Skip to main content Accessibility help
×
  • Cited by 25
Publisher:
Cambridge University Press
Online publication date:
May 2011
Print publication year:
2011
Online ISBN:
9780511973413

Book description

Mantle convection is the fundamental agent driving many of the geological features observed at the Earth's surface, including plate tectonics and plume volcanism. Yet many Earth scientists have an incomplete understanding of the process. This book describes the physics and fluid dynamics of mantle convection, explaining what it is, how it works, and how to quantify it in simple terms. It assumes no specialist background: mechanisms are explained simply and the required basic physics is fully reviewed and explained with minimal mathematics. The distinctive forms that convection takes in the Earth's mantle are described within the context of tectonic plates and mantle plumes, and implications are explored for geochemistry and tectonic evolution. Common misconceptions and controversies are addressed - providing a straightforward but rigorous explanation of this key process for students and researchers across a variety of geoscience disciplines.

Reviews

'… this is a highly recommendable textbook for non-specialists, and also is a good complement to earlier standard and more mathematics-oriented textbooks for students of geodynamics.'

Masaki Ogawa Source: American Mineralogist

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Davies, G.F., Dynamic Earth: Plates, Plumes and Mantle Convection. 1999, Cambridge: Cambridge University Press. 460p.
Kennett, B.L.N., Engdahl, E.R., and Buland, R., Constraints on seismic velocities in the earth from travel times. Geophys. J. Int., 1995. 122: p. 108–124.
Montagner, J.P. and Kennett, B.L.N., How to reconcile body-wave and normal-mode reference Earth models?Geophys. J. Int., 1996. 125: p. 229–248.
Davies, G.F., Mantle plumes, mantle stirring and hotspot chemistry. Earth Planet. Sci. Lett., 1990. 99: p. 94–109.
Mohorovičić, A., Das Beben vom 8.X.1909. Jahrb. Met. Obs. Zagreb (Agram.), 1909. 9: p. 1–63.
Hess, H.H., History of ocean basins, in Petrologic Studies: a Volume in Honor of A.F. Buddington, Engel, A.E.J., James, H.L., and Leonard, B.F., Editors. 1962, Boulder, CO: Geological Society of America. p. 599–620.
Menard, H.W., The Ocean of Truth. 1986, Princeton, NJ: Princeton University Press. 353p.
Barrell, J., The strength of the earth's crust. J. Geol., 1914. 22: p. 655–683.
,ETOPO5 (Topography of the Earth, 5 minute grid), National Geophysical Data Center, US National Oceanic and Atmospheric Administration, Boulder, CO.
Marty, J.C. and Cazenave, A., Regional variations in subsidence rate of oceanic plates: a global analysis. Earth Planet. Sci. Let., 1989. 94: p. 301–315.
Sclater, J.G., Jaupart, C., and Galson, D., The heat flow through the oceanic and continental crust and the heat loss of the earth. Rev. Geophys., 1980. 18: p. 269–312.
Glen, W., Continental Drift and Plate Tectonics. 1975, Columbus, OH: Charles E. Merrill. 188p.
Hallam, A., A Revolution in the Earth Sciences. 1973, Oxford: Clarendon Press. 127p.
Wegener, A., Die Entstehung der Kontinente und Ozeane. 1st edn. 1915, Brunswick: Vieweg.
Jeffreys, H., The Earth, its Origin, History and Physical Constitution. 6th edn. 1976, Cambridge: Cambridge University Press.
Holmes, A., Principles of Physical Geology. 1st edn. 1944, Edinburgh: Thomas Nelson.
Daly, R.A., Strength and Structure of the Earth. 1940, New York: Prentice-Hall. Facsimile edition. 1969, New York: Hafner. 434p.
du Toit, A.L., Our Wandering Continents. 1937, Edinburgh: Oliver and Boyd.
Carey, S.W., The tectonic approach to continental drift, in Continental Drift; a Symposium, Carey, S.W., Editor. 1958, Hobart: University of Tasmania, Geology Department. p. 177–358.
Runcorn, S.K., Paleomagnetic evidence for continental drift and its geophysical cause, in Continental Drift, Runcorn, S.K., Editor. 1962, New York: Academic Press. p. 1–40.
Dietz, R.S., Continent and ocean evolution by spreading of the sea floor. Nature, 1961. 190: p. 854–857.
Heezen, B.C., The rift in the ocean floor. Sci. Am., 1960. 203: p. 98–110.
Wilson, J.T., A new class of faults and their bearing on continental drift. Nature, 1965. 207: p. 343–347.
Wilson, J.T., Evidence from islands on the spreading of the ocean floor. Nature, 1963. 197: p. 536–538.
Wilson, J.T., A possible origin of the Hawaiian islands. Can. J. Phys., 1963. 41: p. 863–870.
McDougall, I., Age of shield-building volcanism of Kauai and linear migration of volcanism in the Hawaiian Island chain. Earth Planet. Sci. Lett., 1979. 46: p. 31–42.
McDougall, I. and Tarling, D.H., Dating of polarity zones in the Hawaiian islands. Nature, 1963. 200: p. 54–56.
Wilson, J.T., Continental drift. Sci. Am., 1963. 208 (April): p. 86–100.
Bucher, W.H., The Deformation of the Earth's Crust. 1933, Princeton: Princeton University Press. Facsimile edition. 1957, New York: Hafner. 518p.
Heirtzler, J.R., et al., Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. J. Geophys. Res., 1968. 73: p. 2119–2136.
Sykes, L.R., Seismicity of the South Pacific Ocean. J. Geophys. Res., 1963. 68: p. 5999–6006.
Sykes, L.R., The seismicity of the Arctic. Bull. Seismol. Soc. Am., 1965. 55: p. 501–518.
Sykes, L.R., Mechanism of earthquakes and nature of faulting on the mid-ocean ridges. J. Geophys. Res., 1967. 72: p. 2131–2153.
Maxwell, A.E., et al., Deep sea drilling in the South Atlantic. Science, 1970. 168: p. 1047–1059.
Airy, G.B., Phil. Trans. R. Soc. Lond., 1855. 145: p. 101–104.
Hall, J., Geology of New York State. 1859. p. 69.
Mitrovica, J.X., Haskell [1935] revisited. J. Geophys. Res., 1996. 101: p. 555–569.
Haskell, N.A., The viscosity of the asthenosphere. Am. J. Sci., ser. 5, 1937. 33: p. 22–28.
Kohlstedt, D.L., Evans, B., and Mackwell, S.J., Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res., 1995. 100: p. 17587–17602.
Tozer, D.C., Heat transfer and convection currents. Phil. Trans. R. Soc. Lond. A, 1965. 258: p. 252–271.
Mitrovica, J.X. and Forte, A.M., Radial profile of mantle viscosity: results from the joint inversion of convection and postglacial rebound observables. J. Geophys. Res., 1997. 102: p. 2751–2769.
Parsons, B., Causes and consequences of the relation between area and age of the ocean floor. J. Geophys. Res., 1982. 87: p. 289–302.
Morgan, W.J., Convection plumes in the lower mantle. Nature, 1971. 230: p. 42–43.
Morgan, W.J., Plate motions and deep mantle convection. Mem. Geol. Soc. Am., 1972. 132: p. 7–22.
Morgan, W.J., Rises, trenches, great faults and crustal blocks. J. Geophys. Res., 1968. 73: p. 1959–1982.
Goldreich, P. and Toomre, A., Some remarks on polar wandering. J. Geophys. Res., 1969. 74: p. 2555–2567.
Gordon, R.G., Horner-Johnson, B.C., and Kumar, R.R., Latitudinal shift of the Hawaiian hotspot: motion relative to other hotspots or motion of all hotspots in unison relative to the spin axis (i.e. true polar wander)?Geophys. Res. Abstr., 2005. 7: p. 10233.
Tarduno, J.A., et al., The Emporer Seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle. Science, 2003. 301: p. 1064–1069.
Crough, S.T. and Jurdy, D.M., Subducted lithosphere, hotspots and the geoid. Earth Planet. Sci. Lett., 1980. 48: p. 15–22.
Duncan, R.A. and Richards, M.A., Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 1991. 29: p. 31–50.
Lay, T., Hernlund, J.W., and Buffett, B.A., Core–mantle boundary heat flow. Nature Geosci., 2008. 1: p. 25–32.
Watts, A.B. and ten Brink, U.S., Crustal structure, flexure and subsidence history of the Hawaiian Islands. J. Geophys. Res., 1989. 94: p. 10473–10500.
Turcotte, D.L. and Schubert, G., Geodynamics: Applications of Continuum Physics to Geological Problems. 2nd edn. 2001, Cambridge: Cambridge University Press. 528p.
Davies, G.F., Ocean bathymetry and mantle convection, 1. Large-scale flow and hotspots. J. Geophys. Res., 1988. 93: p. 10467–10480.
Sleep, N.H., Hotspots and mantle plumes: some phenomenology. J. Geophys. Res., 1990. 95: p. 6715–6736.
Campbell, I.H. and Griffiths, R.W., Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett., 1990. 99: p. 79–83.
Clague, D.A. and Dalrymple, G.B., Tectonics, geochronology and origin of the Hawaiian–Emperor volcanic chain, in The Eastern Pacific Ocean and Hawaii, Winterer, E.L., Hussong, D.M., and , R.W. Decker, Editors. 1989, Boulder, CO: Geological Society of America. p. 188–217.
Morgan, J.P., Morgan, W.J., and Price, E., Hotspot melting generates both hotspot swell volcanism and a hotspot swell?J. Geophys. Res., 1995. 100: p. 8045–8062.
Wessel, P., A re-examination of the flexural deformation beneath the Hawaiian islands. J. Geophys. Res., 1993. 98: p. 12177–12190.
Hofmann, A.W., Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements, in Treatise on Geochemistry, Vol. 2: The Mantle and Core, Carlson, R.W., Editor. 2003, Oxford: Elsevier-Pergamon. p. 1–44.
Hill, R.I., et al., Mantle plumes and continental tectonics. Science, 1992. 256: p. 186–193.
Bunge, H.-P., Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models. Phys. Earth Planet. Inter., 2005. 153: p. 3–10.
Labrosse, S., Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett., 2002. 199: p. 147–56.
Zhong, S., Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. J. Geophys. Res., 2006. 111: B04409, doi:10.1029/2005JB003972.
Davies, G.F., Mantle regulation of core cooling: a geodynamo without core radioactivity?Phys. Earth Planet. Inter., 2007. 160: p. 215–229.
Nimmo, F., et al., The influence of potassium on core and geodynamo evolution. Geophys. J. Int., 2004. 156: p. 363–376.
Whitehead, J.A. and Luther, D.S., Dynamics of laboratory diapir and plume models. J. Geophys. Res., 1975. 80: p. 705–717.
Griffiths, R.W. and Campbell, I.H., Stirring and structure in mantle plumes. Earth Planet. Sci. Lett., 1990. 99: p. 66–78.
Morgan, W.J., Hotspot tracks and the opening of the Atlantic and Indian Oceans, in The Sea, Emiliani, C., Editor. 1981, New York: Wiley. p. 443–487.
Coffin, M.F. and Eldholm, O., Large igneous provinces: crustal structure, dimensions and external consequences. Rev. Geophys., 1994. 32: p. 1–36.
Richards, M.A., Duncan, R.A., and Courtillot, V.E., Flood basalts and hot-spot tracks: plume heads and tails. Science, 1989. 246: p. 103–107.
White, R. and McKenzie, D., Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res., 1989. 94: p. 7685–7730.
Campbell, I.H., Cordery, M.J., and Davies, G.. The relationship between mantle plumes and continental flood basalts. in Proceedings of the International Field Conference and Symposium on Petrology and Metallogeny of Volcanic and Intrusive Rocks of the Midcontinent Rift System. 1995.
Hofmann, A.W. and White, W.M., Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 1982. 57: p. 421–436.
Cordery, M.J., Davies, G.F., and Campbell, I.H., Genesis of flood basalts from eclogite-bearing mantle plumes. J. Geophys. Res., 1997. 102: p. 20179–20197.
Leitch, A.M. and Davies, G.F., Mantle plumes and flood basalts: enhanced melting from plume ascent and an eclogite component. J. Geophys. Res., 2001. 106: p. 2047–2059.
Leitch, A.M., Davies, G.F., and Wells, M., A plume head melting under a rifting margin. Earth Planet. Sci. Lett., 1998. 161: p. 161–177.
Clouard, V. and Bonneville, A., How many Pacific hotspots are fed by deep-mantle plumes?Geology, 2001. 29: p. 695–698.
Natland, J.H. and Winterer, E.L., Fissure control on volcanic action in the Pacific, in Plumes, Plates and Paradigms, Foulger, G.R., et al., Editors. 2005, Boulder, CO: Geological Society of America.
Yasuda, A., , T. Fujii, and Kurita, K., Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. J. Geophys. Res., 1994. 99: p. 9401–9414.
Lin, S. and Keken, P.E., Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochem. Geophys. Geosyst., 2006. 7(3): Q03003, doi:10.1029/2005GC001072.
Lin, S.-C. and Keken, P.E., Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes. Nature, 2005. 436: p. 250–252.
Kumagai, I., et al., Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett., 2008. 35: L16301, doi:10.1029/2008GL035079.
Farnetani, C.G. and Samuel, H., Beyond the thermal plume paradigm. Geophys. Res. Lett., 2005. 32: L07311, doi:10.1029/2005GL022360.
Stefanick, M. and Jurdy, D.M., The distribution of hot spots. J. Geophys. Res., 1984. 89: p. 9919–9925.
Kerr, R.C. and Mériaux, C., Structure and dynamics of sheared mantle plumes. Geochem. Geophys. Geosyst., 2004. 5: Q12009, doi:10.1029/2004GC000749.
Richards, M.A. and Engebretson, D.C., Large-scale mantle convection and the history of subduction. Nature, 1992. 355: p. 437–440.
Stacey, F.D. and Loper, D.E., Thermal histories of the core and mantle. Phys. Earth Planet. Inter., 1984. 36: p. 99–115.
Herzen, R.P., et al., Heat flow and thermal origin of hotspot swells: the Hawaiian swell revisited. J. Geophys. Res., 1989. 94: p. 13783–13799.
Grand, S., Hilst, R.D., and Widiyantoro, S., Global seismic tomography: a snapshot of convection in the earth. Geol. Soc. Am. Today, 1997. 7(4): p. 1–7.
Davies, G.F. and Pribac, F., Mesozoic seafloor subsidence and the Darwin Rise, past and present, in The Mesozoic Pacific, Pringle, M., et al., Editors. 1993, Washington, DC: American Geophysical Union. p. 39–52.
Hill, R.I., Starting plumes and continental breakup. Earth Planet. Sci. Lett., 1991. 104: p. 398–416.
Griffiths, R.W. and Campbell, I.H., Interaction of mantle plume heads with the earth's surface and onset of small-scale convection. J. Geophys. Res., 1991. 96: p. 18295–18310.
Jackson, I., et al., Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res., 2002. 107: 2360.
Forsyth, D. and Uyeda, S., On the relative importance of the driving forces of plate motion. Geophys. J. R. Astron. Soc., 1975. 43: p. 163–200.
Stein, C.A. and Stein, S., A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 1992. 359: p. 123–129.
Hillier, J.K., Subsidence of ‘normal’ seafloor: observations do indicate ‘flattening’. J. Geophys. Res., 2010. 115: B03102, doi:10.1029/2008JB005994.
Korenaga, T. and Korenaga, J., Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening. Earth Planet. Sci. Lett., 2008. 268: p. 41–51.
Parsons, B. and Sclater, J.G., An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 1977. 82: p. 803–827.
Mooney, W.D., Laske, G., and Masters, T.G., CRUST 5.1: a global crustal model at 5 ° × 5 °. J. Geophys. Res., 1998. 103: p. 727–747.
Panasyuk, S.V., Residual topography of the earth. 1998: unpublished.
Ishii, M. and Tromp, J., Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth Planet. Inter., 2004. 146: p. 113–124.
Su, W. and Dziewonski, A.M., Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter., 1997. 100: p. 135–156.
Simmons, N.A., Forte, A.M., and Grand, S.P., Thermochemical structure and dynamics of the African superplume. Geophys. Res. Lett., 2007. 34: doi:10.1029/2006GL028009.
Menard, H.W., Darwin reprise. J. Geophys. Res., 1984. 89: p. 9960–9968.
McKenzie, D.P. and Weiss, N., Speculations on the thermal and tectonic history of the earth. Geophys. J. R. Astron. Soc., 1975. 42: p. 131–174.
Wasserburg, G.J. and DePaolo, D.J., Models of earth structure inferred from neodymium and strontium isotopic abundances. Proc. Natl. Acad. Sci. USA, 1979. 76: p. 3594–3598.
Kellogg, L.H., Hager, B.H., and Hilst, R.D., Compositional stratification in the deep mantle. Science, 1999. 283: p. 1881–1884.
Fei, Y., et al., Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res., 2004. 109: doi:10.1029/2003JB002562.
Lay, T., Williams, Q., and Garnero, E.J., The core–mantle boundary layer and deep Earth dynamics. Nature, 1998. 392: p. 461–468.
Isacks, B., Oliver, J., and Sykes, L.R., Seismology and the new global tectonics. J. Geophys. Res., 1968. 73: p. 5855–5899.
Davies, G.F., Whole mantle convection and plate tectonics. Geophys. J. R. Astron. Soc., 1977. 49: p. 459–486.
O'Connell, R.J., On the scale of mantle convection. Tectonophysics, 1977. 38: p. 119–136.
DePaolo, D.J. and Wasserburg, G.J., Inferences about mantle sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett., 1976. 3: p. 743–746.
Davies, G.F., Geophysical and isotopic constraints on mantle convection: an interim synthesis. J. Geophys. Res., 1984. 89: p. 6017–6040.
Widiyantoro, S., Studies of seismic tomography on regional and global scale (PhD Thesis). 1997, Australian National University.
Hilst, R.D. and Kárason, K., Compositional heterogeneity in the bottom 1000 km of Earth's mantle: towards a hybrid convection model. Science, 1999. 283: p. 1885–1888.
Davies, G.F., Reconciling the geophysical and geochemical mantles: plume flows, heterogeneities and disequilibrium. Geochem. Geophys. Geosyst., 2009. 10: doi:10.1029/2009GC002634.
McNamara, A.K. and Zhong, S., Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 2005. 437: p. 1136–1139.
Hooper, P.R., The timing of crustal extension and the eruption of continental flood basalts. Nature, 1990. 345: p. 246–249.
Larson, R.L., Latest pulse of the earth: evidence for a mid-Cretaceous superplume. Geology, 1991. 19: p. 547–550.
Christensen, U.R. and Hofmann, A.W., Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res., 1994. 99: p. 19867–19884.
Davies, G.F., Controls on density stratification in the early Earth. Geochem. Geophys. Geosyst., 2007. 8: Q04006, doi:10.1029/2006GC001414.
McKenzie, D.P., Some remarks on heat flow and gravity anomalies. J. Geophys. Res., 1967. 72: p. 6261–6273.
McKenzie, D.P., Roberts, J.M., and Weiss, N.O., Convection in the earth's mantle: towards a numerical solution. J. Fluid Mech., 1974. 62: p. 465–538.
Richter, F.M., Convection and the large-scale circulation of the mantle. J. Geophys. Res., 1973. 78: p. 8735–8745.
Parsons, B. and McKenzie, D.P., Mantle convection and the thermal structure of the plates. J. Geophys. Res., 1978. 83: p. 4485–4496.
Yuen, D.A., Peltier, W.R., and Schubert, G., On the existence of a second scale of convection in the upper mantle. Geophys. J. R. Astron. Soc., 1981. 65: p. 171–190.
Sandwell, D.T. and Renkin, M.L., Compensation of swells and plateaus in the north Pacific: no direct evidence for mantle convection. J. Geophys. Res., 1988. 93: p. 2775–2783.
Watts, A.B., et al., The relationship between gravity and bathymetry in the Pacific Ocean. Geophys. J. R. Astron. Soc., 1985. 83: p. 263–298.
Davies, G.F., Ocean bathymetry and mantle convection, 2. Small-scale flow. J. Geophys. Res., 1988. 93: p. 10481–10488.
Haxby, W.F. and Weissel, J.K., Evidence for small-scale mantle convection from Seasat altimeter data. J. Geophys. Res., 1986. 91: p. 3507–3520.
Sandwell, , , D.T., et al., Evidence for diffuse extension of the Pacific plate from Pukapuka ridges and cross-grain gravity lineations. J. Geophys. Res., 1995. 100: p. 15087–15099.
O'Connell, , , R.J. and Hager, B.H., On the thermal state of the earth, in Physics of the Earth's Interior, Dziewonski, A. and Boschi, E., Editors. 1980, Amsterdam: North-Holland. p. 270–317.
King, , , S.D. and Anderson, D.L., Edge-driven convection. Earth Planet. Sci. Lett., 1998. 160: p. 289–296.
King, , , S.D. and Anderson, D.L., An alternative mechanism of flood basalt formation. Earth Planet. Sci. Lett., 1995. 136: p. 269–279.
King, , , S.D. and Ritsema, J., African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science, 2000. 290: p. 1137–1140.
Green, , , D.H. and Falloon, T.J., Pyrolite: a Ringwood concept and its current expression, in The Earth's Mantle: Composition, Structure and Evolution, Jackson, I.N.S., Editor. 1998, Cambridge: Cambridge University Press. p. 311–378.
Press, , , W.H., et al., Numerical Recipes. 1986, Cambridge: Cambridge University Press. 818p.
McDonough, , , W.F. and Sun, S.-S., The composition of the Earth. Chem. Geol., 1995. 120: p. 223–253.
Stacey, , , F.D., Physics of the Earth. 3rd edn. 1992, Brisbane: Brookfield Press. 513p.
Rudnick, , , R.L. and Fountain, D.M., Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 1995. 33: p. 267–309.
Labrosse, , , S. and Jaupart, C., Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett., 2007. 260: p. 465–481.
Cogné, , , J.-P. and Humler, E., Global scale patterns of continental fragmentation: Wilson's cycles as a constraint for long-term sea-level changes. Earth Planet. Sci. Lett., 2008. 273: p. 251–259.
Korenaga, , , J., Eustasy, supercontinental insulation, and the temporal variability of terrestrial heat flux. Earth Planet. Sci. Lett., 2007. 257: p. 350–358.
Davies, , , G.F., Effect of plate bending on the Urey ratio and the thermal evolution of the mantle. Earth Planet. Sci. Lett., 2009. 287: p. 513–518.
Silver, , , P.G. and Behn, M.D., Intermittent plate tectonics? Science, 2008. 319: p. 85–88.
Korenaga, , , J., Archean geodynamics and the thermal evolution of the Earth, in Archean Geodynamics and Environments, Benn, K., Mareschal, J.-C., and Condie, K.C., Editors. 2006, Washington DC: American Geophysical Union. p. 7–32.
Korenaga, , , J., Urey ratio and the structure and evolution of Earth's mantle. Rev. Geophys., 2008. 46: doi:10.1029/2007RG000241.
Wu, , , B., et al., Reconciling strong slab pull and weak plate bending: the plate motion constraint on the strength of mantle slabs. Earth Planet. Sci. Lett., 2008. 272: p. 412–421.
Capitanio, , , F.A., Morra, G., and Goes, S., Dynamics of plate bending at the trench and slab–plate coupling. Geochem. Geophys. Geosyst., 2009. 10: doi:10.1029/2008GC002348.
Hirose, , , K., et al., The fate of subducted basaltic crust in the Earth's lower mantle. Nature, 1999. 397: p. 53–56.
Hirose, , , K., et al., Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet. Sci. Lett., 2005. 237: p. 239–251.
Davies, , , G.F., On the emergence of plate tectonics. Geology, 1992. 20: p. 963–966.
Davies, , , G.F., Gravitational depletion of the early Earth's upper mantle and the viability of early plate tectonics. Earth Planet. Sci. Lett., 2006. 243: p. 376–382.
Davies, , , G.F., Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet. Sci. Lett., 2008. 275: p. 382–392.
Gurnis, , , M., Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 1988. 332: p. 695–699.
Tollo, , , R.P., et al., Editors, Proterozoic Tectonic Evolution of the Grenville Orogen in North America. Memoir Vol. 197. 2004, Boulder, CO: Geological Society of America.
O'Neill, , , C., et al., Episodic Precambrian subduction. Earth Planet. Sci. Lett., 2007. 262: p. 552–562.
Condie, , , K.C., Earth as an Evolving Planetary System. 2004, Amsterdam: Elsevier. 350p.
Kranendonk, , , M.J., Smithies, R.H., and Bennett, V.C., Editors. Earth's Oldest Rocks. Developments in Precambrian Geology, Vol. 15. 2007, Amsterdam: Elsevier.
McCulloch, , , M.T. and Bennett, V.C., Progressive growth of the Earth's continental crust and depleted mantle: geochemical constraints. Geochim. Cosmochim. Acta, 1994. 58: p. 4717–4738.
Condie, , , K.C. and Pease, V., Editors. When Did Plate Tectonics Begin on Planet Earth? Special Paper, Vol. 440. 2008, Boulder, CO: Geological Society of America.
Mojzsis, , , S.J., Harrison, T.M., and Pidgeon, R.T., Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4300 Myr ago. Nature, 2001. 409: p. 178–181.
Wilde, , , S.A., et al., Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 2001. 409: p. 175–178.
Watson, , , E.B. and Harrison, T.M., Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 2005. 308: p. 841–844.
Campbell, , , I.H., Griffiths, R., and Hill, R.I., Melting in an Archaean mantle plume: heads it's basalts, tails it's komatiites. Nature, 1989. 339: p. 697–699.
Campbell, , , I.H. and Griffiths, R.W., The changing nature of mantle hotspots through time: implications for the chemical evolution of the mantle. J. Geol., 1992. 92: p. 497–523.
Campbell, , , I.H., The mantle's chemical structure: insights from the melting products of mantle plumes, in The Earth's Mantle: Composition, Structure and Evolution, Jackson, I.N.S., Editor. 1998, Cambridge: Cambridge University Press. p. 259–310.
Ernst, , , R.E. and Buchan, K.L., The use of mafic dike swarms in identifying and locating mantle plumes, in Mantle Plumes: Their Identification Through Time, Ernst, R.E. and Buchan, K.L., Editors. 2001, Geol. Soc. Am. Special Paper 352. Boulder, CO: Geological Society of America. p. 247–265.
Bédard, , , J., A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta, 2006. 70: p. 1188–1214.
Smithies, , , R.H., Kranendonk, M.J., and Champion, D.C., It started with a plume – early Archaean basaltic proto-continental crust. Earth Planet. Sci. Lett., 2005. 238: p. 284–297.
Bogdanova, , , S., et al., From Rodinia to Nuna and beyond: Precambrian supercontinent reconstructions delving deeper in time, in 33rd International Geological Congress, 2008, Oslo. HPP-04. http://33igc.org/coco/entrypage.aspx.
Murphy, , , J.B., et al., Supercontinent reconstruction from recognition of leading continental edges. Geology, 2009. 37: p. 595–598.
Davies, , , G.F., Punctuated tectonic evolution of the earth. Earth Planet. Sci. Lett., 1995. 136: p. 363–379.
Hofmann, , , A.W., Mantle chemistry: the message from oceanic volcanism. Nature, 1997. 385: p. 219–229.
White, , , W.M., Sources of oceanic basalts: radiogenic isotopes evidence. Geology, 1985. 13: p. 115–118.
Zindler, , , A. and Hart, S., Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 1986. 14: p. 493–570.
Albarède, , , F., Introduction to Geochemical Modeling. 1995, Cambridge: Cambridge University Press. 543p.
McDougall, , , I. and Honda, M., Primordial solar noble-gas component in the earth: consequences for the origin and evolution of the earth and its atmosphere, in The Earth's Mantle: Composition, Structure and Evolution, Jackson, I.N.S., Editor. 1998, Cambridge: Cambridge University Press. p. 159–187.
Porcelli, , , D. and Wasserburg, G.J., Mass transfer of helium, neon, argon and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta, 1995. 59: p. 4921–4937.
O'Neill, , , H.S.C. and Palme, H., Composition of the silicate Earth: implications for accretion and core formation, in The Earth's Mantle: Composition, Structure and Evolution, Jackson, I.N.S., Editor. 1998, Cambridge: Cambridge University Press. p. 3–126.
McDonough, , , W.F., Compositional model for the Earth's core, in Treatise on Geochemistry, Carlson, R.W., Holland, H.D., and Turekian, K.K., Editors. 2003, Oxford: Elsevier. p. 547–569.
Jochum, , , K.P., et al., K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature, 1983. 306: p. 431–436.
Salters, , , V.J.M. and Stracke, A., Composition of the depleted mantle. Geochem. Geophys. Geosyst., 2004. 5: 10.1029/2003GC000597.
Workman, , , R.K. and Hart, S.R., Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 2005. 231: p. 53–72.
Lyubetskaya, , , T. and Korenaga, J., Chemical composition of Earth's primitive mantle and its variance: 1. Method and results. J. Geophys. Res., 2007. 112: doi:10.1029/2005JB004223.
Sun, , , S.-S. and McDonough, W.F., Chemical and isotopic characteristics of oceanic basalts: implications for mantle composition and processes, in Magmatism in Ocean Basins, Geol. Soc. Spec. Publ. 42, Saunders, A.D. and Norry, M.J., Editors. 1988, London: Geological Society of London. p. 313–345.
Donnelly, , , K.E., et al., Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett., 2004. 226: p. 347–366.
Hofmann, , , A.W., Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 1988. 90: p. 297–314.
Hofmann, , , A.W., et al., Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet. Sci. Lett., 1986. 79: p. 33–45.
Dosso, , , L., et al., The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31–41 °N). Earth Planet. Sci. Lett., 1999. 170: p. 269–286.
Niu, , , Y. and Batiza, R., Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacific mantle. Geochem. Geophys. Geosyst., 1997. 3: 10.1029/2002GC000250.
Zindler, , , A., Staudigel, H., and Batiza, R., Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth Planet. Sci. Lett., 1984. 70: p. 175–195.
Allegre, , , C.J. and Turcotte, D.L., Implications of a two-component marble-cake mantle. Nature, 1986. 323: p. 123–127.
Ringwood, , , A.E., Composition and Petrology of the Earth's Mantle. 1975, New York: McGraw-Hill. 618p.
Hofmann, , , A.W. and Hart, S.R., An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet. Sci. Lett., 1978. 38: p. 4–62.
Keken, , , P.E. and Zhong, S., Mixing in a 3D spherical model of present day mantle convection. Earth Planet. Sci. Lett., 1999. 171: p. 533–547.
Kellogg, , , L.H. and Turcotte, D.L., Mixing and the distribution of heterogeneities in a chaotically convecting mantle. J. Geophys. Res., 1990. 95: p. 421–432.
Davies, , , G.F., Comment on ‘Mixing by time-dependent convection’ by U. Christensen. Earth Planet. Sci. Lett., 1990. 98: p. 405–407.
Keken, , , P.E., Hauri, E., and Ballentine, C.J., Mantle mixing: the generation, preservation and destruction of mantle heterogeneity. Annu. Rev. Earth Planet. Sci., 2002. 30: p. 493–525.
Spandler, , , C., et al., Phase relations and melting of anhydrous K-bearing eclogites from 1200 to 1600 °C and 3 to 5 GPa. J. Petrol., 2008. 49: p. 771–795.
Davies, , , G.F., Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochim. Cosmochim. Acta, 2002. 66: p. 3125–3142.
Kogiso, , , T., Hirschmann, M.M., and Reiners, P.W., Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta, 2004. 68: p. 345–360.
Sobolev, , , A.V., et al., The amount of recycled crust in sources of mantle-derived melts. Science, 2007. 316: p. 412–417.
Yaxley, , , G.M. and Green, D.H., Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrog. Mitt., 1998. 78: p. 243–255.
Pertermann, , , M. and Hirschmann, M.M., Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res., 2003. 108: doi:10.1029/2000JB000118.
Spiegelman, , , M. and Reynolds, J.R., Combined dynamic and geochemical evidence for convergent melt flow beneath the East Pacific Rise. Nature, 1999. 402: p. 282–285.
Sobolev, , , A.V., et al., An olivine-free mantle source of Hawaiian shield basalts. Nature, 2005. 434: p. 590–597.
Takahashi, , , E., Nakajima, K., and Wright, T.L., Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth Planet. Sci. Lett., 1998. 162: p. 63–80.
Salters, , , V.J.M. and Dick, H.J.B., Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature, 2002. 418: p. 68–72.
Hart, , , S.R., et al., Mantle plumes and entrainment: isotopic evidence. Science, 1992. 256: p. 517–520.
Ito, , , E. and Mahoney, J.J., Melting a high 3He/4He source in a heterogeneous mantle. Geochem. Geophys. Geosyst., 2006. 7: doi:10.1029/2005GC001158.
Allegre, , , C.J., Staudacher, T., and Sarda, P., Rare gas systematics: formation of the atmosphere, evolution and structure of the earth's mantle. Earth. Planet. Sci. Lett., 1987. 81: p. 127–150.
Huang, , , J. and Davies, G.F., Stirring in three-dimensional mantle convection models and its implications for geochemistry: passive tracers. Geochem. Geophys. Geosyst., 2007: Q03017, doi:10.1029/2006GC001312.
Huang, , , J. and Davies, G.F., Stirring in three-dimensional mantle convection models and implications for geochemistry: 2. Heavy tracers. Geochem. Geophys. Geosyst., 2007. 8: Q07004, doi:10.1029/2007GC001621.
Huang, , , J. and Davies, G.F., Geochemical processing in a three-dimensional regional spherical shell model of mantle convection. Geochem. Geophys. Geosyst., 2007. 8: doi:10.1029/2007GC001625.
Xie, , , S. and Tackley, P.J., Evolution of U–Pb and Sm–Nd systems in numerical models of mantle convection and plate tectonics. J. Geophys. Res., 2004. 109: doi:10.1029/2004JB003176.
Brandenburg, , , J.P., et al., A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet. Sci. Lett., 2008. 276: p. 1–13.
Keken, , , P.E. and Ballentine, C.J., Whole-mantle versus layered-mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett., 1998. 156: p. 19–32.
Keken, , , P.E. and Ballentine, C.J., Dynamical models of mantle volatile evolution and the role of phase transitions and temperature-dependent rheology. J. Geophys. Res., 1999. 104: p. 7137–7151.
Chase, , , C.G., Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet. Sci. Lett, 1981. 52: p. 277–284.
Sleep, , , N.H., Gradual entrainment of a chemical layer at the base of the mantle by overlying convection. Geophys. J. Int., 1988. 95: p. 437–447.
Christensen, , , U.R., Mixing by time-dependent convection. Earth Planet. Sci. Lett., 1989. 95: p. 382–394.
Allegre, , , C.J., Hofmann, A., and O'Nions, K., The argon constraints on mantle structure. Geophys. Res. Lett., 1996. 23: p. 3555–3557.
Allegre, , , C.J., et al., Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth Planet. Sci. Lett., 1987. 81: p. 319–337.
Davies, , , G.F., Noble gases in the dynamic mantle. Geochem. Geophys. Geosyst., 2010. 11: Q03005, doi:10.1029/2009GC002801.
Farley, , , K.A., et al., Constraints on mantle 3He fluxes and deep-sea circulation from an ocean general circulation model. J. Geophys. Res., 1995. 100: p. 3829–3839.
Ballentine, , , C.J., et al., Numerical models, geochemistry and the zero-paradox noble-gas mantle. Phil. Trans. R. Soc. Lond. A, 2002. 360: p. 2611–2631.
Yatsevich, , , I. and Honda, M., Production of nucleogenic neon in the Earth from natural radioactive decay. J. Geophys. Res., 1997. 102: p. 10291–10298.
Sarda, , , P., Staudacher, T., and Allegre, C.J., Neon isotopes in submarine basalts. Earth Planet. Sci. Lett., 1988. 91: p. 73–88.
Moreira, , , M., Kunz, J., and Allegre, C., Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science, 1998. 279: p. 1178–1181.
Turner, , , G., The outgassing history of the earth's atmosphere. J. Geol. Soc. Lond., 1989. 146: p. 147–154.
Mahaffy, , , P.R., et al., Galileo probe measurements of D/H and 3He/4He in Jupiter's atmosphere. Space Sci. Rev., 1998. 84: p. 251–263.
Albarède, , , F., Time-dependent models of U–Th–He and K–Ar evolution and the layering of mantle convection. Chem. Geol., 1998. 145: p. 413–429.
Lassiter, , , J.C., Role of recycled oceanic crust in the potassium and argon budget of the Earth: toward a resolution of the ‘missing argon’ problem. Geochem. Geophys. Geosyst., 2004. 5: doi:10.1029/2004GC000711.
Arevalo, , , R.J., McDonough, W.F., and Luong, M., The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Earth Planet. Sci. Lett., 2009. 278: p. 361–369.
Taylor, , , S.R. and McLennan, S.M., The geochemical evolution of the continental crust. Rev. Geophys., 1995. 33: p. 241–265.
Melosh, , , H.J. and Vickery, A.M., Impact erosion of the primordial atmosphere of Mars. Nature, 1989. 338: p. 487–489.
Davies, , , G.F., Geophysically constrained mantle mass flows and the 40Ar budget: a degassed lower mantle? Earth Planet. Sci. Lett, 1999. 166: p. 149–162.
Tolstikhin, , , I. and Hofmann, A.W., Early crust on top of the Earth's core. Phys. Earth Planet. Inter., 2005. 148: p. 109–130.
Galer, , , S.J.G., Goldstein, S.L., and O'Nions, R.K., Limits on chemical and convective isolation in the earth's interior. Chem. Geol., 1989. 75: p. 257–290.
McKenzie, , , D.P. and Bickle, M.J., The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 1988. 29: p. 625–679.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.