Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-22T14:29:28.058Z Has data issue: false hasContentIssue false

8 - Antiferromagnetism

from I - Basics

Published online by Cambridge University Press:  05 June 2012

Nicola A. Spaldin
Affiliation:
University of California, Santa Barbara
Get access

Summary

A large number of antiferromagnetic materials is now known; these are generally compounds of the transition metals containing oxygen or sulphur. They are extremely interesting from the theoretical viewpoint but do not seem to have any applications.

Louis Néel, Magnetism and the Local Molecular Field, Nobel lecture, December 1970

Now that we have studied the phenomenon of cooperative ordering in ferromagnetic materials, it is time to study the properties of antiferromagnets. In antiferromagnetic materials, the interaction between the magnetic moments tends to align adjacent moments antiparallel to each other. We can think of antiferromagnets as containing two interpenetrating and identical sublattices of magnetic ions, as illustrated in Fig. 8.1. Although one set of magnetic ions is spontaneously magnetized below some critical temperature (called the Néel temperature, TN), the second set is spontaneously magnetized by the same amount in the opposite direction. As a result, antiferromagnets have no net spontaneous magnetization, and their response to external fields at a fixed temperature is similar to that of paramagnetic materials – the magnetization is linear in the applied field, and the susceptibility is small and positive. The temperature dependence of the susceptibility above the Néel temperature is also similar to that of a paramagnet, but below TN it decreases with decreasing temperature, as shown in Fig. 8.2.

The first direct imaging of the magnetic structure of antiferromagnets was provided by neutron diffraction experiments. We will begin this chapter by reviewing the physics of neutron diffraction, and showing some examples of its successes.

Type
Chapter
Information
Magnetic Materials
Fundamentals and Applications
, pp. 96 - 112
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Antiferromagnetism
  • Nicola A. Spaldin, University of California, Santa Barbara
  • Book: Magnetic Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781599.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Antiferromagnetism
  • Nicola A. Spaldin, University of California, Santa Barbara
  • Book: Magnetic Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781599.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Antiferromagnetism
  • Nicola A. Spaldin, University of California, Santa Barbara
  • Book: Magnetic Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781599.008
Available formats
×