upper-ocean heat content and sea level in the tropical south Indian Ocean. Geophysical Research Letters, 38(12), L12602.Google Scholar
Souza, J., de Boyer Montégut, C., Cabanes, C., Klein, P. (2011). Estimation of the Agulhas ring impacts on meridional heat fluxes and transport using ARGO floats and satellite data. Geophysical Research Letters., 38, L21602.Google Scholar
Speich, S., Blanke, B., de Vries, P., Drijfhout, S., Doos, K., Ganachaud, A., Marsh, R. (2002). Tasman leakage- A new route in the global ocean conveyor belt. Geophysical Research Letters, 29, 5155.Google Scholar
Speich, S., Blanke, B., Cai, W. (2007). Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophysical Research Letters, 34, 15.Google Scholar
Sprintall, J., Gordon, A. L., Murtugudde, R., Susanto, R. D. (2000). A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. Journal of Geophysical Research, 105, 1721717230.Google Scholar
Sprintall, J., Wijffels, S. E., Molcard, R., Jaya, I. (2009). Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research, 114, C07001, doi.org/10.1029/2008JC005257.Google Scholar
Sprintall, J., et al. (2014). The Indonesian seas and their role in the coupled ocean-climate system. Nature Geosciences, 7, 487492.Google Scholar
Sun, C., Li, J., Kucharski, F., Kang, I.-S., Jin, F.Wang, -F., Wang, K., Ding, C., Xie, R., F. (2019). Recent acceleration of Arabian Sea warming induced by the Atlantic-western Pacific trans-basin multidecadal variability. Geophysical Research Letters, 46, doi.org/10.1029/2018GL081175.Google Scholar
Susanto, R. D., Fang, G., Soesilo, I., Zheng, Q., Qiao, F., Wei, Z., Sulistyo, B. (2010). New surveys of a branch of the Indonesian throughflow. Eos, Transactions American Geophysical Union, 91(30), 261, doi:10.1029/2010EO300002.Google Scholar
Susanto, R. D., Ffield, A., Gordon, A. L., Adi, T. R. (2012). Variability of Indonesian throughflow within Makassar Strait, 2004–2009. Journal of Geophysical Research, 117(C9), C09013, dx.doi.org/10.1029/2012JC008096.Google Scholar
Susanto, R, Wei, Z., Adi, R. T., Fan, B., Li, S., Fang, G. (2013). Observations of the Karimata Strait throughflow from December 2007 to November 2008. Acta Oceanologica Sinica, 32(5), 16, doi:10.1007/s13131-013-0307-3.Google Scholar
Talley, L. D. (1993). Distribution and formation of North Pacific Intermediate Water. Journal of Physical Oceanography, 23, 517537.Google Scholar
Toole, J. M., Millard, R. C., Wang, Z., Pu, S. (1990). Observations of the Pacific North Equatorial Current bifurcation at the Philippine coast. Journal of Physical Oceanography, 20(2), 307318.Google Scholar
Tozuka, T., Luo, J.-J., Masson, S., Yamagata, T. (2007a). Decadal modulations of the Indian Ocean Dipole simulated in the SINTEX‐F1 coupled GCM. Journal of Climate, 20(13), 28812894.Google Scholar
Tozuka, T., Qu, T., Yamagata, T. (2007b). Dramatic impact of the South China Sea on the Indonesian throughflow. Geophysical Research Letters, 34, L12612, doi:10.1029/2007GL030420.Google Scholar
Tozuka, T., Qu, T., Masumoto, Y., Yamagata, T. (2009). Impacts of the South China Sea throughflow on seasonal and interannual variations of the Indonesian throughflow. Dynamics of Atmospheres and Oceans, 47, 7385.Google Scholar
Tsuchiya, M. (1968). Upper waters of the intertropical Pacific Ocean. In Johns Hopkins Oceanographic Studies. No. 4. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Tsuchiya, M., Lukas, R., Fine, R. A., Firing, E., Lindstrom, E. (1989). Source waters of the Pacific equatorial undercurrent. Progress in Oceanography, 23(2), 101147.Google Scholar
Tsuchiya, M. (1991). Flow path of Antarctic Intermediate Waters in the western equatorial Pacific Ocean. Journal of Marine Research, 38A(suppl.), 272279.Google Scholar
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research, 14, 291324.Google Scholar
Trenberth, K. E., Shea, D. J. (2005). Atlantic hurricanes and natural variability in 2005. Geophysical Research Letters, 33, doi:10.1029/2006GL026894.Google Scholar
Ummenhofer, C. C., England, M. H., McIntosh, P. C., Meyers, G. A., Pook, M. J., Risbey, J. S., Gupta, A. S., Taschetto, A. S. (2009). What causes southeast Australia's worst droughts? Geophysical Research Letters, 36(4), L04706, doi:10.1029/2008GL036801.Google Scholar
Ummenhofer, C. C., Schwarzkopf, F. U., Meyers, G., Behrens, E., Biastoch, A., Böning, C. W. (2013). Pacific Ocean contribution to the asymmetry in eastern Indian Ocean variability. Journal of Climate, 26(4), 11521171, doi.org/10.1175/JCLI-D-11-00673.1.Google Scholar
Ummenhofer, C. C., Biastoch, A., Böning, C. W. (2017). Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. Journal of Climate, 30, 17391751, doi.org/10.1175/JCLI-D-16-0200.1Google Scholar
Van Aken, H. M., Punjana, J., Saimima, S. (1988). Physical aspects of the flushing of the east Indonesian basins. Netherlands Journal of Sea Research, 22, 315339.Google Scholar
Van Aken, H. M., Van Veldhoven, A. K., Veth, C., De Ruijter, W. P. M., Van Leeuwen, P. J., Drijfhout, S. S., Whittle, C. P., Rouault, M. (2003). Observations of a young Agulhas ring, Astrid, during MARE in March 2000. Deep Sea Research Part II: Topical Studies in Oceanography, 50, 167195, doi:10.1016/S0967-0645(02)00383-1.Google Scholar
Van Aken, H. M., Ridderinkhof, H., de Ruijter, W. P. M. (2004). North Atlantic deep water in the south-western Indian Ocean. Deep Sea Research Part I: Oceanographic Resarch Papers, 51, 755776.Google Scholar
Van Sebille, E., Sprintall, J., Schwarzkopf, F. U., Sen Gupta, A., Santoso, A., England, M. H., Biastoch, A., Böning, C. W. (2014). Pacific-to-Indian Ocean connectivity: Tasman leakage, Indonesian throughflow, and the role of ENSO. Journal of Geophysical Research Oceans, 119, 13651382, doi:10.1002/2013JC009525.Google Scholar
Venzke, S., Latif, M., Villwock, A. (2000). The coupled GCM ECHO-2: Part II. Indian Ocean response to ENSO, Journal of Climate, 13, 13711383.Google Scholar
Verschell, M., Kindle, J., O’Brien, J. (1995). Effects of Indo–Pacific throughflow on the upper tropical Pacific and Indian Oceans. Journal of Geophysical Research, 100, 1840918420.Google Scholar
Vinayachandran, P. N., Saji, N. H., Yamagata, T. (1999). Response of the equatorial Indian Ocean to an unusual wind event during 1994. Geophysical Research Letters, 26(11), 16131616.Google Scholar
Vinayachandran, P. N., Kurian, J., Neema, T. (2007). Indian Ocean response to anomalous conditions during 2006. Geophysical Research Letters, 34(15), L15602, doi:10.1029/2007GL030194.Google Scholar
Wajsowicz, R. C. (1996). Flow of a western boundary current through multiple straits: An electrical circuit analogy for the Indonesian throughflow and archipelago. Journal of Geophysical Research: Oceans, 101(C5),1229512300.Google Scholar
Wang, C., Kucharski, F., Barimalala, R., Bracco, A. (2009). Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteorologische Zeitschrift, 18(4), 445454.Google Scholar
Wang, Z., Yuan, D. (2012). Nonlinear dynamics of two western boundary currents colliding at a gap. Journal of Physical Oceanography, 42, 20302040, doi:10.1175/JPO-D-12-05.1.Google Scholar
Wang, Z., Yuan, D. (2014). Multiple equilibria and hysteresis of two unequal-transport western boundary currents colliding at a gap. Journal of Physical Oceanography, 44, 18731885, doi:10.1175/JPO-D-13-0234.1.Google Scholar
Wang, H., Murtugudde, R., Kumar, A. (2016). Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Climate Dynamics, 47(7–8), 24812500, doi.org/10.1007/s00382–016-2977-y.Google Scholar
Wang, J., Yuan, D., Zhao, X. (2017). Impacts of Indonesian throughflow on seasonal circulation in the equatorial Indian Ocean. Chinese Journal of Oceanology and Limnology, 35, 12611274.Google Scholar
Webster, P. J., Moore, A. M., Loschnigg, J. P., Leben, R. R. (1999). Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360.Google Scholar
Wijffels, S. E., Meyers, G., Godfrey, J. S. (2008). A twenty year average of the Indonesian throughflow: Regional currents and the interbasin exchange. Journal of Physical Oceanography, 38, 19651978.Google Scholar
Wu, R., Kirtman, B. P. (2004). Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. Journal of Climate, 17, 40194031, doi:10.1175/1520-0442(2004)017<4019:UTIOTI>2.0.CO;2.Google Scholar
Wyrtki, K. (1961). Physical oceanography of the Southeast Asian waters. UC San Diego: Scripps Institution of Oceanography. Retrieved from https://escholarship.org/uc/item/49n9x3t4.Google Scholar
Xu, T. F., Yuan, D. L., Yu, Y. Q., et al. (2013). An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model. Advances in Atmospheric Sciences, 30(4), 9971016.Google Scholar
Yamagata, T., Behera, S. K., Rao, S. A., Guan, Z., Ashok, K., Saji, H. N. (2003). Comments on “Dipoles, temperature gradients, and tropical climate anomalies,” Bulletin of the American Meteorological Society, 84, 14181421.Google Scholar
Yeh, S. W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., Jin, F.- F. (2009). El Niño in a changing climate. Nature, 461, 511514, doi.org/10.1038/nature08316.Google Scholar
Yu, J.-Y., Mechoso, C. R., McWilliams, J. C., Arakawa, A. (2002). Impacts of the Indian Ocean on the ENSO cycle. Geophysical Research Letters, 29(8), 1204, doi:10.1029/2001GL014098.Google Scholar
Yuan, D., Wang, J., Xu, T., Zhou, H., Zhao, X. (2011). Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian throughflow. Journal of Climate, 24, 35933608.Google Scholar
Yuan, D., Zhou, H., Zhao, X. (2013). Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian throughflow. Journal of Climate, 26, 28452861.Google Scholar
Yuan, C., Yamagata, T. (2015). Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades. Scientific Reports, 5, 17252.Google Scholar
Yuan, D. L., Xu, P., Xu, T. F. (2017). Climate variability and predictability associated with the Indo-Pacific Oceanic channel dynamics in the CCSM4 coupled system model. Journal of Oceanology and Limnology, 36(1), 2328, dx.doi.org/10.1007/s00343–016-5178-y.Google Scholar
Yuan, D., Hu, X., Xu, P., Zhao, X., Yukio, M., Han, W. (2018a). The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: Dynamics and long-term trends under global warming. Journal of Oceanology and Limnology, 36, 419, doi.org/10.1007/s00343–018-6252-4.Google Scholar
Yuan, D., Li, X., Wang, Z., Li, Y., Wang, J., Yang, Y., Hu, X., Tan, S., Zhou, H., Wardana, A. K., Surinati, D., Purwandana, A., Ismail, M. F. A., Avianto, P., Dirhamsyah, D., Arifin, Z., von Storch, J.-S. (2018b). Observed transport variations in the Maluku Channel of the Indonesian Seas associated with western boundary current changes. Journal of Physical Oceanography, 48, doi:10.1175/JPO-D-17-0120.1.Google Scholar
Zhao, Y., Nigam, S. (2015). The Indian Ocean dipole: A monopole in SST. Journal of Climate, 28, 319.Google Scholar
Zhou, Q., Duan, W. S., Mu, M., Feng, R. (2015). Influence of positive and negative Indian Ocean dipoles on ENSO via the Indonesian Throughflow: results from sensitivity experiments. Advances in Atmospheric Sciences, 32(6), 783793.Google Scholar
Zubair, L., Rao, S. A., Yamagata, T. (2003). Modulation of Sri Lankan Maha rainfall by the Indian Ocean dipole. Geophysical Research Letters, 30(2), 1063, doi:10.1029/2002GL015639.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×