Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-10T10:30:35.100Z Has data issue: false hasContentIssue false

2 - Some mathematical introductions

Published online by Cambridge University Press:  08 January 2010

H. Gutfreund
Affiliation:
University of Bristol
Get access

Summary

The origins of exponential behaviour

Mathematics as the language for kinetics

Some topics covered in this volume are more easily described by mathematical equations than by words, while others can only be described in algebraic language. An attempt is made in this chapter to state the mathematical principles which are the foundation of kinetic behaviour and to present the methods used to derive the equations which describe this behaviour. It is not essential to understand the contents of this chapter to benefit from the rest of this volume, but it is difficult to avoid mistakes in kinetic investigations without it.

It will be seen that exponential curves of one sort or another crop up everywhere in the study of the rates of reactions. Not only is the change of concentration (or membrane current, etc.) frequently described by an exponential function of time (or by the sum of several such functions), but exponentials also appear in some of the more exotic ways of measuring rates, such as in the study of fluctuations and noise. Furthermore the study of individual molecules, as is possible for some sorts of ion channel, gives rise to probability distributions (e.g. the distribution of the length of time for which an individual channel stays open) that are also described by exponentials (Colquhoun & Hawkes, 1983). Unfortunately some of these topics can only be referred to in passing in the present volume. It is, however, important to realize that it is sometimes useful to distinguish between the lifetime of a state (or reaction intermediate) and the rate (or probability) of its decay.

Type
Chapter
Information
Kinetics for the Life Sciences
Receptors, Transmitters and Catalysts
, pp. 19 - 44
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×