Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-31T13:16:18.963Z Has data issue: false hasContentIssue false

Appendix: Culture methods for lichens and lichen symbionts

Published online by Cambridge University Press:  05 September 2012

E. Stocker-Wörgötter
Affiliation:
Department of Organismic Biology (Plant Physiology) University of Salzburg Hellbrunner Str. 34 A-5020 Salzburg Austria
A. Hager
Affiliation:
Department of Organismic Biology (Plant Physiology) University of Salzburg Hellbrunner Str. 34 A-5020 Salzburg Austria
Thomas H. Nash, III
Affiliation:
Arizona State University
Get access

Summary

Many topics of lichen biology deal with questions about how the different symbiotic partners (mycobionts, photobionts, cyanobionts) interact within the lichen thallus. The separation, isolation, and culture of the lichen symbionts or components offer researchers insights into functional aspects of the lichen symbiosis, such as identifying parameters essential for their growth in the aposymbiotic state or triggers for producing secondary metabolites (polyketides, shikimic acid derivatives, etc.) in culture. Furthermore, culturing provides a means for investigating how lichen symbionts respond to each other, how they recognize each other through chemical signals, and how a functional symbiosis is established. Many of these fundamental problems in lichenology have been investigated (Chapter 5), but not fully resolved. Apart from the questions that arise from investigating only the typical lichen bionts, one can utilize more advanced molecular methods to study other associated partners of the lichen symbiosis, including molds, yeasts, lichenicolous fungi, lichenicolous lichens, and parasitic bacteria located on the surface of or within the thalli.

Laboratory culture

Over the past 20 years many culture experiments have been undertaken to improve culture methods for lichen symbionts, in general, and also to re-establish lichen symbioses (di- or tripartite partnerships of ascomycetous and basidiomycetous lichens) under artificial conditions (Fig. App. 1). Such experiments help to answer basic questions, like how the lichen fungus transforms from a relatively unstructured mycelium into a highly organized thallus. Such resynthesis experiments can significantly extend our knowledge about symbiont coordination and steps in thallus ontogeny.

Type
Chapter
Information
Lichen Biology , pp. 353 - 363
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×