Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-16T00:31:54.570Z Has data issue: false hasContentIssue false

12 - Waldenstrom's macroglobulinemia/lymphoplasmacytic lymphoma

Published online by Cambridge University Press:  10 January 2011

Steven P. Treon
Affiliation:
Bing Center for Waldenstrom's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
Giampaolo Merlini
Affiliation:
Department of Biochemistry at the University of Pavia and Biotechnology Research Laboratories, University Hospital Policlinico San Matteo, Pavia, Italy
Susan O'Brien
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Julie M. Vose
Affiliation:
University of Nebraska Medical Center, Omaha
Hagop M. Kantarjian
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Get access

Summary

Introduction

Waldenstrom's macroglobulinemia (WM) is a distinct clinicopathologic entity resulting from the accumulation, predominantly in the bone marrow, of clonally related lymphocytes, lymphoplasmacytic cells, and plasma cells which secrete a monoclonal IgM protein (Figure 12.1). This condition is considered to correspond to the lymphoplasmacytic lymphoma (LPL) as defined by the Revised European–American Lymphoma (REAL) and World Health Organization (WHO) classification systems. Most cases of LPL are WM, with less than 5% of cases made up of IgA, IgG, and non-secreting LPL.

Epidemiology and etiology

WM is an uncommon disease, with a reported age-adjusted incidence rate of 3.4 per million among males and 1.7 per million among females in the USA, and a geometrical increase with age. The incidence rate for WM is higher among Caucasians, with African descendants representing only 5% of all patients. Genetic factors appear to be an important factor to the pathogenesis of WM. Approximately 20% of WM patients have an Ashkenazi (Eastern European) Jewish ethnic background, and there have been numerous reports of familiar disease, including multigenerational clustering of WM and other B-cell lymphoproliferative diseases. In a recent study, approximately 20% of 257 serial WM patients presenting to a tertiary referral had a first-degree relative with either WM or another B-cell disorder. Frequent familiar association with other immunologic disorders in healthy relatives, including hypogammaglobulinemia and hypergammaglobulinemia (particularly polyclonal IgM), autoantibody (particularly to thyroid) production, and manifestation of hyperactive B cells have also been reported.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Owen, RG, Treon, SP, Al-Katib, A, et al. Clinicopathologic definition of Waldenström's macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenström's macroglobulinemia. Semin Oncol 2003;30:110–15.CrossRefGoogle Scholar
Harris, NL, Jaffe, ES, Stein, H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994;84:1361–92.Google ScholarPubMed
Harris, NL, Jaffe, ES, Diebold, J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. Ann Oncol 1999;10:1419–32.CrossRefGoogle Scholar
Groves, FD, Travis, LB, Devesa, SS, et al. Waldenström's macroglobulinemia: incidence patterns in the United States, 1988–1994. Cancer 1998;82:1078–81.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Herrinton, LJ, Weiss, NS. Incidence of Waldenström's macroglobulinemia. Blood 1993;82:3148–50.Google ScholarPubMed
Bjornsson, OG, Arnason, A, Gudmunosson, S, et al. Macroglobulinaemia in an Icelandic family. Acta Med Scand 1978;203:283–8.CrossRefGoogle Scholar
Treon, SP, Hunter, ZR, Aggarwal, A, et al. Characterization of familial Waldenstrom's macroglobulinemia. Ann Oncol 2006;17:488–94.CrossRefGoogle ScholarPubMed
Renier, G, Ifrah, N, Chevailler, A, et al. Four brothers with Waldenström's macroglobulinemia. Cancer 1989;64:1554–9.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Ogmundsdottir, HM, Sveinsdottir, S, Sigfusson, A, et al. Enhanced B cell survival in familial macroglobulinaemia is associated with increased expression of Bcl-2. Clin Exp Immunol 1999;117:252–60.CrossRefGoogle ScholarPubMed
Linet, MS, Humphrey, RL, Mehl, ES, et al. A case-control and family study of Waldenström's macroglobulinemia. Leukemia 1993;7:1363–9.Google ScholarPubMed
Santini, GF, Crovatto, M, Modolo, ML, et al. Waldenström macroglobulinemia: a role of HCV infection?Blood 1993;82:2932.Google ScholarPubMed
Silvestri, F, Barillari, G, Fanin, R, et al. Risk of hepatitis C virus infection, Waldenström's macroglobulinemia, and monoclonal gammopathies. Blood 1996;88:1125–6.Google ScholarPubMed
Leleu, X, O'Connor, K, Ho, A, et al. Hepatitis C viral infection is not associated with Waldenström's macroglobulinemia. Am J Hematol 2007;82:83–4.CrossRefGoogle Scholar
Carbone, P, Caradonna, F, Granata, G, et al. Chromosomal abnormalities in Waldenstrom's macroglobulinemia. Cancer Genet Cytogenet 1992;61:147–51.CrossRefGoogle ScholarPubMed
Mansoor, A, Medeiros, LJ, Weber, DM, et al. Cytogenetic findings in lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. Chromosomal abnormalities are associated with the polymorphous subtype and an aggressive clinical course. Am J Clin Pathol 2001;116:543–9.CrossRefGoogle ScholarPubMed
Han, T, Sadamori, N, Takeuchi, J, et al. Clonal chromosome abnormalities in patients with Waldenstrom's and CLL-associated macroglobulinemia: significance of trisomy 12. Blood 1983;62:525–31.Google ScholarPubMed
Rivera, AI, Li, MM, Beltran, G, et al. Trisomy 4 as the sole cytogenetic abnormality in a Waldenstrom macroglobulinemia. Cancer Genet Cytogenet 2002;133:172–3.CrossRefGoogle Scholar
Wong, KF, So, CC, Chan, JC, et al. Gain of chromosome 3/3q in B-cell chronic lymphoproliferative disorder is associated with plasmacytoid differentiation with or without IgM overproduction. Cancer Genet Cytogenet 2002;136:82–5.CrossRefGoogle ScholarPubMed
Schop, RF, Kuehl, WM, Wier, SA, et al. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 2002;100:2996–3001.CrossRefGoogle ScholarPubMed
Ocio, EM, Schop, RF, Gonzalez, B, et al. 6q deletion in Waldenstrom's macroglobulinemia is associated with features of adverse prognosis. Br J Haematol 2007;136:80–6.CrossRefGoogle ScholarPubMed
Chang, H, Qi, C, Trieu, Y, et al. Prognostic relevance of 6q deletion in Waldenstrom's macroglobulinemia. Proceedings of the Fifth International Workshop on Waldenstrom's Macroglobulinemia, Stockholm, Sweden 2008 (Abstract 125).Google Scholar
Leleu, X, Hunter, ZR, Xu, L, et al. Expression of regulatory genes for lymphoplasmacytic cell differentiation in Waldenstrom macroglobulinemia. Br J Haematol 2009;145:59–63.CrossRefGoogle ScholarPubMed
Avet-Loiseau, H, Garand, R, Lode, L, et al. 14q32 translocations discriminate IgM multiple myeloma from Waldenstrom's macroglobulinemia. Semin Oncol 2003;30:153–5.CrossRefGoogle ScholarPubMed
Preud'homme, JL, Seligmann, M. Immunoglobulins on the surface of lymphoid cells in Waldenström's macroglobulinemia. J Clin Invest 1972;51:701–5.CrossRefGoogle ScholarPubMed
Smith, BR, Robert, NJ, Ault, KA. In Waldenstrom's macroglobulinemia the quantity of detectable circulating monoclonal B lymphocytes correlates with clinical course. Blood 1983;61:911–14.Google ScholarPubMed
Levy, Y, Fermand, JP, Navarro, S, et al. Interleukin 6 dependence of spontaneous in vitro differentiation of B cells from patients with IgM gammopathy. Proc Natl Acad Sci USA 1990;87:3309–13.CrossRefGoogle Scholar
Owen, RG, Barrans, SL, Richards, SJ, et al. Waldenström macroglobulinemia. Development of diagnostic criteria and identification of prognostic factors. Am J Clin Pathol 2001;116:420–8.CrossRefGoogle ScholarPubMed
Feiner, HD, Rizk, CC, Finfer, MD, et al. IgM monoclonal gammopathy/Waldenström's macroglobulinemia: a morphological and immunophenotypic study of the bone marrow. Mod Pathol 1990;3:348–56.Google ScholarPubMed
San Miguel, JF, Vidriales, MB, Ocio, E, et al. Immunophenotypic analysis of Waldenstrom's macroglobulinemia. Semin Oncol 2003;30:187–95.CrossRefGoogle ScholarPubMed
Hunter, ZR, Branagan, AR, Manning, R, et al. CD5, CD10, CD23 expression in Waldenstrom's macroglobulinemia. Clin Lymphoma 2005;5:246–9.CrossRefGoogle ScholarPubMed
Wagner, SD, Martinelli, V, Luzzatto, L.Similar patterns of V kappa gene usage but different degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia, Waldenström's macroglobulinemia, and myeloma. Blood 1994;83:3647–53.Google ScholarPubMed
Aoki, H, Takishita, M, Kosaka, M, et al. Frequent somatic mutations in D and/or JH segments of Ig gene in Waldenström's macroglobulinemia and chronic lymphocytic leukemia (CLL) with Richter's syndrome but not in common CLL. Blood 1995;85:1913–19.Google ScholarPubMed
Shiokawa, S, Suehiro, Y, Uike, N, et al. Sequence and expression analyses of mu and delta transcripts in patients with Waldenström's macroglobulinemia. Am J Hematol 2001;68:139–43.CrossRefGoogle ScholarPubMed
Sahota, SS, Forconi, F, Ottensmeier, CH, et al. Typical Waldenström macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood 2002;100:1505–7.Google ScholarPubMed
Paramithiotis, E, Cooper, MD. Memory B lymphocytes migrate to bone marrow in humans. Proc Natl Acad Sci U S A 1997;94:208–12.CrossRefGoogle Scholar
Tournilhac, O, Santos, DD, Xu, L, et al. Mast cells in Waldenstrom's macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol 2006;17:1275–82.CrossRefGoogle ScholarPubMed
Ho, A, Leleu, X, Hatjiharissi, E, et al. CD27-CD70 interactions in the pathogenesis of Waldenstrom's macroglobulinemia. Blood 2008;112:4683–9.CrossRefGoogle Scholar
Merlini, G, Farhangi, M, Osserman, EF. Monoclonal immunoglobulins with antibody activity in myeloma, macroglobulinemia and related plasma cell dyscrasias. Semin Oncol 1986;13:350–65.Google ScholarPubMed
Farhangi, M, Merlini, G. The clinical implications of monoclonal immunoglobulins. Semin Oncol 1986;13:366–79.Google ScholarPubMed
Marmont, AM, Merlini, G. Monoclonal autoimmunity in hematology. Haematologica 1991;76:449–59.Google ScholarPubMed
Mackenzie, MR, Babcock, J.Studies of the hyperviscosity syndrome. II. Macroglobulinemia. J Lab Clin Med 1975;85:227–34.Google ScholarPubMed
Gertz, MA, Kyle, RA. Hyperviscosity syndrome. J Intensive Care Med 1995;10:128–41.CrossRefGoogle ScholarPubMed
Kwaan, HC, Bongu, A. The hyperviscosity syndromes. Semin Thromb Hemost 1999;25:199–208.CrossRefGoogle ScholarPubMed
Singh, A, Eckardt, KU, Zimmermann, A, et al. Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J Clin Invest 1993;91:251–6.CrossRefGoogle ScholarPubMed
Menke, MN, Feke, GT, McMeel, JW, et al. Hyperviscosity-related retinopathy in Waldenstrom's macroglobulinemia. Arch Ophthalmol 2006;124:1601–6.CrossRefGoogle Scholar
Merlini, G, Baldini, L, Broglia, C, et al. Prognostic factors in symptomatic Waldenström's macroglobulinemia. Semin Oncol 2003;30:211–15.CrossRefGoogle ScholarPubMed
Dellagi, K, Dupouey, P, Brouet, JC, et al. Waldenström's macroglobulinemia and peripheral neuropathy: a clinical and immunologic study of 25 patients. Blood 1983;62:280–5.Google ScholarPubMed
Nobile-Orazio, E, Marmiroli, P, Baldini, L, et al. Peripheral neuropathy in macroglobulinemia: incidence and antigen-specificity of M proteins. Neurology 1987;37:1506–14.CrossRefGoogle ScholarPubMed
Nemni, R, Gerosa, E, Piccolo, G, et al. Neuropathies associated with monoclonal gammopathies. Haematologica 1994;79:557–66.Google Scholar
Ropper, AH, Gorson, KC. Neuropathies associated with paraproteinemia. N Engl J Med 1998;338:1601–7.CrossRefGoogle ScholarPubMed
Vital, A. Paraproteinemic neuropathies. Brain Pathol 2001;11:399–407.CrossRefGoogle ScholarPubMed
Latov, N, Braun, PE, Gross, RB, et al. Plasma cell dyscrasia and peripheral neuropathy: identification of the myelin antigens that react with human paraproteins. Proc Natl Acad Sci U S A 1981;78:7139–42.CrossRefGoogle ScholarPubMed
Chassande, B, Leger, JM, Younes-Chennoufi, AB, et al. Peripheral neuropathy associated with IgM monoclonal gammopathy: correlations between M-protein antibody activity and clinical/electrophysiological features in 40 cases. Muscle Nerve 1998;21:55–62.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Weiss, MD, Dalakas, MC, Lauter, CJ, et al. Variability in the binding of anti-MAG and anti-SGPG antibodies to target antigens in demyelinating neuropathy and IgM paraproteinemia. J Neuroimmunol 1999;95:174–84.CrossRefGoogle ScholarPubMed
Latov, N, Hays, AP, Sherman, WH. Peripheral neuropathy and anti-MAG antibodies. Crit Rev Neurobiol 1988;3:301–32.Google ScholarPubMed
Dalakas, MC, Quarles, RH. Autoimmune ataxic neuropathies (sensory ganglionopathies): are glycolipids the responsible autoantigens?Ann Neurol 1996;39:419–22.CrossRefGoogle ScholarPubMed
Eurelings, M, Ang, CW, Notermans, NC, et al. Antiganglioside antibodies in polyneuropathy associated with monoclonal gammopathy. Neurology 2001;57:1909–12.CrossRefGoogle ScholarPubMed
Jacobs, BC, O'Hanlon, GM, Breedland, EG, et al. Human IgM paraproteins demonstrate shared reactivity between Campylobacter jejuni lipopolysaccharides and human peripheral nerve disialylated gangliosides. J Neuroimmunol 1997;80:23–30.CrossRefGoogle ScholarPubMed
Ilyas, AA, Quarles, RH, Dalakas, MC, et al. Monoclonal IgM in a patient with paraproteinemic polyneuropathy binds to gangliosides containing disialosyl groups. Ann Neurol 1985;18:655–9.CrossRefGoogle Scholar
Willison, HJ, O'Leary, CP, Veitch, J, et al. The clinical and laboratory features of chronic sensory ataxic neuropathy with anti-disialosyl IgM antibodies. Brain 2001;124:1968–77.CrossRefGoogle ScholarPubMed
Lopate, G, Choksi, R, Pestronk, A. Severe sensory ataxia and demyelinating polyneuropathy with IgM anti-GM2 and GalNAc-GD1A antibodies. Muscle Nerve 2002;25:828–36.CrossRefGoogle ScholarPubMed
Nobile-Orazio, E, Manfredini, E, Carpo, M, et al. Frequency and clinical correlates of antineural IgM antibodies in neuropathy associated with IgM monoclonal gammopathy. Ann Neurol 1994;36:416–24.CrossRefGoogle Scholar
Gordon, PH, Rowland, LP, Younger, DS, et al. Lymphoproliferative disorders and motor neuron disease: an update. Neurology 1997;48:1671–8.CrossRefGoogle ScholarPubMed
Pavord, SR, Murphy, PT, Mitchell, VE. POEMS syndrome and Waldenström's macroglobulinaemia. J Clin Pathol 1996;49:181–2.CrossRefGoogle ScholarPubMed
Crisp, D, Pruzanski, W. B-cell neoplasms with homogeneous cold-reacting antibodies (cold agglutinins). Am J Med 1982;72:915–22.CrossRefGoogle Scholar
Pruzanski, W, Shumak, KH. Biologic activity of cold-reacting autoantibodies (first of two parts). N Engl J Med 1977;297:538–42.CrossRefGoogle Scholar
Pruzanski, W, Shumak, KH. Biologic activity of cold-reacting autoantibodies (second of two parts). N Engl J Med 1977;297:583–9.CrossRefGoogle Scholar
Whittaker, SJ, Bhogal, BS, Black, MM. Acquired immunobullous disease: a cutaneous manifestation of IgM macroglobulinaemia. Br J Dermatol 1996;135:283–6.CrossRefGoogle ScholarPubMed
Daoud, MS, Lust, JA, Kyle, RA, et al. Monoclonal gammopathies and associated skin disorders. J Am Acad Dermatol 1999;40:507–35.CrossRefGoogle ScholarPubMed
Gad, A, Willen, R, Carlen, B, et al. Duodenal involvement in Waldenström's macroglobulinemia. J Clin Gastroenterol 1995;20:174–6.CrossRefGoogle ScholarPubMed
,Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 3–1990. A 66-year-old woman with Waldenström's macroglobulinemia, diarrhea, anemia, and persistent gastrointestinal bleeding. N Engl J Med 1990;322:183–92.CrossRefGoogle Scholar
Isaac, J, Herrera, GA. Cast nephropathy in a case of Waldenström's macroglobulinemia. Nephron 2002;91:512–15.CrossRefGoogle Scholar
Morel-Maroger, L, Basch, A, Danon, F, et al. Pathology of the kidney in Waldenström's macroglobulinemia. Study of sixteen cases. N Engl J Med 1970;283:123–9.CrossRefGoogle ScholarPubMed
Gertz, MA, Kyle, RA, Noel, P. Primary systemic amyloidosis: a rare complication of immunoglobulin M monoclonal gammopathies and Waldenström's macroglobulinemia. J Clin Oncol 1993;11:914–20.CrossRefGoogle ScholarPubMed
Moyner, K, Sletten, K, Husby, G, et al. An unusually large (83 amino acid residues) amyloid fibril protein AA from a patient with Waldenström's macroglobulinaemia and amyloidosis. Scand J Immunol 1980;11:549–54.CrossRefGoogle ScholarPubMed
Gardyn, J, Schwartz, A, Gal, R, et al. Waldenström's macroglobulinemia associated with AA amyloidosis. Int J Hematol 2001;74:76–8.CrossRefGoogle ScholarPubMed
Dussol, B, Kaplanski, G, Daniel, L, et al. Simultaneous occurrence of fibrillary glomerulopathy and AL amyloid. Nephrol Dial Transplant 1998;13:2630–2.CrossRefGoogle ScholarPubMed
Rausch, PG, Herion, JC. Pulmonary manifestations of Waldenström macroglobulinemia. Am J Hematol 1980;9:201–9.CrossRefGoogle ScholarPubMed
Fadil, A, Taylor, . The lung and Waldenström's macroglobulinemia. South Med J 1998;91:681–5.CrossRefGoogle ScholarPubMed
Kyrtsonis, MC, Angelopoulou, MK, Kontopidou, FN, et al. Primary lung involvement in Waldenström's macroglobulinaemia: report of two cases and review of the literature. Acta Haematol 2001;105:92–6.CrossRefGoogle ScholarPubMed
Kaila, VL, el Newihi, HM, Dreiling, BJ, et al. Waldenström's macroglobulinemia of the stomach presenting with upper gastrointestinal hemorrhage. Gastrointest Endosc 1996;44:73–5.CrossRefGoogle ScholarPubMed
Yasui, O, Tukamoto, F, Sasaki, N, et al. Malignant lymphoma of the transverse colon associated with macroglobulinemia. Am J Gastroenterol 1997;92:2299–301.Google ScholarPubMed
Rosenthal, JA, Curran, WJ, Schuster, SJ. Waldenström's macroglobulinemia resulting from localized gastric lymphoplasmacytoid lymphoma. Am J Hematol 1998;58:244–5.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Recine, MA, Perez, MT, Cabello-Inchausti, B, et al. Extranodal lymphoplasmacytoid lymphoma (immunocytoma) presenting as small intestinal obstruction. Arch Pathol Lab Med 2001;125:677–9.Google ScholarPubMed
Veltman, GA, Veen, S, Kluin-Nelemans, JC, et al. Renal disease in Waldenström's macroglobulinaemia. Nephrol Dial Transplant 1997;12:1256–9.CrossRefGoogle ScholarPubMed
Moore, DF, Moulopoulos, , Dimopoulos, MA. Waldenström macroglobulinemia presenting as a renal or perirenal mass: clinical and radiographic features. Leuk Lymphoma 1995;17:331–4.CrossRefGoogle ScholarPubMed
Mascaro, JM, Montserrat, E, Estrach, T, et al. Specific cutaneous manifestations of Waldenström's macroglobulinaemia. A report of two cases. Br J Dermatol 1982;106:17–22.CrossRefGoogle ScholarPubMed
Schnitzler, L, Schubert, B, Boasson, M, et al. Urticaire chronique, lésions osseuses, macroglobulinémie IgM: Maladie de Waldenström?Bull Soc Fr Dermatol Syphiligr 1974;81:363–8.Google Scholar
Roux, S, Fermand, JP, Brechignac, S, et al. Tumoral joint involvement in multiple myeloma and Waldenström's macroglobulinemia – report of 4 cases. J Rheumatol 1996;23:2175–8.Google ScholarPubMed
Orellana, J, Friedman, AH.Ocular manifestations of multiple myeloma, Waldenström's macroglobulinemia and benign monoclonal gammopathy. Surv Ophthalmol 1981;26:157–69.CrossRefGoogle ScholarPubMed
Ettl, AR, Birbamer, GG, Philipp, W. Orbital involvement in Waldenström's macroglobulinemia: ultrasound, computed tomography and magnetic resonance findings. Ophthalmologica 1992;205:40–5.CrossRefGoogle ScholarPubMed
Civit, T, Coulbois, S, Baylac, F, et al. Waldenström's macroglobulinemia and cerebral lymphoplasmocytic proliferation: Bing and Neel syndrome. Apropos of a new case. Neurochirurgie 1997;43:245–9.Google ScholarPubMed
McMullin, MF, Wilkin, HJ, Elder, E. Inaccurate haemoglobin estimation in Waldenström's macroglobulinaemia. J Clin Pathol 1995;48:787.CrossRefGoogle ScholarPubMed
Treon, SP, Branagan, AR, Hunter, Z, et al. IgA and IgG hypogammaglobulinemia persists in most patients with Waldenstrom's macroglobulinemia despite therapeutic responses, including complete remissions. Blood 2004;104:306b.Google Scholar
Treon, SP, Hunter, Z, Ciccarelli, BT, et al. IgA and IgG hypogammaglobulinemia is a constitutive feature in most Waldenstrom's macroglobulinemia patients and may be related to mutations associated with common variable immunodeficiency disorder (CVID). Blood 2008;112:3749.Google Scholar
Dutcher, TF, Fahey, JL. The histopathology of macroglobulinemia of Waldenström. J Natl Cancer Inst 1959;22:887–917.CrossRefGoogle ScholarPubMed
Moulopoulos, , Dimopoulos, MA, Varma, DG, et al. Waldenström macroglobulinemia: MR imaging of the spine and CT of the abdomen and pelvis. Radiology 1993;188:669–73.CrossRefGoogle ScholarPubMed
Gobbi, PG, Bettini, R, Montecucco, C, et al. Study of prognosis in Waldenström's macroglobulinemia: a proposal for a simple binary classification with clinical and investigational utility. Blood 1994;83:2939–45.Google ScholarPubMed
Morel, P, Monconduit, M, Jacomy, D, et al. Prognostic factors in Waldenström macroglobulinemia: a report on 232 patients with the description of a new scoring system and its validation on 253 other patients. Blood 2000;96:852–8.Google Scholar
Dhodapkar, MV, Jacobson, JL, Gertz, MA, et al. Prognostic factors and response to fludarabine therapy in patients with Waldenström macroglobulinemia: results of United States intergroup trial (Southwest Oncology Group S9003). Blood 2001;98:41–8.CrossRefGoogle Scholar
Kyle, RA, Treon, SP, Alexanian, R, et al. Prognostic markers and criteria to initiate therapy in Waldenström's macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenström's macroglobulinemia. Semin Oncol 2003;30:116–20.CrossRefGoogle ScholarPubMed
Dimopoulos, M, Gika, D, Zervas, K, et al. The international staging system for multiple myeloma is applicable in symptomatic Waldenstrom's macroglobulinemia. Leuk Lymphoma 2004;45:1809–13.CrossRefGoogle ScholarPubMed
Anagnostopoulos, A, Zervas, K, Kyrtsonis, M, et al. Prognostic value of serum beta 2-microglobulin in patients with Waldenstrom's macroglobulinemia requiring therapy. Clin Lymphoma Myeloma 2006;7:205–9.CrossRefGoogle Scholar
Morel, P, Duhamel, A, Gobbi, P, et al. International prognostic scoring system for Waldenstrom's macroglobulinemia. Blood 2009;113:4163–70.CrossRefGoogle Scholar
Leleu, XP, Manning, R, Soumerai, JD, et al. Increased incidence of transformation and myelodysplasia/acute leukemia in patients with Waldenström macroglobulinemia treated with nucleoside analogs. J Clin Oncol 2009;27:250–5.CrossRefGoogle ScholarPubMed
Gertz, M, Anagnostopoulos, A, Anderson, KC, et al. Treatment recommendations in Waldenström's macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenström's Macroglobulinemia. Semin Oncol 2003;30:121–6.CrossRefGoogle ScholarPubMed
Treon, SP, Gertz, MA, Dimopoulos, MA, et al. Update on treatment recommendations from the Third International Workshop on Waldenstrom's Macroglobulinemia. Blood 2006;107:3442–6.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Gertz, MA, Kastritis, E, et al. Update on treatment recommendations from the Fourth International Workshop on Waldenstrom's Macroglobulinemia. J Clin Oncol 2009;27:120–6.CrossRefGoogle ScholarPubMed
Kyle, RA, Greipp, PR, Gertz, MA, et al. Waldenström's macroglobulinaemia: a prospective study comparing daily with intermittent oral chlorambucil. Br J Haematol 2000;108:737–42.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Alexanian, R. Waldenstrom's macroglobulinemia. Blood 1994;83:1452–9.Google ScholarPubMed
Petrucci, MT, Avvisati, G, Tribalto, M, et al. Waldenström's macroglobulinaemia: results of a combined oral treatment in 34 newly diagnosed patients. J Intern Med 1989;226:443–7.CrossRefGoogle ScholarPubMed
Case, DC, Ervin, TJ, Boyd, MA, et al. Waldenström's macroglobulinemia: long-term results with the M-2 protocol. Cancer Invest 1991;9:1–7.CrossRefGoogle ScholarPubMed
Facon, T, Brouillard, M, Duhamel, A, et al. Prognostic factors in Waldenström's macroglobulinemia: a report of 167 cases. J Clin Oncol 1993;11:1553–8.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Kantarjian, H, Weber, D, et al. Primary therapy of Waldenström's macroglobulinemia with 2-chlorodeoxyadenosine. J Clin Oncol 1994;12:2694–8.CrossRefGoogle ScholarPubMed
Delannoy, A, Ferrant, A, Martiat, P, et al. 2-Chlorodeoxyadenosine therapy in Waldenström's macroglobulinaemia. Nouv Rev Fr Hematol 1994;36:317–20.Google ScholarPubMed
Fridrik, MA, Jager, G, Baldinger, C, et al. First-line treatment of Waldenström's disease with cladribine. Arbeitsgemeinschaft Medikamentöse Tumortherapie. Ann Hematol 1997;74:7–10.CrossRefGoogle ScholarPubMed
Liu, ES, Burian, C, Miller, WE, et al. Bolus administration of cladribine in the treatment of Waldenström macroglobulinaemia. Br J Haematol 1998;103:690–5.CrossRefGoogle ScholarPubMed
Hellmann, A, Lewandowski, K, Zaucha, JM, et al. Effect of a 2-hour infusion of 2-chlorodeoxyadenosine in the treatment of refractory or previously untreated Waldenström's macroglobulinemia. Eur J Haematol 1999;63:35–41.CrossRefGoogle ScholarPubMed
Betticher, DC, Hsu Schmitz, SF, Ratschiller, D, et al. Cladribine (2-CDA) given as subcutaneous bolus injections is active in pretreated Waldenström's macroglobulinaemia. Swiss Group for Clinical Cancer Research (SAKK). Br J Haematol 1997;99:358–63.CrossRefGoogle Scholar
Dimopoulos, MA, Weber, D, Delasalle, KB, et al. Treatment of Waldenström's macroglobulinemia resistant to standard therapy with 2-chlorodeoxyadenosine: identification of prognostic factors. Ann Oncol 1995;6:49–52.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, O'Brien, S, Kantarjian, H, et al. Fludarabine therapy in Waldenström's macroglobulinemia. Am J Med 1993;95:49–52.CrossRefGoogle ScholarPubMed
Foran, JM, Rohatiner, AZ, Coiffier, B, et al. Multicenter phase II study of fludarabine phosphate for patients with newly diagnosed lymphoplasmacytoid lymphoma, Waldenström's macroglobulinemia, and mantle-cell lymphoma. J Clin Oncol 1999;17:546–53.CrossRefGoogle ScholarPubMed
Thalhammer-Scherrer, R, Geissler, K, Schwarzinger, I, et al. Fludarabine therapy in Waldenström's macroglobulinemia. Ann Hematol 2000;79:556–9.CrossRefGoogle ScholarPubMed
Dhodapkar, MV, Jacobson, JL, Gertz, MA, et al. Prognostic factors and response to fludarabine therapy in patients with Waldenström macroglobulinemia: results of United States intergroup trial (Southwest Oncology Group S9003). Blood 2001;98:41–8.CrossRefGoogle Scholar
Zinzani, PL, Gherlinzoni, F, Bendandi, M, et al. Fludarabine treatment in resistant Waldenström's macroglobulinemia. Eur J Haematol 1995;54:120–3.CrossRefGoogle ScholarPubMed
Leblond, V, Ben Othman, T, Deconinck, E, et al. Activity of fludarabine in previously treated Waldenström's macroglobulinemia: a report of 71 cases. Groupe Cooperatif Macroglobulinemie. J Clin Oncol 1998;16:2060–4.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Weber, DM, Kantarjian, H, et al. 2-Chlorodeoxyadenosine therapy of patients with Waldenström macroglobulinemia previously treated with fludarabine. Ann Oncol 1994;5:288–9.CrossRefGoogle ScholarPubMed
Lewandowski, K, Halaburda, K, Hellmann, A. Fludarabine therapy in Waldenström's macroglobulinemia patients treated previously with 2-chlorodeoxyadenosine. Leuk Lymphoma 2002;43:361–3.CrossRefGoogle ScholarPubMed
Thomas, S, Hosing, C, Delasalle, KB, et al. Success rates of autologous stem cell collection in patients with Waldenstrom's macroglobulinemia. Proceedings of the Fifth International Workshop on Waldenstrom's Macroglobulinemia 2008 (Supplemental Abstract).
Leleu, X, Tamburini, J, Roccaro, A, et al. Balancing risk versus benefit in the treatment of Waldenstrom's macroglobulinemia patients with nucleoside analogue-based therapy. Clin Lymphoma Myeloma 2009;9:71–3.CrossRefGoogle ScholarPubMed
Treon, SP, Kelliher, A, Keele, B, et al. Expression of serotherapy target antigens in Waldenstrom's macroglobulinemia: therapeutic applications and considerations. Semin Oncol 2003;30:248–52.CrossRefGoogle ScholarPubMed
Treon, SP, Shima, Y, Preffer, FI, et al. Treatment of plasma cell dyscrasias with antibody-mediated immunotherapy. Semin Oncol 1999;26 Suppl 14:97–106.Google ScholarPubMed
Byrd, JC, White, CA, Link, B, et al. Rituximab therapy in Waldenstrom's macroglobulinemia: preliminary evidence of clinical activity. Ann Oncol 1999;10:1525–7.CrossRefGoogle ScholarPubMed
Weber, DM, Gavino, M, Huh, Y, et al. Phenotypic and clinical evidence supports rituximab for Waldenstrom's macroglobulinemia. Blood 1999;94:125a.Google Scholar
Foran, JM, Rohatiner, AZ, Cunningham, D, et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. J Clin Oncol 2000;18:317–24.CrossRefGoogle ScholarPubMed
Treon, SP, Agus, DB, Link, B, et al. CD20-Directed antibody-mediated immunotherapy induces responses and facilitates hematologic recovery in patients with Waldenstrom's macroglobulinemia. J Immunother 2001;24:272–9.CrossRefGoogle ScholarPubMed
Gertz, MA, Rue, M, Blood, E, et al. Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): An Eastern Cooperative Oncology Group Study (E3A98). Leuk Lymphoma 2004;45:2047–55.CrossRefGoogle Scholar
Dimopoulos, MA, Zervas, C, Zomas, A, et al. Treatment of Waldenstrom's macroglobulinemia with rituximab. J Clin Oncol 2002;20:2327–33.CrossRefGoogle ScholarPubMed
Treon, SP, Emmanouilides, C, Kimby, E, et al. Extended rituximab therapy in Waldenström's macroglobulinemia. Ann Oncol 2005;16:132–8.CrossRefGoogle ScholarPubMed
Donnelly, GB, Bober-Sorcinelli, K, Jacobson, R, et al. Abrupt IgM rise following treatment with rituximab in patients with Waldenstrom's macroglobulinemia. Blood 2001;98:240b.Google Scholar
Treon, SP, Branagan, AR, Hunter Z, et al. Paradoxical increases in serum IgM and viscosity levels following rituximab therapy in Waldenstrom's Macroglobulinemia. Ann Oncol 2004;15:1481–3.CrossRefGoogle ScholarPubMed
Ghobrial, IM, Fonseca, R, Greipp, PR, et al. Initial immunoglobulin M “flare” after rituximab therapy in patients with Waldenstrom Macroglobulinemia: An Eastern Cooperative Oncology Group Study. Cancer 2004;101:2593–8.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Anagnostopoulos, A, Zervas, C, et al. Predictive factors for response to rituximab in Waldenstrom's macroglobulinemia. Clin Lymphoma 2005;5:270–2.CrossRefGoogle ScholarPubMed
Treon, SP, Hansen, M, Branagan, AR, et al. Polymorphisms in FcgammaRIIIA (CD16) receptor expression are associated with clinical responses to rituximab in Waldenstrom's macroglobulinemia. J Clin Oncol 2005;23:474–81.CrossRefGoogle ScholarPubMed
Weber, DM, Dimopoulos, MA, Delasalle, K, et al. 2-chlorodeoxyadenosine alone and in combination for previously untreated Waldenstrom's macroglobulinemia. Semin Oncol 2003;30:243–7.CrossRefGoogle ScholarPubMed
Treon, SP, Branagan, AR, Ioakimidis, L, et al. Long-term outcomes to fludarabine and rituximab in Waldenstrom's macroglobulinemia. Blood 2009;113:3673–8.CrossRefGoogle Scholar
Tam, CS, Wolf, MM, Westerman, D, et al. Fludarabine combination therapy is highly effective in first-line and salvage treatment of patients with Waldenstrom's macroglobulinemia. Clin Lymphoma Myeloma 2005;6:136–9.CrossRefGoogle ScholarPubMed
Hensel, M, Villalobos, M, Kornacker, M, et al. Pentostatin/cyclophosphamide with or without rituximab: an effective regimen for patients with Waldenstrom's macroglobulinemia/lymphoplasmacytic lymphoma. Clin Lymphoma Myeloma 2005;6:131–5.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Anagnostopoulos, A, Kyrtsonis, MC, et al. Primary treatment of Waldenstrom's macroglobulinemia with dexamethasone, rituximab and cyclophosphamide. J Clin Oncol 2007;25:3344–9.CrossRefGoogle ScholarPubMed
Buske, C, Hoster, E, Dreyling, MH, et al. The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma: results of a randomized trial of the German Low-Grade Lymphoma Study Group (GLSG). Leukemia 2009;23:153–61.CrossRefGoogle Scholar
Treon, SP, Hunter, Z, Branagan, A. CHOP plus rituximab therapy in Waldenström's macroglobulinemia. Clin Lymphoma Myeloma 2005;5: 273–7.CrossRefGoogle ScholarPubMed
Ioakimidis, L, Patterson, CJ, Hunter, ZR, et al. Comparative outcomes following CP-R, CVP-R and CHOP-R in Waldenström's macroglobulinemia. Clin Lymphoma Myeloma 2009;9:62–6.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Hamilos, G, Efstathiou, E, et al. Treatment of Waldenstrom's macroglobulinemia with the combination of fludarabine and cyclophosphamide. Leuk Lymphoma 2003;44:993–6.CrossRefGoogle ScholarPubMed
Tamburini, J, Levy, V, Chateilex, C, et al. Fludarabine plus cyclophosphamide in Waldenstrom's macroglobulinemia: results in 49 patients. Leukemia 2005;19:1831–4.CrossRefGoogle ScholarPubMed
Jagannath, S, Durie, BG, Wolf, J, et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 2005;129:776–83.CrossRefGoogle ScholarPubMed
Oakervee, HE, Popat, R, Curry, N, et al. PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 2005;129:755–62.CrossRefGoogle ScholarPubMed
Harousseau, JL, Attal, M, Leleu, X, et al. Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma. Preliminary results of an IFM phase II study. Blood 2004;104:416a.Google Scholar
Mitsiades, CS, Mitsiades, N, McMullan, CJ, et al. The proteasome inhibitor bortezomib (PS-341) is active against Waldenstrom's macroglobulinemia. Blood 2003;102:181a.Google Scholar
Treon, SP, Hunter, ZR, Matous, J, et al. Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom's macroglobulinemia: results of WMCTG Trial 03–248. Clin Cancer Res 2007;13:3320–5.CrossRefGoogle ScholarPubMed
Chen, CI, Kouroukis, CT, White, D, et al. Bortezomib is active in patients with untreated or relapsed Waldenstrom's macroglobulinemia: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25:1570–5.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Anagnostopoulos, A, Kyrtsonis, MC, et al. Treatment of relapsed or refractory Waldenstrom's macroglobulinemia with bortezomib. Haematologica 2005;90:1655–7.Google ScholarPubMed
Goy, A, Younes, A, McLaughlin, P, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma. J Clin Oncol 2005;23:667–75.CrossRefGoogle ScholarPubMed
Treon, SP, Ioakimidis, L, Soumerai, JD, et al. Primary therapy of Waldenstrom's macroglobulinemia with bortezomib, dexamethasone and rituximab: WMCTG clinical trial 05-180. J Clin Oncol 2009;27:3830–5.CrossRefGoogle ScholarPubMed
Ghobrial, IM, Hong, F, Padmanabhan, S, et al. Phase II of weekly bortezomib in combination with rituximab in relapsed or relapsed/refractory Waldenstrom's Macroglobulinemia. J Clin Oncol 2010;28(8):1422–8.CrossRefGoogle ScholarPubMed
Agathocleous, A, Rule, S, Johson, P. Preliminary results of a phase I/II study of weekly or twice weekly bortezomib in combination with rituximab in patients with follicular lymphoma, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. Blood 2007;110:754a.Google Scholar
Santos, DD, Hatjiharissi, E, Tournilhac, O, et al. CD52 is expressed on human mast cells and is a potential therapeutic target in Waldenstrom's macroglobulinemia and mast cell disorders. Clin Lymphoma Myeloma 2006;6:478–83.CrossRefGoogle ScholarPubMed
Hunter, ZR, Boxer, M, Kahl, B, et al. Phase II study of alemtuzumab in lymphoplasmacytic lymphoma: results of WMCTG trial 02–079. Proc Am Soc Clin Oncol 2006;24:427s.Google Scholar
Owen, RG, Rawstron, AC, Osterborg, A, et al. Activity of alemtuzumab in relapsed/refractory Waldenstrom's macroglobulinemia. Blood 2003;102:644a.Google Scholar
Dimopoulos, MA, Zomas, A, Viniou, NA, et al. Treatment of Waldenström's macroglobulinemia with thalidomide. J Clin Oncol 2001;19:3596–601.CrossRefGoogle ScholarPubMed
Coleman, M, Leonard, J, Lyons, L, et al. Treatment of Waldenström's macroglobulinemia with clarithromycin, low-dose thalidomide and dexamethasone. Semin Oncol 2003;30:270–4.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Zomas, K, Tsatalas, K, et al. Treatment of Waldenström's macroglobulinemia with single agent thalidomide or with combination of clarithromycin, thalidomide and dexamethasone. Semin Oncol 2003;30:265–9.CrossRefGoogle ScholarPubMed
Hayashi, T, Hideshima, T, Akiyama, M, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 2005;128:192–203.CrossRefGoogle ScholarPubMed
Davies, FE, Raje, N, Hideshima, T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001;98:210–16.CrossRefGoogle ScholarPubMed
Janakiraman, N, McLaughlin, P, White, CA, et al. Rituximab: correlation between effector cells and clinical activity in NHL. Blood 1998;92:337a.Google Scholar
Treon, SP, Soumerai, JD, Branagan, AR, et al. Thalidomide and rituximab in Waldenstrom's macroglobulinemia. Blood 2008;112:4452–7.CrossRefGoogle Scholar
Treon, SP, Soumerai, JD, Branagan, AR, et al. Lenalidomide and rituximab in Waldenström's macroglobulinemia. Clin Cancer Res 2008;15:355–60.CrossRefGoogle Scholar
Desikan, R, Dhodapkar, M, Siegel, D, et al. High-dose therapy with autologous haemopoietic stem cell support for Waldenström's macroglobulinaemia. Br J Haematol 1999;105:993–6.CrossRefGoogle ScholarPubMed
Munshi, NC, Barlogie, B. Role for high dose therapy with autologous hematopoietic stem cell support in Waldenström's macroglobulinemia. Semin Oncol 2003;30:282–5.CrossRefGoogle ScholarPubMed
Dreger, P, Glass, B, Kuse, R, et al. Myeloablative radiochemotherapy followed by reinfusion of purged autologous stem cells for Waldenström's macroglobulinaemia. Br J Haematol 1999;106:115–18.CrossRefGoogle ScholarPubMed
Anagnostopoulos, A, Dimopoulos, MA, Aleman, A, et al. High-dose chemotherapy followed by stem cell transplantation in patients with resistant Waldenström's macroglobulinemia. Bone Marrow Transplant 2001;27:1027–9.CrossRefGoogle ScholarPubMed
Tournilhac, O, Leblond, V, Tabrizi, R, et al. Transplantation in Waldenström's macroglobulinemia – the French Experience. Semin Oncol 2003;30:291–6.CrossRefGoogle ScholarPubMed
Anagnostopoulos, A, Hari, PN, Perez, WS, et al. Autologous or allogeneic stem cell transplantation in patients with Waldenstrom's macroglobulinemia. Biol Blood Marrow Transplant 2006;12:845–54.CrossRefGoogle ScholarPubMed
Kyriakou, H, on behalf of the Lymphoma Working Party of the European Group for Blood and Bone Marrow Transplantation. Haematopoietic stem cell transplantation for Waldenstrom's macroglobulinemia. Proceedings of the Fifth International Workshop on Waldenstrom's Macroglobulinemia, Stockholm, Sweden 2008 (Abstract 146).Google Scholar
Maloney, D. Evidence for GVWM following mini-allo in Waldenstrom's macroglobulinemia. Proceedings of the Fifth International Workshop on Waldenstrom's Macroglobulinemia, Stockholm, Sweden 2008 (Abstract 147).Google Scholar
Weber, D, Treon, SP, Emmanouilides, C, et al. Uniform response criteria in Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia. Semin Oncol 2003;30:127–31.CrossRefGoogle ScholarPubMed
Kimby, E, Treon, SP, Anagnostopoulos, A, et al. Update on recommendations for assessing response from the Third International Workshop on Waldenstrom's Macroglobulinemia. Clin Lymphoma Myeloma 2006;6:380–3.CrossRefGoogle ScholarPubMed
Nichols, GL, Savage, DG. Timing of rituximab/fludarabine in Waldenstrom's macroglobulinemia may avert hyperviscosity. Blood 2004;104:237b.Google Scholar
Strauss, SJ, Maharaj, L, Hoare, S, et al. Bortezomib therapy in patients with relapsed or refractory lymphoma: potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J Clin Oncol 2006;24:2105–12.CrossRefGoogle ScholarPubMed
Owen, R. Complexities of assessing response in Waldenstrom's macroglobulinemia. Proceedings of the Fifth International Workshop on Waldenstrom's Macroglobulinemia, Stockholm, Sweden 2008 (Abstract 128).Google Scholar
Ciccarelli, BT, Yang, G, Hatjiharissi, E, et al. Soluble CD27 is a faithful marker of disease burden and is unaffected by the rituximab-induced IgM flare, as well as plasmapheresis, in patients with Waldenström's macroglobulinemia. Clin Lymphoma Myeloma 2009;9:56–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×