Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-21T18:21:06.458Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 May 2011

Geoffrey F. Davies
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davies, G.F., Dynamic Earth: Plates, Plumes and Mantle Convection. 1999, Cambridge: Cambridge University Press. 460p.CrossRefGoogle Scholar
Kennett, B.L.N., Engdahl, E.R., and Buland, R., Constraints on seismic velocities in the earth from travel times. Geophys. J. Int., 1995. 122: p. 108–124.CrossRefGoogle Scholar
Montagner, J.P. and Kennett, B.L.N., How to reconcile body-wave and normal-mode reference Earth models?Geophys. J. Int., 1996. 125: p. 229–248.CrossRefGoogle Scholar
Davies, G.F., Mantle plumes, mantle stirring and hotspot chemistry. Earth Planet. Sci. Lett., 1990. 99: p. 94–109.CrossRefGoogle Scholar
Mohorovičić, A., Das Beben vom 8.X.1909. Jahrb. Met. Obs. Zagreb (Agram.), 1909. 9: p. 1–63.Google Scholar
Hess, H.H., History of ocean basins, in Petrologic Studies: a Volume in Honor of A.F. Buddington, Engel, A.E.J., James, H.L., and Leonard, B.F., Editors. 1962, Boulder, CO: Geological Society of America. p. 599–620.Google Scholar
Menard, H.W., The Ocean of Truth. 1986, Princeton, NJ: Princeton University Press. 353p.CrossRefGoogle Scholar
Barrell, J., The strength of the earth's crust. J. Geol., 1914. 22: p. 655–683.CrossRefGoogle Scholar
,ETOPO5 (Topography of the Earth, 5 minute grid), National Geophysical Data Center, US National Oceanic and Atmospheric Administration, Boulder, CO.
Marty, J.C. and Cazenave, A., Regional variations in subsidence rate of oceanic plates: a global analysis. Earth Planet. Sci. Let., 1989. 94: p. 301–315.CrossRefGoogle Scholar
Sclater, J.G., Jaupart, C., and Galson, D., The heat flow through the oceanic and continental crust and the heat loss of the earth. Rev. Geophys., 1980. 18: p. 269–312.CrossRefGoogle Scholar
Glen, W., Continental Drift and Plate Tectonics. 1975, Columbus, OH: Charles E. Merrill. 188p.Google Scholar
Hallam, A., A Revolution in the Earth Sciences. 1973, Oxford: Clarendon Press. 127p.Google Scholar
Wegener, A., Die Entstehung der Kontinente und Ozeane. 1st edn. 1915, Brunswick: Vieweg.Google Scholar
Jeffreys, H., The Earth, its Origin, History and Physical Constitution. 6th edn. 1976, Cambridge: Cambridge University Press.Google Scholar
Holmes, A., Principles of Physical Geology. 1st edn. 1944, Edinburgh: Thomas Nelson.Google Scholar
Daly, R.A., Strength and Structure of the Earth. 1940, New York: Prentice-Hall. Facsimile edition. 1969, New York: Hafner. 434p.Google Scholar
du Toit, A.L., Our Wandering Continents. 1937, Edinburgh: Oliver and Boyd.Google Scholar
Carey, S.W., The tectonic approach to continental drift, in Continental Drift; a Symposium, Carey, S.W., Editor. 1958, Hobart: University of Tasmania, Geology Department. p. 177–358.Google Scholar
Runcorn, S.K., Paleomagnetic evidence for continental drift and its geophysical cause, in Continental Drift, Runcorn, S.K., Editor. 1962, New York: Academic Press. p. 1–40.Google Scholar
Dietz, R.S., Continent and ocean evolution by spreading of the sea floor. Nature, 1961. 190: p. 854–857.CrossRefGoogle Scholar
Heezen, B.C., The rift in the ocean floor. Sci. Am., 1960. 203: p. 98–110.CrossRefGoogle Scholar
Wilson, J.T., A new class of faults and their bearing on continental drift. Nature, 1965. 207: p. 343–347.CrossRefGoogle Scholar
Wilson, J.T., Evidence from islands on the spreading of the ocean floor. Nature, 1963. 197: p. 536–538.CrossRefGoogle Scholar
Wilson, J.T., A possible origin of the Hawaiian islands. Can. J. Phys., 1963. 41: p. 863–870.CrossRefGoogle Scholar
McDougall, I., Age of shield-building volcanism of Kauai and linear migration of volcanism in the Hawaiian Island chain. Earth Planet. Sci. Lett., 1979. 46: p. 31–42.CrossRefGoogle Scholar
McDougall, I. and Tarling, D.H., Dating of polarity zones in the Hawaiian islands. Nature, 1963. 200: p. 54–56.CrossRefGoogle Scholar
Wilson, J.T., Continental drift. Sci. Am., 1963. 208 (April): p. 86–100.
Bucher, W.H., The Deformation of the Earth's Crust. 1933, Princeton: Princeton University Press. Facsimile edition. 1957, New York: Hafner. 518p.Google Scholar
Heirtzler, J.R., et al., Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. J. Geophys. Res., 1968. 73: p. 2119–2136.CrossRefGoogle Scholar
Sykes, L.R., Seismicity of the South Pacific Ocean. J. Geophys. Res., 1963. 68: p. 5999–6006.CrossRefGoogle Scholar
Sykes, L.R., The seismicity of the Arctic. Bull. Seismol. Soc. Am., 1965. 55: p. 501–518.Google Scholar
Sykes, L.R., Mechanism of earthquakes and nature of faulting on the mid-ocean ridges. J. Geophys. Res., 1967. 72: p. 2131–2153.CrossRefGoogle Scholar
Maxwell, A.E., et al., Deep sea drilling in the South Atlantic. Science, 1970. 168: p. 1047–1059.CrossRefGoogle ScholarPubMed
Airy, G.B., Phil. Trans. R. Soc. Lond., 1855. 145: p. 101–104.
Hall, J., Geology of New York State. 1859. p. 69.
Mitrovica, J.X., Haskell [1935] revisited. J. Geophys. Res., 1996. 101: p. 555–569.CrossRefGoogle Scholar
Haskell, N.A., The viscosity of the asthenosphere. Am. J. Sci., ser. 5, 1937. 33: p. 22–28.CrossRefGoogle Scholar
Kohlstedt, D.L., Evans, B., and Mackwell, S.J., Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res., 1995. 100: p. 17587–17602.CrossRefGoogle Scholar
Tozer, D.C., Heat transfer and convection currents. Phil. Trans. R. Soc. Lond. A, 1965. 258: p. 252–271.CrossRefGoogle Scholar
Mitrovica, J.X. and Forte, A.M., Radial profile of mantle viscosity: results from the joint inversion of convection and postglacial rebound observables. J. Geophys. Res., 1997. 102: p. 2751–2769.CrossRefGoogle Scholar
Parsons, B., Causes and consequences of the relation between area and age of the ocean floor. J. Geophys. Res., 1982. 87: p. 289–302.CrossRefGoogle Scholar
Morgan, W.J., Convection plumes in the lower mantle. Nature, 1971. 230: p. 42–43.CrossRefGoogle Scholar
Morgan, W.J., Plate motions and deep mantle convection. Mem. Geol. Soc. Am., 1972. 132: p. 7–22.Google Scholar
Morgan, W.J., Rises, trenches, great faults and crustal blocks. J. Geophys. Res., 1968. 73: p. 1959–1982.CrossRefGoogle Scholar
Goldreich, P. and Toomre, A., Some remarks on polar wandering. J. Geophys. Res., 1969. 74: p. 2555–2567.CrossRefGoogle Scholar
Gordon, R.G., Horner-Johnson, B.C., and Kumar, R.R., Latitudinal shift of the Hawaiian hotspot: motion relative to other hotspots or motion of all hotspots in unison relative to the spin axis (i.e. true polar wander)?Geophys. Res. Abstr., 2005. 7: p. 10233.Google Scholar
Tarduno, J.A., et al., The Emporer Seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle. Science, 2003. 301: p. 1064–1069.CrossRefGoogle Scholar
Crough, S.T. and Jurdy, D.M., Subducted lithosphere, hotspots and the geoid. Earth Planet. Sci. Lett., 1980. 48: p. 15–22.CrossRefGoogle Scholar
Duncan, R.A. and Richards, M.A., Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 1991. 29: p. 31–50.CrossRefGoogle Scholar
Lay, T., Hernlund, J.W., and Buffett, B.A., Core–mantle boundary heat flow. Nature Geosci., 2008. 1: p. 25–32.CrossRefGoogle Scholar
Watts, A.B. and ten Brink, U.S., Crustal structure, flexure and subsidence history of the Hawaiian Islands. J. Geophys. Res., 1989. 94: p. 10473–10500.CrossRefGoogle Scholar
Turcotte, D.L. and Schubert, G., Geodynamics: Applications of Continuum Physics to Geological Problems. 2nd edn. 2001, Cambridge: Cambridge University Press. 528p.Google Scholar
Davies, G.F., Ocean bathymetry and mantle convection, 1. Large-scale flow and hotspots. J. Geophys. Res., 1988. 93: p. 10467–10480.CrossRefGoogle Scholar
Sleep, N.H., Hotspots and mantle plumes: some phenomenology. J. Geophys. Res., 1990. 95: p. 6715–6736.CrossRefGoogle Scholar
Campbell, I.H. and Griffiths, R.W., Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett., 1990. 99: p. 79–83.CrossRefGoogle Scholar
Clague, D.A. and Dalrymple, G.B., Tectonics, geochronology and origin of the Hawaiian–Emperor volcanic chain, in The Eastern Pacific Ocean and Hawaii, Winterer, E.L., Hussong, D.M., and , R.W. Decker, Editors. 1989, Boulder, CO: Geological Society of America. p. 188–217.Google Scholar
Morgan, J.P., Morgan, W.J., and Price, E., Hotspot melting generates both hotspot swell volcanism and a hotspot swell?J. Geophys. Res., 1995. 100: p. 8045–8062.CrossRefGoogle Scholar
Wessel, P., A re-examination of the flexural deformation beneath the Hawaiian islands. J. Geophys. Res., 1993. 98: p. 12177–12190.CrossRefGoogle Scholar
Hofmann, A.W., Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements, in Treatise on Geochemistry, Vol. 2: The Mantle and Core, Carlson, R.W., Editor. 2003, Oxford: Elsevier-Pergamon. p. 1–44.Google Scholar
Hill, R.I., et al., Mantle plumes and continental tectonics. Science, 1992. 256: p. 186–193.CrossRefGoogle ScholarPubMed
Bunge, H.-P., Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models. Phys. Earth Planet. Inter., 2005. 153: p. 3–10.CrossRefGoogle Scholar
Labrosse, S., Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett., 2002. 199: p. 147–56.CrossRefGoogle Scholar
Zhong, S., Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. J. Geophys. Res., 2006. 111: B04409, doi:10.1029/2005JB003972.CrossRefGoogle Scholar
Davies, G.F., Mantle regulation of core cooling: a geodynamo without core radioactivity?Phys. Earth Planet. Inter., 2007. 160: p. 215–229.CrossRefGoogle Scholar
Nimmo, F., et al., The influence of potassium on core and geodynamo evolution. Geophys. J. Int., 2004. 156: p. 363–376.CrossRefGoogle Scholar
Whitehead, J.A. and Luther, D.S., Dynamics of laboratory diapir and plume models. J. Geophys. Res., 1975. 80: p. 705–717.CrossRefGoogle Scholar
Griffiths, R.W. and Campbell, I.H., Stirring and structure in mantle plumes. Earth Planet. Sci. Lett., 1990. 99: p. 66–78.CrossRefGoogle Scholar
Morgan, W.J., Hotspot tracks and the opening of the Atlantic and Indian Oceans, in The Sea, Emiliani, C., Editor. 1981, New York: Wiley. p. 443–487.Google Scholar
Coffin, M.F. and Eldholm, O., Large igneous provinces: crustal structure, dimensions and external consequences. Rev. Geophys., 1994. 32: p. 1–36.CrossRefGoogle Scholar
Richards, M.A., Duncan, R.A., and Courtillot, V.E., Flood basalts and hot-spot tracks: plume heads and tails. Science, 1989. 246: p. 103–107.CrossRefGoogle ScholarPubMed
White, R. and McKenzie, D., Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res., 1989. 94: p. 7685–7730.CrossRefGoogle Scholar
Campbell, I.H., Cordery, M.J., and Davies, G.. The relationship between mantle plumes and continental flood basalts. in Proceedings of the International Field Conference and Symposium on Petrology and Metallogeny of Volcanic and Intrusive Rocks of the Midcontinent Rift System. 1995.
Hofmann, A.W. and White, W.M., Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 1982. 57: p. 421–436.CrossRefGoogle Scholar
Cordery, M.J., Davies, G.F., and Campbell, I.H., Genesis of flood basalts from eclogite-bearing mantle plumes. J. Geophys. Res., 1997. 102: p. 20179–20197.CrossRefGoogle Scholar
Leitch, A.M. and Davies, G.F., Mantle plumes and flood basalts: enhanced melting from plume ascent and an eclogite component. J. Geophys. Res., 2001. 106: p. 2047–2059.CrossRefGoogle Scholar
Leitch, A.M., Davies, G.F., and Wells, M., A plume head melting under a rifting margin. Earth Planet. Sci. Lett., 1998. 161: p. 161–177.CrossRefGoogle Scholar
Clouard, V. and Bonneville, A., How many Pacific hotspots are fed by deep-mantle plumes?Geology, 2001. 29: p. 695–698.2.0.CO;2>CrossRefGoogle Scholar
Natland, J.H. and Winterer, E.L., Fissure control on volcanic action in the Pacific, in Plumes, Plates and Paradigms, Foulger, G.R., et al., Editors. 2005, Boulder, CO: Geological Society of America.Google Scholar
Yasuda, A., , T. Fujii, and Kurita, K., Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. J. Geophys. Res., 1994. 99: p. 9401–9414.CrossRefGoogle Scholar
Lin, S. and Keken, P.E., Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochem. Geophys. Geosyst., 2006. 7(3): Q03003, doi:10.1029/2005GC001072.CrossRefGoogle Scholar
Lin, S.-C. and Keken, P.E., Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes. Nature, 2005. 436: p. 250–252.CrossRefGoogle ScholarPubMed
Kumagai, I., et al., Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett., 2008. 35: L16301, doi:10.1029/2008GL035079.CrossRefGoogle Scholar
Farnetani, C.G. and Samuel, H., Beyond the thermal plume paradigm. Geophys. Res. Lett., 2005. 32: L07311, doi:10.1029/2005GL022360.CrossRefGoogle Scholar
Stefanick, M. and Jurdy, D.M., The distribution of hot spots. J. Geophys. Res., 1984. 89: p. 9919–9925.CrossRefGoogle Scholar
Kerr, R.C. and Mériaux, C., Structure and dynamics of sheared mantle plumes. Geochem. Geophys. Geosyst., 2004. 5: Q12009, doi:10.1029/2004GC000749.CrossRefGoogle Scholar
Richards, M.A. and Engebretson, D.C., Large-scale mantle convection and the history of subduction. Nature, 1992. 355: p. 437–440.CrossRefGoogle Scholar
Stacey, F.D. and Loper, D.E., Thermal histories of the core and mantle. Phys. Earth Planet. Inter., 1984. 36: p. 99–115.CrossRefGoogle Scholar
Herzen, R.P., et al., Heat flow and thermal origin of hotspot swells: the Hawaiian swell revisited. J. Geophys. Res., 1989. 94: p. 13783–13799.CrossRefGoogle Scholar
Grand, S., Hilst, R.D., and Widiyantoro, S., Global seismic tomography: a snapshot of convection in the earth. Geol. Soc. Am. Today, 1997. 7(4): p. 1–7.Google Scholar
Davies, G.F. and Pribac, F., Mesozoic seafloor subsidence and the Darwin Rise, past and present, in The Mesozoic Pacific, Pringle, M., et al., Editors. 1993, Washington, DC: American Geophysical Union. p. 39–52.Google Scholar
Hill, R.I., Starting plumes and continental breakup. Earth Planet. Sci. Lett., 1991. 104: p. 398–416.CrossRefGoogle Scholar
Griffiths, R.W. and Campbell, I.H., Interaction of mantle plume heads with the earth's surface and onset of small-scale convection. J. Geophys. Res., 1991. 96: p. 18295–18310.CrossRefGoogle Scholar
Jackson, I., et al., Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res., 2002. 107: 2360.CrossRefGoogle Scholar
Forsyth, D. and Uyeda, S., On the relative importance of the driving forces of plate motion. Geophys. J. R. Astron. Soc., 1975. 43: p. 163–200.CrossRefGoogle Scholar
Stein, C.A. and Stein, S., A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 1992. 359: p. 123–129.CrossRefGoogle Scholar
Hillier, J.K., Subsidence of ‘normal’ seafloor: observations do indicate ‘flattening’. J. Geophys. Res., 2010. 115: B03102, doi:10.1029/2008JB005994.CrossRefGoogle Scholar
Korenaga, T. and Korenaga, J., Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening. Earth Planet. Sci. Lett., 2008. 268: p. 41–51.CrossRefGoogle Scholar
Parsons, B. and Sclater, J.G., An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 1977. 82: p. 803–827.CrossRefGoogle Scholar
Mooney, W.D., Laske, G., and Masters, T.G., CRUST 5.1: a global crustal model at 5 ° × 5 °. J. Geophys. Res., 1998. 103: p. 727–747.CrossRefGoogle Scholar
Panasyuk, S.V., Residual topography of the earth. 1998: unpublished.
Ishii, M. and Tromp, J., Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth Planet. Inter., 2004. 146: p. 113–124.CrossRefGoogle Scholar
Su, W. and Dziewonski, A.M., Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter., 1997. 100: p. 135–156.CrossRefGoogle Scholar
Simmons, N.A., Forte, A.M., and Grand, S.P., Thermochemical structure and dynamics of the African superplume. Geophys. Res. Lett., 2007. 34: doi:10.1029/2006GL028009.CrossRefGoogle Scholar
Menard, H.W., Darwin reprise. J. Geophys. Res., 1984. 89: p. 9960–9968.CrossRefGoogle Scholar
McKenzie, D.P. and Weiss, N., Speculations on the thermal and tectonic history of the earth. Geophys. J. R. Astron. Soc., 1975. 42: p. 131–174.CrossRefGoogle Scholar
Wasserburg, G.J. and DePaolo, D.J., Models of earth structure inferred from neodymium and strontium isotopic abundances. Proc. Natl. Acad. Sci. USA, 1979. 76: p. 3594–3598.CrossRefGoogle ScholarPubMed
Kellogg, L.H., Hager, B.H., and Hilst, R.D., Compositional stratification in the deep mantle. Science, 1999. 283: p. 1881–1884.CrossRefGoogle ScholarPubMed
Fei, Y., et al., Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res., 2004. 109: doi:10.1029/2003JB002562.CrossRefGoogle Scholar
Lay, T., Williams, Q., and Garnero, E.J., The core–mantle boundary layer and deep Earth dynamics. Nature, 1998. 392: p. 461–468.CrossRefGoogle Scholar
Isacks, B., Oliver, J., and Sykes, L.R., Seismology and the new global tectonics. J. Geophys. Res., 1968. 73: p. 5855–5899.CrossRefGoogle Scholar
Davies, G.F., Whole mantle convection and plate tectonics. Geophys. J. R. Astron. Soc., 1977. 49: p. 459–486.CrossRefGoogle Scholar
O'Connell, R.J., On the scale of mantle convection. Tectonophysics, 1977. 38: p. 119–136.CrossRefGoogle Scholar
DePaolo, D.J. and Wasserburg, G.J., Inferences about mantle sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett., 1976. 3: p. 743–746.CrossRefGoogle Scholar
Davies, G.F., Geophysical and isotopic constraints on mantle convection: an interim synthesis. J. Geophys. Res., 1984. 89: p. 6017–6040.CrossRefGoogle Scholar
Widiyantoro, S., Studies of seismic tomography on regional and global scale (PhD Thesis). 1997, Australian National University.
Hilst, R.D. and Kárason, K., Compositional heterogeneity in the bottom 1000 km of Earth's mantle: towards a hybrid convection model. Science, 1999. 283: p. 1885–1888.Google Scholar
Davies, G.F., Reconciling the geophysical and geochemical mantles: plume flows, heterogeneities and disequilibrium. Geochem. Geophys. Geosyst., 2009. 10: doi:10.1029/2009GC002634.CrossRefGoogle Scholar
McNamara, A.K. and Zhong, S., Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 2005. 437: p. 1136–1139.CrossRefGoogle ScholarPubMed
Hooper, P.R., The timing of crustal extension and the eruption of continental flood basalts. Nature, 1990. 345: p. 246–249.CrossRefGoogle Scholar
Larson, R.L., Latest pulse of the earth: evidence for a mid-Cretaceous superplume. Geology, 1991. 19: p. 547–550.2.3.CO;2>CrossRefGoogle Scholar
Christensen, U.R. and Hofmann, A.W., Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res., 1994. 99: p. 19867–19884.CrossRefGoogle Scholar
Davies, G.F., Controls on density stratification in the early Earth. Geochem. Geophys. Geosyst., 2007. 8: Q04006, doi:10.1029/2006GC001414.CrossRefGoogle Scholar
McKenzie, D.P., Some remarks on heat flow and gravity anomalies. J. Geophys. Res., 1967. 72: p. 6261–6273.CrossRefGoogle Scholar
McKenzie, D.P., Roberts, J.M., and Weiss, N.O., Convection in the earth's mantle: towards a numerical solution. J. Fluid Mech., 1974. 62: p. 465–538.CrossRefGoogle Scholar
Richter, F.M., Convection and the large-scale circulation of the mantle. J. Geophys. Res., 1973. 78: p. 8735–8745.CrossRefGoogle Scholar
Parsons, B. and McKenzie, D.P., Mantle convection and the thermal structure of the plates. J. Geophys. Res., 1978. 83: p. 4485–4496.CrossRefGoogle Scholar
Yuen, D.A., Peltier, W.R., and Schubert, G., On the existence of a second scale of convection in the upper mantle. Geophys. J. R. Astron. Soc., 1981. 65: p. 171–190.CrossRefGoogle Scholar
Sandwell, D.T. and Renkin, M.L., Compensation of swells and plateaus in the north Pacific: no direct evidence for mantle convection. J. Geophys. Res., 1988. 93: p. 2775–2783.CrossRefGoogle Scholar
Watts, A.B., et al., The relationship between gravity and bathymetry in the Pacific Ocean. Geophys. J. R. Astron. Soc., 1985. 83: p. 263–298.CrossRefGoogle Scholar
Davies, G.F., Ocean bathymetry and mantle convection, 2. Small-scale flow. J. Geophys. Res., 1988. 93: p. 10481–10488.CrossRefGoogle Scholar
Haxby, W.F. and Weissel, J.K., Evidence for small-scale mantle convection from Seasat altimeter data. J. Geophys. Res., 1986. 91: p. 3507–3520.CrossRefGoogle Scholar
Sandwell, , , D.T., et al., Evidence for diffuse extension of the Pacific plate from Pukapuka ridges and cross-grain gravity lineations. J. Geophys. Res., 1995. 100: p. 15087–15099.CrossRefGoogle Scholar
O'Connell, , , R.J. and Hager, B.H., On the thermal state of the earth, in Physics of the Earth's Interior, Dziewonski, A. and Boschi, E., Editors. 1980, Amsterdam: North-Holland. p. 270–317.
King, , , S.D. and Anderson, D.L., Edge-driven convection. Earth Planet. Sci. Lett., 1998. 160: p. 289–296.CrossRefGoogle Scholar
King, , , S.D. and Anderson, D.L., An alternative mechanism of flood basalt formation. Earth Planet. Sci. Lett., 1995. 136: p. 269–279.CrossRefGoogle Scholar
King, , , S.D. and Ritsema, J., African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science, 2000. 290: p. 1137–1140.CrossRefGoogle ScholarPubMed
Green, , , D.H. and Falloon, T.J., Pyrolite: a Ringwood concept and its current expression, in The Earth's Mantle: Composition, Structure and Evolution, Jackson, I.N.S., Editor. 1998, Cambridge: Cambridge University Press. p. 311–378.Google Scholar
Press, , , W.H., et al., Numerical Recipes. 1986, Cambridge: Cambridge University Press. 818p.Google Scholar
McDonough, , , W.F. and Sun, S.-S., The composition of the Earth. Chem. Geol., 1995. 120: p. 223–253.CrossRefGoogle Scholar
Stacey, , , F.D., Physics of the Earth. 3rd edn. 1992, Brisbane: Brookfield Press. 513p.Google Scholar
Rudnick, , , R.L. and Fountain, D.M., Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 1995. 33: p. 267–309.CrossRefGoogle Scholar
Labrosse, , , S. and Jaupart, C., Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett., 2007. 260: p. 465–481.CrossRefGoogle Scholar
Cogné, , , J.-P. and Humler, E., Global scale patterns of continental fragmentation: Wilson's cycles as a constraint for long-term sea-level changes. Earth Planet. Sci. Lett., 2008. 273: p. 251–259.CrossRefGoogle Scholar
Korenaga, , , J., Eustasy, supercontinental insulation, and the temporal variability of terrestrial heat flux. Earth Planet. Sci. Lett., 2007. 257: p. 350–358.CrossRefGoogle Scholar
Davies, , , G.F., Effect of plate bending on the Urey ratio and the thermal evolution of the mantle. Earth Planet. Sci. Lett., 2009. 287: p. 513–518.CrossRefGoogle Scholar
Silver, , , P.G. and Behn, M.D., Intermittent plate tectonics? Science, 2008. 319: p. 85–88.CrossRefGoogle ScholarPubMed
Korenaga, , , J., Archean geodynamics and the thermal evolution of the Earth, in Archean Geodynamics and Environments, Benn, K., Mareschal, J.-C., and Condie, K.C., Editors. 2006, Washington DC: American Geophysical Union. p. 7–32.CrossRefGoogle Scholar
Korenaga, , , J., Urey ratio and the structure and evolution of Earth's mantle. Rev. Geophys., 2008. 46: doi:10.1029/2007RG000241.CrossRefGoogle Scholar
Wu, , , B., et al., Reconciling strong slab pull and weak plate bending: the plate motion constraint on the strength of mantle slabs. Earth Planet. Sci. Lett., 2008. 272: p. 412–421.CrossRefGoogle Scholar
Capitanio, , , F.A., Morra, G., and Goes, S., Dynamics of plate bending at the trench and slab–plate coupling. Geochem. Geophys. Geosyst., 2009. 10: doi:10.1029/2008GC002348.CrossRefGoogle Scholar
Hirose, , , K., et al., The fate of subducted basaltic crust in the Earth's lower mantle. Nature, 1999. 397: p. 53–56.CrossRefGoogle Scholar
Hirose, , , K., et al., Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet. Sci. Lett., 2005. 237: p. 239–251.CrossRefGoogle Scholar
Davies, , , G.F., On the emergence of plate tectonics. Geology, 1992. 20: p. 963–966.2.3.CO;2>CrossRefGoogle Scholar
Davies, , , G.F., Gravitational depletion of the early Earth's upper mantle and the viability of early plate tectonics. Earth Planet. Sci. Lett., 2006. 243: p. 376–382.CrossRefGoogle Scholar
Davies, , , G.F., Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet. Sci. Lett., 2008. 275: p. 382–392.CrossRefGoogle Scholar
Gurnis, , , M., Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 1988. 332: p. 695–699.CrossRefGoogle Scholar
Tollo, , , R.P., et al., Editors, Proterozoic Tectonic Evolution of the Grenville Orogen in North America. Memoir Vol. 197. 2004, Boulder, CO: Geological Society of America.CrossRefGoogle Scholar
O'Neill, , , C., et al., Episodic Precambrian subduction. Earth Planet. Sci. Lett., 2007. 262: p. 552–562.CrossRefGoogle Scholar
Condie, , , K.C., Earth as an Evolving Planetary System. 2004, Amsterdam: Elsevier. 350p.Google Scholar
Kranendonk, , , M.J., Smithies, R.H., and Bennett, V.C., Editors. Earth's Oldest Rocks. Developments in Precambrian Geology, Vol. 15. 2007, Amsterdam: Elsevier.Google Scholar
McCulloch, , , M.T. and Bennett, V.C., Progressive growth of the Earth's continental crust and depleted mantle: geochemical constraints. Geochim. Cosmochim. Acta, 1994. 58: p. 4717–4738.CrossRefGoogle Scholar
Condie, , , K.C. and Pease, V., Editors. When Did Plate Tectonics Begin on Planet Earth? Special Paper, Vol. 440. 2008, Boulder, CO: Geological Society of America.
Mojzsis, , , S.J., Harrison, T.M., and Pidgeon, R.T., Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4300 Myr ago. Nature, 2001. 409: p. 178–181.CrossRefGoogle Scholar
Wilde, , , S.A., et al., Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 2001. 409: p. 175–178.CrossRefGoogle ScholarPubMed
Watson, , , E.B. and Harrison, T.M., Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 2005. 308: p. 841–844.CrossRefGoogle ScholarPubMed
Campbell, , , I.H., Griffiths, R., and Hill, R.I., Melting in an Archaean mantle plume: heads it's basalts, tails it's komatiites. Nature, 1989. 339: p. 697–699.CrossRefGoogle Scholar
Campbell, , , I.H. and Griffiths, R.W., The changing nature of mantle hotspots through time: implications for the chemical evolution of the mantle. J. Geol., 1992. 92: p. 497–523.CrossRefGoogle Scholar
Campbell, , , I.H., The mantle's chemical structure: insights from the melting products of mantle plumes, in The Earth's Mantle: Composition, Structure and Evolution, Jackson, I.N.S., Editor. 1998, Cambridge: Cambridge University Press. p. 259–310.Google Scholar
Ernst, , , R.E. and Buchan, K.L., The use of mafic dike swarms in identifying and locating mantle plumes, in Mantle Plumes: Their Identification Through Time, Ernst, R.E. and Buchan, K.L., Editors. 2001, Geol. Soc. Am. Special Paper 352. Boulder, CO: Geological Society of America. p. 247–265.
Bédard, , , J., A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta, 2006. 70: p. 1188–1214.CrossRefGoogle Scholar
Smithies, , , R.H., Kranendonk, M.J., and Champion, D.C., It started with a plume – early Archaean basaltic proto-continental crust. Earth Planet. Sci. Lett., 2005. 238: p. 284–297.CrossRefGoogle Scholar
Bogdanova, , , S., et al., From Rodinia to Nuna and beyond: Precambrian supercontinent reconstructions delving deeper in time, in 33rd International Geological Congress, 2008, Oslo. HPP-04. http://33igc.org/coco/entrypage.aspx.Google Scholar
Murphy, , , J.B., et al., Supercontinent reconstruction from recognition of leading continental edges. Geology, 2009. 37: p. 595–598.CrossRefGoogle Scholar
Davies, , , G.F., Punctuated tectonic evolution of the earth. Earth Planet. Sci. Lett., 1995. 136: p. 363–379.CrossRefGoogle Scholar
Hofmann, , , A.W., Mantle chemistry: the message from oceanic volcanism. Nature, 1997. 385: p. 219–229.CrossRefGoogle Scholar
White, , , W.M., Sources of oceanic basalts: radiogenic isotopes evidence. Geology, 1985. 13: p. 115–118.2.0.CO;2>CrossRefGoogle Scholar
Zindler, , , A. and Hart, S., Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 1986. 14: p. 493–570.CrossRefGoogle Scholar
Albarède, , , F., Introduction to Geochemical Modeling. 1995, Cambridge: Cambridge University Press. 543p.CrossRefGoogle Scholar
McDougall, , , I. and Honda, M., Primordial solar noble-gas component in the earth: consequences for the origin and evolution of the earth and its atmosphere, in The Earth's Mantle: Composition, Structure and Evolution, Jackson, I.N.S., Editor. 1998, Cambridge: Cambridge University Press. p. 159–187.Google Scholar
Porcelli, , , D. and Wasserburg, G.J., Mass transfer of helium, neon, argon and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta, 1995. 59: p. 4921–4937.CrossRefGoogle Scholar
O'Neill, , , H.S.C. and Palme, H., Composition of the silicate Earth: implications for accretion and core formation, in The Earth's Mantle: Composition, Structure and Evolution, Jackson, I.N.S., Editor. 1998, Cambridge: Cambridge University Press. p. 3–126.Google Scholar
McDonough, , , W.F., Compositional model for the Earth's core, in Treatise on Geochemistry, Carlson, R.W., Holland, H.D., and Turekian, K.K., Editors. 2003, Oxford: Elsevier. p. 547–569.CrossRefGoogle Scholar
Jochum, , , K.P., et al., K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature, 1983. 306: p. 431–436.CrossRefGoogle Scholar
Salters, , , V.J.M. and Stracke, A., Composition of the depleted mantle. Geochem. Geophys. Geosyst., 2004. 5: 10.1029/2003GC000597.CrossRefGoogle Scholar
Workman, , , R.K. and Hart, S.R., Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 2005. 231: p. 53–72.CrossRefGoogle Scholar
Lyubetskaya, , , T. and Korenaga, J., Chemical composition of Earth's primitive mantle and its variance: 1. Method and results. J. Geophys. Res., 2007. 112: doi:10.1029/2005JB004223.Google Scholar
Sun, , , S.-S. and McDonough, W.F., Chemical and isotopic characteristics of oceanic basalts: implications for mantle composition and processes, in Magmatism in Ocean Basins, Geol. Soc. Spec. Publ. 42, Saunders, A.D. and Norry, M.J., Editors. 1988, London: Geological Society of London. p. 313–345.
Donnelly, , , K.E., et al., Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett., 2004. 226: p. 347–366.CrossRefGoogle Scholar
Hofmann, , , A.W., Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 1988. 90: p. 297–314.CrossRefGoogle Scholar
Hofmann, , , A.W., et al., Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet. Sci. Lett., 1986. 79: p. 33–45.CrossRefGoogle Scholar
Dosso, , , L., et al., The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31–41 °N). Earth Planet. Sci. Lett., 1999. 170: p. 269–286.CrossRef
Niu, , , Y. and Batiza, R., Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacific mantle. Geochem. Geophys. Geosyst., 1997. 3: 10.1029/2002GC000250.Google Scholar
Zindler, , , A., Staudigel, H., and Batiza, R., Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth Planet. Sci. Lett., 1984. 70: p. 175–195.CrossRefGoogle Scholar
Allegre, , , C.J. and Turcotte, D.L., Implications of a two-component marble-cake mantle. Nature, 1986. 323: p. 123–127.CrossRefGoogle Scholar
Ringwood, , , A.E., Composition and Petrology of the Earth's Mantle. 1975, New York: McGraw-Hill. 618p.Google Scholar
Hofmann, , , A.W. and Hart, S.R., An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet. Sci. Lett., 1978. 38: p. 4–62.CrossRefGoogle Scholar
Keken, , , P.E. and Zhong, S., Mixing in a 3D spherical model of present day mantle convection. Earth Planet. Sci. Lett., 1999. 171: p. 533–547.CrossRefGoogle Scholar
Kellogg, , , L.H. and Turcotte, D.L., Mixing and the distribution of heterogeneities in a chaotically convecting mantle. J. Geophys. Res., 1990. 95: p. 421–432.CrossRefGoogle Scholar
Davies, , , G.F., Comment on ‘Mixing by time-dependent convection’ by U. Christensen. Earth Planet. Sci. Lett., 1990. 98: p. 405–407.CrossRefGoogle Scholar
Keken, , , P.E., Hauri, E., and Ballentine, C.J., Mantle mixing: the generation, preservation and destruction of mantle heterogeneity. Annu. Rev. Earth Planet. Sci., 2002. 30: p. 493–525.CrossRefGoogle Scholar
Spandler, , , C., et al., Phase relations and melting of anhydrous K-bearing eclogites from 1200 to 1600 °C and 3 to 5 GPa. J. Petrol., 2008. 49: p. 771–795.CrossRefGoogle Scholar
Davies, , , G.F., Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochim. Cosmochim. Acta, 2002. 66: p. 3125–3142.CrossRefGoogle Scholar
Kogiso, , , T., Hirschmann, M.M., and Reiners, P.W., Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta, 2004. 68: p. 345–360.CrossRefGoogle Scholar
Sobolev, , , A.V., et al., The amount of recycled crust in sources of mantle-derived melts. Science, 2007. 316: p. 412–417.CrossRefGoogle ScholarPubMed
Yaxley, , , G.M. and Green, D.H., Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrog. Mitt., 1998. 78: p. 243–255.Google Scholar
Pertermann, , , M. and Hirschmann, M.M., Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res., 2003. 108: doi:10.1029/2000JB000118.CrossRefGoogle Scholar
Spiegelman, , , M. and Reynolds, J.R., Combined dynamic and geochemical evidence for convergent melt flow beneath the East Pacific Rise. Nature, 1999. 402: p. 282–285.CrossRefGoogle Scholar
Sobolev, , , A.V., et al., An olivine-free mantle source of Hawaiian shield basalts. Nature, 2005. 434: p. 590–597.CrossRefGoogle ScholarPubMed
Takahashi, , , E., Nakajima, K., and Wright, T.L., Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth Planet. Sci. Lett., 1998. 162: p. 63–80.CrossRefGoogle Scholar
Salters, , , V.J.M. and Dick, H.J.B., Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature, 2002. 418: p. 68–72.CrossRefGoogle ScholarPubMed
Hart, , , S.R., et al., Mantle plumes and entrainment: isotopic evidence. Science, 1992. 256: p. 517–520.CrossRefGoogle ScholarPubMed
Ito, , , E. and Mahoney, J.J., Melting a high 3He/4He source in a heterogeneous mantle. Geochem. Geophys. Geosyst., 2006. 7: doi:10.1029/2005GC001158.CrossRefGoogle Scholar
Allegre, , , C.J., Staudacher, T., and Sarda, P., Rare gas systematics: formation of the atmosphere, evolution and structure of the earth's mantle. Earth. Planet. Sci. Lett., 1987. 81: p. 127–150.CrossRefGoogle Scholar
Huang, , , J. and Davies, G.F., Stirring in three-dimensional mantle convection models and its implications for geochemistry: passive tracers. Geochem. Geophys. Geosyst., 2007: Q03017, doi:10.1029/2006GC001312.Google Scholar
Huang, , , J. and Davies, G.F., Stirring in three-dimensional mantle convection models and implications for geochemistry: 2. Heavy tracers. Geochem. Geophys. Geosyst., 2007. 8: Q07004, doi:10.1029/2007GC001621.Google Scholar
Huang, , , J. and Davies, G.F., Geochemical processing in a three-dimensional regional spherical shell model of mantle convection. Geochem. Geophys. Geosyst., 2007. 8: doi:10.1029/2007GC001625.CrossRefGoogle Scholar
Xie, , , S. and Tackley, P.J., Evolution of U–Pb and Sm–Nd systems in numerical models of mantle convection and plate tectonics. J. Geophys. Res., 2004. 109: doi:10.1029/2004JB003176.CrossRefGoogle Scholar
Brandenburg, , , J.P., et al., A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet. Sci. Lett., 2008. 276: p. 1–13.CrossRefGoogle Scholar
Keken, , , P.E. and Ballentine, C.J., Whole-mantle versus layered-mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett., 1998. 156: p. 19–32.Google Scholar
Keken, , , P.E. and Ballentine, C.J., Dynamical models of mantle volatile evolution and the role of phase transitions and temperature-dependent rheology. J. Geophys. Res., 1999. 104: p. 7137–7151.CrossRefGoogle Scholar
Chase, , , C.G., Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet. Sci. Lett, 1981. 52: p. 277–284.CrossRefGoogle Scholar
Sleep, , , N.H., Gradual entrainment of a chemical layer at the base of the mantle by overlying convection. Geophys. J. Int., 1988. 95: p. 437–447.CrossRefGoogle Scholar
Christensen, , , U.R., Mixing by time-dependent convection. Earth Planet. Sci. Lett., 1989. 95: p. 382–394.CrossRefGoogle Scholar
Allegre, , , C.J., Hofmann, A., and O'Nions, K., The argon constraints on mantle structure. Geophys. Res. Lett., 1996. 23: p. 3555–3557.CrossRefGoogle Scholar
Allegre, , , C.J., et al., Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth Planet. Sci. Lett., 1987. 81: p. 319–337.CrossRefGoogle Scholar
Davies, , , G.F., Noble gases in the dynamic mantle. Geochem. Geophys. Geosyst., 2010. 11: Q03005, doi:10.1029/2009GC002801.CrossRefGoogle Scholar
Farley, , , K.A., et al., Constraints on mantle 3He fluxes and deep-sea circulation from an ocean general circulation model. J. Geophys. Res., 1995. 100: p. 3829–3839.CrossRefGoogle Scholar
Ballentine, , , C.J., et al., Numerical models, geochemistry and the zero-paradox noble-gas mantle. Phil. Trans. R. Soc. Lond. A, 2002. 360: p. 2611–2631.CrossRefGoogle ScholarPubMed
Yatsevich, , , I. and Honda, M., Production of nucleogenic neon in the Earth from natural radioactive decay. J. Geophys. Res., 1997. 102: p. 10291–10298.CrossRefGoogle Scholar
Sarda, , , P., Staudacher, T., and Allegre, C.J., Neon isotopes in submarine basalts. Earth Planet. Sci. Lett., 1988. 91: p. 73–88.CrossRefGoogle Scholar
Moreira, , , M., Kunz, J., and Allegre, C., Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science, 1998. 279: p. 1178–1181.CrossRefGoogle ScholarPubMed
Turner, , , G., The outgassing history of the earth's atmosphere. J. Geol. Soc. Lond., 1989. 146: p. 147–154.CrossRefGoogle Scholar
Mahaffy, , , P.R., et al., Galileo probe measurements of D/H and 3He/4He in Jupiter's atmosphere. Space Sci. Rev., 1998. 84: p. 251–263.CrossRefGoogle Scholar
Albarède, , , F., Time-dependent models of U–Th–He and K–Ar evolution and the layering of mantle convection. Chem. Geol., 1998. 145: p. 413–429.CrossRefGoogle Scholar
Lassiter, , , J.C., Role of recycled oceanic crust in the potassium and argon budget of the Earth: toward a resolution of the ‘missing argon’ problem. Geochem. Geophys. Geosyst., 2004. 5: doi:10.1029/2004GC000711.CrossRefGoogle Scholar
Arevalo, , , R.J., McDonough, W.F., and Luong, M., The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Earth Planet. Sci. Lett., 2009. 278: p. 361–369.CrossRefGoogle Scholar
Taylor, , , S.R. and McLennan, S.M., The geochemical evolution of the continental crust. Rev. Geophys., 1995. 33: p. 241–265.CrossRefGoogle Scholar
Melosh, , , H.J. and Vickery, A.M., Impact erosion of the primordial atmosphere of Mars. Nature, 1989. 338: p. 487–489.CrossRefGoogle ScholarPubMed
Davies, , , G.F., Geophysically constrained mantle mass flows and the 40Ar budget: a degassed lower mantle? Earth Planet. Sci. Lett, 1999. 166: p. 149–162.CrossRefGoogle Scholar
Tolstikhin, , , I. and Hofmann, A.W., Early crust on top of the Earth's core. Phys. Earth Planet. Inter., 2005. 148: p. 109–130.CrossRefGoogle Scholar
Galer, , , S.J.G., Goldstein, S.L., and O'Nions, R.K., Limits on chemical and convective isolation in the earth's interior. Chem. Geol., 1989. 75: p. 257–290.CrossRefGoogle Scholar
McKenzie, , , D.P. and Bickle, M.J., The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 1988. 29: p. 625–679.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Geoffrey F. Davies, Australian National University, Canberra
  • Book: Mantle Convection for Geologists
  • Online publication: 03 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511973413.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Geoffrey F. Davies, Australian National University, Canberra
  • Book: Mantle Convection for Geologists
  • Online publication: 03 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511973413.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Geoffrey F. Davies, Australian National University, Canberra
  • Book: Mantle Convection for Geologists
  • Online publication: 03 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511973413.015
Available formats
×