Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T18:04:00.329Z Has data issue: false hasContentIssue false

Part III - Cannabis and the Brain

Published online by Cambridge University Press:  12 May 2023

Deepak Cyril D'Souza
Affiliation:
Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine
David Castle
Affiliation:
University of Tasmania, Australia
Sir Robin Murray
Affiliation:
Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abela, A. R., Rahbarnia, A., Wood, S., et al. (2019). Adolescent exposure to Δ9-tetrahydrocannabinol delays acquisition of paired-associates learning in adulthood. Psychopharmacology, 236, 18751886.Google Scholar
Aldhafiri, A., Dodu, J. C., Alalawi, A., et al. (2019). Delta-9-THC exposure during zebra finch sensorimotor vocal learning increases cocaine reinforcement in adulthood. Pharmacol Biochem Behav, 185, 172764.CrossRefGoogle ScholarPubMed
Bara, A., Ferland, J. N., Rompala, G., et al. (2021). Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci, 22, 423438.Google Scholar
Bruijnzeel, A. W., Knight, P., Panunzio, S., et al. (2019). Effects in rats of adolescent exposure to cannabis smoke or THC on emotional behavior and cognitive function in adulthood. Psychopharmacology, 236, 27732784.Google Scholar
Cha, Y. M., White, A. M., Kuhn, C. M., et al. (2006). Differential effects of delta9-THC on learning in adolescent and adult rats. Pharmacol Biochem Behav, 83, 448455.CrossRefGoogle ScholarPubMed
Cuccurazzu, B., Zamberletti, E., Nazzaro, C., et al. (2018). Adult cellular neuroadaptations induced by adolescent THC exposure in female rats are rescued by enhancing anandamide signaling. Int J Neuropsychopharmacol, 21, 10141024.CrossRefGoogle ScholarPubMed
De Felice, M., Renard, J., Hudson, R., et al. (2021). l-Theanine prevents long-term affective and cognitive side effects of adolescent Δ-9-tetrahydrocannabinol exposure and blocks associated molecular and neuronal abnormalities in the mesocorticolimbic circuitry. J Neurosci, 41, 739750.CrossRefGoogle ScholarPubMed
De Gregorio, D., Dean Conway, J., Canul, M. L., et al. (2020). Effects of chronic exposure to low doses of Δ9-tetrahydrocannabinol in adolescence and adulthood on serotonin/norepinephrine neurotransmission and emotional behaviors. Int J Neuropsychopharmacol, 23, 751761.Google Scholar
Dow-Edwards, D., and Izenwasser, S. (2012). Pretreatment with Delta9-tetrahydrocannabinol (THC) increases cocaine-stimulated activity in adolescent but not adult male rats. Pharmacol Biochem Behav, 100, 587591.CrossRefGoogle Scholar
Ellgren, M., Spano, S. M., and Hurd, Y. L. (2007). Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology, 32, 607615.Google Scholar
EMCDDA, European Monitoring Centre for Drugs and Drug Addiction (2020). European Drug Report 2020: Trends and Developments. Luxembourg: Publications Office of the European Union.Google Scholar
Flores, Á., Maldonado, R., and Berrendero, F. (2020). THC exposure during adolescence does not modify nicotine reinforcing effects and relapse in adult male mice. Psychopharmacology, 237, 801809.Google Scholar
Friedman, A. L., Meurice, C., and Jutkiewicz, E. M. (2019). Effects of adolescent Δ9-tetrahydrocannabinol exposure on the behavioral effects of cocaine in adult Sprague–Dawley rats. Exp Clin Psychopharmacol, 27, 326337.Google Scholar
Gogtay, N., Giedd, J. N., Lusk, L., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA, 101, 81748179.CrossRefGoogle ScholarPubMed
Gomes, F. V., Guimarães, F. S., and Grace, A. A. (2014). Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol, 18, pyu018.Google Scholar
Hammond, C. J., Chaney, A., Hendrickson, B., et al. (2020). Cannabis use among U.S. adolescents in the era of marijuana legalization: A review of changing use patterns, comorbidity, and health correlates. Int Rev Psychiatry, 32, 221234.Google Scholar
Hasin, D. S. U. S. (2018). Epidemiology of cannabis use and associated problems. Neuropsychopharmacology, 43, 195212.Google Scholar
Higuera-Matas, A., Ucha, M., and Ambrosio, E. (2015). Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci Biobehav Rev, 55, 119146.CrossRefGoogle ScholarPubMed
Hiller-Sturmhöfel, S., and Spear, L. P. (2018). Binge drinking’s effects on the developing brain-animal models. Alcohol Res, 39, 7786.Google Scholar
Jacobs-Brichford, E., Manson, K. F., and Roitman, J. D. (2019). Effects of chronic cannabinoid exposure during adolescence on reward preference and mPFC activation in adulthood. Physiol Behav, 199, 395404.Google Scholar
Jouroukhin, Y., Zhu, X., Shevelkin, A. V., et al. (2019). Adolescent Δ9-tetrahydrocannabinol exposure and astrocyte-specific genetic vulnerability converge on nuclear factor-κB-cyclooxygenase-2 signaling to impair memory in adulthood. Biol Psychiatry, 85, 891903.Google Scholar
Kandel, D., and Kandel, E. (2015). The gateway hypothesis of substance abuse: Developmental, biological and societal perspectives. Acta Paediatr, 104, 130137.CrossRefGoogle ScholarPubMed
Kasten, C. R., Zhang, Y., Boehm, S. L. II. (2017). Acute and long-term effects of Δ9-tetrahydrocannabinol on object recognition and anxiety-like activity are age- and strain-dependent in mice. Pharmacol Biochem Behav, 163, 919.Google Scholar
Konrad, K., Firk, C., and Uhlhaas, P. J. (2013). Brain development during adolescence: Neuroscientific insights into this developmental period. Dtsch Arztebl Int, 110, 425431.Google Scholar
Lecca, D., Scifo, A., Pisanu, A., et al. (2020). Adolescent cannabis exposure increases heroin reinforcement in rats genetically vulnerable to addiction. Neuropharmacology, 166, 107974.Google Scholar
Levine, A., Clemenza, K., Rynn, M., et al. (2017). Evidence for the risks and consequences of adolescent cannabis exposure. J Am Acad Child Adolesc Psychiatry, 56, 214225.CrossRefGoogle ScholarPubMed
Lopez-Rodriguez, A. B., Llorente-Berzal, A., Garcia-Segura, L. M., et al. (2014). Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats. Br J Pharmacol, 171, 14351447.Google Scholar
Melis, M., Frau, R., Kalivas, P. W., et al. (2017). New vistas on cannabis use disorder. Neuropharmacology, 124, 6272.CrossRefGoogle ScholarPubMed
Miller, M. L., Chadwick, B., Dickstein, D. L., et al. (2019). Adolescent exposure to Δ9-tetrahydrocannabinol alters the transcriptional trajectory and dendritic architecture of prefrontal pyramidal neurons. Mol Psychiatry, 24, 588600.Google Scholar
Molla, H. M., and Tseng, K. Y. (2020). Neural substrates underlying the negative impact of cannabinoid exposure during adolescence. Pharmacol Biochem Behav, 195, 172965.CrossRefGoogle ScholarPubMed
Murphy, M., Mills, S., Winstone, J., et al. (2017). Chronic adolescent Δ9-tetrahydrocannabinol treatment of male mice leads to long-term cognitive and behavioral dysfunction, which are prevented by concurrent cannabidiol treatment. Cannabis Cannabinoid Res, 2, 235246.Google Scholar
Nelson, N. G., Law, W. X., Weingarten, M. J., et al. (2019). Combined ∆9-tetrahydrocannabinol and moderate alcohol administration: Effects on ingestive behaviors in adolescent male rats. Psychopharmacology, 236, 671684.CrossRefGoogle ScholarPubMed
Nguyen, J. D., Creehan, K. M., Kerr, T. M., et al. (2020). Lasting effects of repeated ∆9-tetrahydrocannabinol vapour inhalation during adolescence in male and female rats. Br J Pharmacol, 177, 188203.Google Scholar
Prini, P., Penna, F., Sciuccati, E., et al. (2017). Chronic Δ⁸-THC exposure differently affects histone modifications in the adolescent and adult rat brain. Int J Mol Sci, 18, 2094.CrossRefGoogle ScholarPubMed
Prini, P., Rusconi, F., Zamberletti, E., et al. (2018). Adolescent THC exposure in female rats leads to cognitive deficits through a mechanism involving chromatin modifications in the prefrontal cortex. J Psychiatry Neurosci, 43, 87101.Google Scholar
Prini, P., Zamberletti, E., Manenti, C., et al. (2020). Neurobiological mechanisms underlying cannabis-induced memory impairment. Eur Neuropsychopharmacol, 36, 181190.Google Scholar
Pushkin, A. N., Eugene, A. J., Lallai, V., et al. (2019). Cannabinoid and nicotine exposure during adolescence induces sex-specific effects on anxiety- and reward-related behaviors during adulthood. PLoS ONE, 14, e0211346.CrossRefGoogle ScholarPubMed
Renard, J., Rushlow, W. J., Laviolette, S. R. (2016). What can rats tell us about adolescent cannabis exposure? Insights from preclinical research. Can J Psychiatry, 61, 328334.Google Scholar
Renard, J., Rushlow, W. J., Laviolette, S. R. (2018). Effects of adolescent THC exposure on the prefrontal GABAergic system: Implications for schizophrenia-related psychopathology. Front Psychiatry, 9, 281.CrossRefGoogle ScholarPubMed
Rodríguez, G., Neugebauer, N. M., Yao, K. L., et al. (2017). Δ9-tetrahydrocannabinol (Δ9-THC) administration after neonatal exposure to phencyclidine potentiates schizophrenia-related behavioral phenotypes in mice. Pharmacol Biochem Behav, 159, 611.Google Scholar
Rubino, T., and Parolaro, D. (2016). The impact of exposure to cannabinoids in adolescence: Insights from animal models. Biol Psychiatry, 79, 578585.CrossRefGoogle ScholarPubMed
Rubino, T., Prini, P., Piscitelli, F., et al. (2015). Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol Dis, 73, 6069.Google Scholar
Saravia, R., Ten-Blanco, M., Julià-Hernández, M., et al. (2019). Concomitant THC and stress adolescent exposure induces impaired fear extinction and related neurobiological changes in adulthood. Neuropharmacology, 144, 345357.Google Scholar
Silva, L., Black, R., Michaelides, M., et al. (2016). Sex and age specific effects of delta-9-tetrahydrocannabinol during the periadolescent period in the rat: The unique susceptibility of the prepubescent animal. Neurotoxicol Teratol, 58, 88100.CrossRefGoogle ScholarPubMed
Simone, J. J., Baumbach, J. L., and McCormick, C. M. (2018). Effects of CB1 receptor antagonism and stress exposures in adolescence on socioemotional behaviours, neuroendocrine stress responses, and expression of relevant proteins in the hippocampus and prefrontal cortex in rats. Neuropharmacology, 128, 433447.CrossRefGoogle Scholar
Stopponi, S., Soverchia, L., Ubaldi, M., et al. (2014). Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats. Eur Neuropsychopharmacol, 24, 10371045.CrossRefGoogle ScholarPubMed
Stringfield, S. J., and Torregrossa, M. M. (2021a). Disentangling the lasting effects of adolescent cannabinoid exposure. Prog Neuropsychopharmacol Biol Psychiatry, 104, 110067.CrossRefGoogle ScholarPubMed
Stringfield, S. J., and Torregrossa, M. M. (2021b). Intravenous self-administration of delta-9-THC in adolescent rats produces long-lasting alterations in behavior and receptor protein expression. Psychopharmacology, 238, 305319.CrossRefGoogle ScholarPubMed
UNODC, United Nation Office on Drugs and Crime (2020)World Drug Report 2020 (United Nations publication, Sales No. E.20.XI.6).Google Scholar
Zamberletti, E., and Rubino, T. (2021). Impact of endocannabinoid system manipulation on neurodevelopmental processes relevant to schizophrenia. Biol Psychiatry Cogn Neurosci Neuroimaging, 6, 616626.Google ScholarPubMed
Zamberletti, E., Beggiato, S., Steardo, L. Jr., et al. (2014). Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotype induced by adolescent delta-9-tetrahydrocannabinol exposure in rats. Neurobiol Dis, 63, 3547.CrossRefGoogle ScholarPubMed
Zamberletti, E., Gabaglio, M., Grilli, M., et al. (2016). Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats. Pharmacol Res, 111, 459470.CrossRefGoogle ScholarPubMed
Zamberletti, E., Gabaglio, M., Prini, P., et al. (2015). Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur Neuropsychopharmacol, 25, 24042415.Google Scholar

References

Abdullaev, Y., Posner, M. I., Nunnally, R., et al. (2010). Functional MRI evidence for inefficient attentional control in adolescent chronic cannabis abuse. Behav Brain Res, 215, 4557.Google Scholar
Albaugh, M. D., Ottino-Gonzalez, J., Sidwell, A., et al. (2021). Association of cannabis use during adolescence with neurodevelopment. JAMA Psychiatry, 78, 111.Google Scholar
Ashtari, M., Avants, B., Cyckowski, L., et al. (2011). Medial temporal structures and memory functions in adolescents with heavy cannabis use. J Psychiatr Res, 45, 10551066.Google Scholar
Baedke, J. (2013). The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Stud Hist Philos Biol Biomed Sci, 44, 756773.Google Scholar
Baggio, S., Deline, S., Studer, J., et al. (2014). Routes of administration of cannabis used for nonmedical purposes and associations with patterns of drug use. J Adolesc Health, 54, 235240.Google Scholar
Bara, A., Ferland, J. N., Rompala, G., et al. (2021). Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci, 22, 423438.Google Scholar
Behan, B., Connolly, C. G., Datwani, S., et al. (2014). Response inhibition and elevated parietal-cerebellar correlations in chronic adolescent cannabis users. Neuropharmacology, 84, 131137.CrossRefGoogle ScholarPubMed
Berghuis, P., Rajnicek, A. M., Morozov, Y. M., et al. (2007). Hardwiring the brain: Endocannabinoids shape neuronal connectivity. Science, 316, 12121216.Google Scholar
Calakos, K. C., Bhatt, S., Foster, D. W., et al. (2017). Mechanisms underlying sex differences in cannabis use. Curr Addict Rep, 4, 439453.Google Scholar
Chadwick, B., Miller, M. L., and Hurd, Y. L. (2013). Cannabis use during adolescent development: Susceptibility to psychiatric illness. Front Psychiatry, 4, 129.Google Scholar
Choo, E. K., Benz, M., Zaller, N., et al. (2014). The impact of state medical marijuana legislation on adolescent marijuana use. J Adolesc Health, 55, 160166.Google Scholar
Churchwell, J. C., Lopez-Larson, M., and Yurgelun-Todd, D. A. (2010). Altered frontal cortical volume and decision making in adolescent cannabis users. Front Psychol, 1, 225.CrossRefGoogle ScholarPubMed
De Felice, M., Renard, J., Hudson, R., et al. (2021). L-Theanine prevents long-term affective and cognitive side effects of adolescent delta-9-tetrahydrocannabinol exposure and blocks associated molecular and neuronal abnormalities in the mesocorticolimbic circuitry. J Neurosci, 41, 739750.CrossRefGoogle ScholarPubMed
Di Forti, M., Sallis, H., Allegri, F., et al. (2014). Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users. Schizophr Bull, 40, 15091517.CrossRefGoogle ScholarPubMed
Ellgren, M., Artmann, A., Tkalych, O., et al. (2008). Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects. Eur Neuropsychopharmacol, 18, 826834.CrossRefGoogle ScholarPubMed
Epstein, K. A., and Kumra, S. (2015). Altered cortical maturation in adolescent cannabis users with and without schizophrenia. Schizophr Res, 162, 143152.Google Scholar
Freeman, T. P., and Winstock, A. R. (2015). Examining the profile of high-potency cannabis and its association with severity of cannabis dependence. Psychol Med, 45, 31813189.Google Scholar
Gilman, J. M., Kuster, J. K., Lee, S., et al. (2014). Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J Neurosci, 34, 55295538.Google Scholar
Hasin, D. S., Saha, T. D., Kerridge, B. T., et al. (2015). Prevalence of marijuana use disorders in the United States between 2001–2002 and 2012–2013. JAMA Psychiatry, 72, 12351242.Google Scholar
Hasin, D. S., Shmulewitz, D., and Sarvet, A. L. (2019). Time trends in US cannabis use and cannabis use disorders overall and by sociodemographic subgroups: A narrative review and new findings. Am J Drug Alcohol Abuse, 45, 623643.Google Scholar
Heng, L., Beverley, J. A., Steiner, H., et al. (2011). Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas. Synapse, 65, 278286.Google Scholar
Hines, L. A., Freeman, T. P., Gage, S. H., et al. (2020). Association of high-potency cannabis use with mental health and substance use in adolescence. JAMA Psychiatry, 77, 10441051.CrossRefGoogle ScholarPubMed
Hosseini, S., and Oremus, M. (2019). The effect of age of initiation of cannabis use on psychosis, depression, and anxiety among youth under 25 years. Can J Psychiatry, 64, 304312.Google Scholar
Houck, J. M., Bryan, A. D., and Feldstein Ewing, S. W. (2013). Functional connectivity and cannabis use in high-risk adolescents. Am J Drug Alcohol Abuse, 39, 414423.Google Scholar
Johnston, L. D., Miech, R. A., O’Malley, P. M., et al. (2021). Monitoring the Future National Survey Results on Drug Use 1975–2020: Overview, Key Findings on Adolescent Drug Use. Ann Arbor: Institute for Social Research, University of Michigan.Google Scholar
Knapp, A. A., Lee, D. C., Borodovsky, J. T., et al. (2019). Emerging trends in cannabis administration among adolescent cannabis users. J Adolesc Health, 64, 487493.Google Scholar
Kumra, S., Robinson, P., Tambyraja, R., et al. (2012). Parietal lobe volume deficits in adolescents with schizophrenia and adolescents with cannabis use disorders. J Am Acad Child Adolesc Psychiatry, 51, 171180.Google Scholar
Leos-Toro, C., Rynard, V., Murnaghan, D., et al. (2019). Trends in cannabis use over time among Canadian youth: 2004–2014. Prev Med, 118, 3037.CrossRefGoogle ScholarPubMed
Lichenstein, S. D., Musselman, S., Shaw, D. S., et al. (2017). Nucleus accumbens functional connectivity at age 20 is associated with trajectory of adolescent cannabis use and predicts psychosocial functioning in young adulthood. Addiction, 112, 19611970.Google Scholar
Lopez-Larson, M. P., Bogorodzki, P., Rogowska, J., et al. (2011). Altered prefrontal and insular cortical thickness in adolescent marijuana users. Behav Brain Res, 220, 164–72.Google Scholar
Maccarrone, M., Guzman, M., Mackie, K., et al. (2014). Programming of neural cells by (endo)cannabinoids: From physiological rules to emerging therapies. Nat Rev Neurosci, 15, 786801.Google Scholar
McLaughlin, R. J. (2018). Toward a translationally relevant preclinical model of cannabis use. Neuropsychopharmacology, 43, 213.Google Scholar
Mechoulam, R., Hanus, L. O., Pertwee, R., et al. (2014). Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci, 15, 757764.Google Scholar
Miladinovic, T., Manwell, L. A., Raaphorst, E., et al. (2020). Effects of chronic nicotine exposure on Delta(9)-tetrahydrocannabinol-induced locomotor activity and neural activation in male and female adolescent and adult rats. Pharmacol Biochem Behav, 194, 172931.Google Scholar
Miller, M. L., Chadwick, B., Dickstein, D. L., et al. (2019). Adolescent exposure to Delta(9)-tetrahydrocannabinol alters the transcriptional trajectory and dendritic architecture of prefrontal pyramidal neurons. Mol Psychiatry, 24, 588600.Google Scholar
Moore, C. F., Davis, C. M., Harvey, E. L., et al. (2021). Appetitive, antinociceptive, and hypothermic effects of vaped and injected Delta-9-tetrahydrocannabinol (THC) in rats: Exposure and dose-effect comparisons by strain and sex. Pharmacol Biochem Behav, 202, 173116.Google Scholar
Orr, C., Morioka, R., Behan, B., et al. (2013). Altered resting-state connectivity in adolescent cannabis users. Am J Drug Alcohol Abuse, 39, 372381.Google Scholar
Orr, C., Spechler, P., Cao, Z., et al. (2019). Grey matter volume differences associated with extremely low levels of cannabis use in adolescence. J Neurosci, 39, 18171827.Google Scholar
Padula, C. B., Schweinsburg, A. D., and Tapert, S. F. (2007). Spatial working memory performance and fMRI activation interaction in abstinent adolescent marijuana users. Psychol Addict Behav, 21, 478487.Google Scholar
Peters, E. N., Bae, D., Barrington-Trimis, J. L., et al. (2018). Prevalence and sociodemographic correlates of adolescent use and polyuse of combustible, vaporized, and edible cannabis products. JAMA Netw Open, 1, e182765.Google Scholar
Pope, H. G., Gruber, A. J., Hudson, J. I., et al. (2003). Early-onset cannabis use and cognitive deficits: What is the nature of the association? Drug Alcohol Depend, 69, 303310.Google Scholar
Rais, M., Van Haren, N. E., Cahn, W., et al. (2010). Cannabis use and progressive cortical thickness loss in areas rich in CB1 receptors during the first five years of schizophrenia. Eur Neuropsychopharmacol, 20, 855865.Google Scholar
Renard, J., Rushlow, W. J., and Laviolette, S. R. (2016). What can rats tell us about adolescent cannabis exposure? Insights from preclinical research. Can J Psychiatry, 61, 328334.CrossRefGoogle ScholarPubMed
Renard, J., Szkudlarek, H. J., Kramar, C. P., et al. (2017). Adolescent THC exposure causes enduring prefrontal cortical disruption of GABAergic inhibition and dysregulation of sub-cortical dopamine function. Sci Rep, 7, 11420.CrossRefGoogle ScholarPubMed
Rodriguez de Fonseca, F., Ramos, J. A., Bonnin, A., et al. (1993). Presence of cannabinoid binding sites in the brain from early postnatal ages. Neuroreport, 4, 135138.Google Scholar
Rubino, T., and Parolaro, D. (2008). Long lasting consequences of cannabis exposure in adolescence. Mol Cell Endocrinol, 286, S108–113.Google Scholar
Ruiz, C. M., Torrens, A., Castillo, E., et al. (2021a). Pharmacokinetic, behavioral, and brain activity effects of Delta(9)-tetrahydrocannabinol in adolescent male and female rats. Neuropsychopharmacology, 46, 959969.Google Scholar
Ruiz, C. M., Torrens, A., Lallai, V., et al. (2021b). Pharmacokinetic and pharmacodynamic properties of aerosolized (‘vaped’) THC in adolescent male and female rats. Psychopharmacology (Berl), 238, 35953605.Google Scholar
Saravia, R., Ten-Blanco, M., Julia-Hernandez, M., et al. (2019). Concomitant THC and stress adolescent exposure induces impaired fear extinction and related neurobiological changes in adulthood. Neuropharmacology, 144, 345357.Google Scholar
Schulenberg, J. E., Merline, A. C., Johnston, L. D., et al. (2005). Trajectories of marijuana use during the transition to adulthood: The big picture based on national panel data. J Drug Issues, 35, 255279.CrossRefGoogle ScholarPubMed
Schweinsburg, A. D., Schweinsburg, B. C., Medina, K. L., et al. (2010). The influence of recency of use on fMRI response during spatial working memory in adolescent marijuana users. J Psychoactive Drugs, 42, 401412.Google Scholar
Scott, J. C., Rosen, A. F. G., Moore, T. M., et al. (2019). Cannabis use in youth is associated with limited alterations in brain structure. Neuropsychopharmacology, 44, 13621369.CrossRefGoogle ScholarPubMed
Spechler, P. A., Orr, C. A., Chaarani, B., et al. (2015). Cannabis use in early adolescence: Evidence of amygdala hypersensitivity to signals of threat. Dev Cogn Neurosci, 16, 6370.Google Scholar
Tapert, S. F., Schweinsburg, A. D., Drummond, S. P., et al. (2007) Functional MRI of inhibitory processing in abstinent adolescent marijuana users. Psychopharmacology (Berl), 194, 173183.Google Scholar
Taylor, M., Collin, S. M., Munafo, M. R., et al. (2017). Patterns of cannabis use during adolescence and their association with harmful substance use behaviour: Findings from a UK birth cohort. J Epidemiol Community Health, 71, 764770.Google Scholar
Tervo-Clemmens, B., Simmonds, D., Calabro, F. J., et al. (2018). Early cannabis use and neurocognitive risk: A prospective functional neuroimaging study. Biol Psychiatry Cogn Neurosci Neuroimaging, 3, 713725.Google Scholar
Van Speybroeck, L. (2002). From epigenesis to epigenetics: The case of C. H. Waddington. Ann NY Acad Sci, 981, 6181.Google Scholar
Weiland, B. J., Thayer, R. E., Depue, B. E., et al. (2015). Daily marijuana use is not associated with brain morphometric measures in adolescents or adults. J Neurosci, 35, 15051512.Google Scholar
Yu, T., Jia, T., Zhu, L., et al. (2020). Cannabis-associated psychotic-like experiences are mediated by developmental changes in the parahippocampal gyrus. J Am Acad Child Adolesc Psychiatry, 59, 642649.Google Scholar

References

Adam, K. C. S., Doss, M. K., Pabon, E., et al. (2020). Δ9-tetrahydrocannabinol (THC) impairs visual working memory performance: A randomized crossover trial. Neuropsychopharmacology, 45, 18071816.Google Scholar
Alcorn, J. L. 3rd, Marks, K. R., Stoops, W. W., et al. (2019). Attentional bias to cannabis cues in cannabis users but not cocaine users. Addict Behav, 88, 129136.Google Scholar
Ballard, M. E., Gallo, D. A., and De Wit, H. (2012). Psychoactive drugs and false memory: Comparison of dextroamphetamine and δ-9-tetrahydrocannabinol on false recognition. Psychopharmacology (Berl), 219, 1524.Google Scholar
Barfi, E., Tehrani, A. M., Mohammadpanah, M., et al. (2021). The role of tetrahydrocannabinol in inducing disrupted signaling cascades, hippocampal atrophy and memory defects. J Chem Neuroanat, 113, 101943.Google Scholar
Batalla, A., Crippa, J. A., Busatto, G. F., et al. (2014). Neuroimaging studies of acute effects of THC and CBD in humans and animals: A systematic review. Curr Pharm Des, 20, 21682185.Google Scholar
Battistella, G., Fornari, E., Annoni, J.-M., et al. (2014). Long-term effects of cannabis on brain structure. Neuropsychopharmacology, 39, 20412048.Google Scholar
Bedi, G., Cooper, Z. D., & Haney, M. (2013). Subjective, cognitive and cardiovascular dose–effect profile of nabilone and dronabinol in marijuana smokers. Addict Biol, 18, 872881.Google Scholar
Bhattacharyya, S., Atakan, Z., Martin-Santos, R., et al. (2015). Impairment of inhibitory control processing related to acute psychotomimetic effects of cannabis. Eur Neuropsychopharmacol, 25, 2637.Google Scholar
Bhattacharyya, S., Egerton, A., Kim, E., et al. (2017). Acute induction of anxiety in humans by delta-9-tetrahydrocannabinol related to amygdalar cannabinoid-1 (CB1) receptors. Sci Rep, 7, 15025.CrossRefGoogle ScholarPubMed
Blest-Hopley, G., O’Neill, A., Wilson, R., et al. (2021). Disrupted parahippocampal and midbrain function underlie slower verbal learning in adolescent-onset regular cannabis use. Psychopharmacology (Berl), 238, 13151331.Google Scholar
Bloomfield, M. A. P., Green, S. F., Hindocha, C., et al. (2020). The effects of acute cannabidiol on cerebral blood flow and its relationship to memory: An arterial spin labelling magnetic resonance imaging study. J Psychopharmacol, 34, 981989.Google Scholar
Bonn-Miller, M. O., Elsohly, M. A., Loflin, M. J. E., et al. (2018). Cannabis and cannabinoid drug development: Evaluating botanical versus single molecule approaches. Int Rev Psychiatry, 30, 277284.Google Scholar
Borgan, F., Beck, K., Butler, E., et al. (2019). The effects of cannabinoid 1 receptor compounds on memory: A meta-analysis and systematic review across species. Psychopharmacology (Berl), 236, 32573270.Google Scholar
Bosker, W. M., Karschner, E. L., Lee, D., et al. (2013). Psychomotor function in chronic daily cannabis smokers during sustained abstinence. PLoS ONE, 8, e53127.Google Scholar
Bossong, M. G., Jansma, J. M., Van Hell, H. H., et al. (2012). Effects of δ9-tetrahydrocannabinol on human working memory function. Biol Psychiatry, 71, 693699.Google Scholar
Bossong, M. G., Mehta, M. A., Van Berckel, B. N., et al. (2015). Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): Selectivity to limbic striatum. Psychopharmacology (Berl), 232, 27232729.Google Scholar
Bourque, J., and Potvin, S. (2021). Cannabis and cognitive functioning: From acute to residual effects, from randomized controlled trials to prospective designs. Front Psychiatry, 12, 919.Google Scholar
Broyd, S.J., Greenwood, L.-M., Van Hell, H. H., et al. (2016a). Mismatch negativity and P50 sensory gating in abstinent former cannabis users. Neural Plast, 2016, 6526437.Google Scholar
Broyd, S.J., Van Hell, H. H., Yucel, M., et al. (2016b). Acute and chronic effects of cannabinoids on human cognition: A systematic review. Biol Psychiatry, 79, 557567.Google Scholar
Castellanos-Ryan, N., Pingault, J.-B., Parent, S., et al. (2017). Adolescent cannabis use, change in neurocognitive function, and high-school graduation: A longitudinal study from early adolescence to young adulthood. Dev Psychopathol, 29, 12531266.Google Scholar
Ceccarini, J., Kuepper, R., Kemels, D., et al. (2015). [18f]mk-9470 pet measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict Biol, 20, 357367.Google Scholar
Cengel, H. Y., Bozkurt, M., Evren, C., et al. (2018). Evaluation of cognitive functions in individuals with synthetic cannabinoid use disorder and comparison to individuals with cannabis use disorder. Psychiatry Res, 262, 4654.Google Scholar
Chandra, S., Radwan, M. M., Majumdar, C. G., et al. (2019). New trends in cannabis potency in USA and Europe during the last decade (2008–2017). Eur Arch Psychiatry Clin Neurosci, 269, 515.Google Scholar
Chye, Y., Kirkham, R., Lorenzetti, V., et al. (2021). Cannabis, cannabinoids, and brain morphology: A review of the evidence. Biol Psychiatry Cogn Neurosci Neuroimaging, 6, 627635.Google Scholar
Chye, Y., Lorenzetti, V., Suo, C., et al. (2019). Alteration to hippocampal volume and shape confined to cannabis dependence: A multi-site study. Addict Biol, 24, 822834.Google Scholar
Colizzi, M., and Bhattacharyya, S. (2017). Does cannabis composition matter? Differential effects of delta-9-tetrahydrocannabinol and cannabidiol on human cognition. Curr Addic Rep, 4, 6274.Google Scholar
Colizzi, M., and Bhattacharyya, S. (2018). Cannabis use and the development of tolerance: A systematic review of human evidence. Neurosci Biobehav Rev, 93, 125.Google Scholar
Colizzi, M., Fazio, L., Ferranti, L., et al. (2015). Functional genetic variation of the cannabinoid receptor 1 and cannabis use interact on prefrontal connectivity and related working memory behavior. Neuropsychopharmacology, 40, 640649.Google Scholar
Colizzi, M., McGuire, P., Giampietro, V., et al. (2018). Previous cannabis exposure modulates the acute effects of delta-9-tetrahydrocannabinol on attentional salience and fear processing. Exp Clin Psychopharmacol, 26, 582598.Google Scholar
Colizzi, M., Weltens, N., Mcguire, P., et al. (2020). Delta-9-tetrahydrocannabinol increases striatal glutamate levels in healthy individuals: Implications for psychosis. Mol Psychiatry, 25, 32313240.Google Scholar
Cousijn, J., Goudriaan, A. E., Ridderinkhof, K. R., et al. (2013). Neural responses associated with cue-reactivity in frequent cannabis users. Addict Biol, 18, 570580.Google Scholar
Cousijn, J., Wiers, R. W., Ridderinkhof, K. R., et al. (2014). Effect of baseline cannabis use and working-memory network function on changes in cannabis use in heavy cannabis users: A prospective FMRI study. Hum Brain Mapp, 35, 24702482.Google Scholar
Crane, N. A., Schuster, R. M., and Gonzalez, R. (2013). Preliminary evidence for a sex-specific relationship between amount of cannabis use and neurocognitive performance in young adult cannabis users. J Int Neuropsychol Soc, 19, 10091015.Google Scholar
Curran, T., Devillez, H., Yorkwilliams, S. L., et al. (2020). Acute effects of naturalistic THC vs. CBD use on recognition memory: A preliminary study. J Cannabis Res, 2, 28.CrossRefGoogle ScholarPubMed
Cuttler, C., Mclaughlin, R. J., and Graf, P. (2012). Mechanisms underlying the link between cannabis use and prospective memory. PLoS ONE, 7, e36820.Google Scholar
D’Souza, D. C., Cortes-Briones, J. A., Ranganathan, M., et al. (2016). Rapid changes in CB1 receptor availability in cannabis dependent males after abstinence from cannabis. Biol Psychiatry Cogn Neurosci Neuroimaging, 1, 6067.Google Scholar
Day, A. M., Metrik, J., Spillane, N. S., et al. (2013). Working memory and impulsivity predict marijuana-related problems among frequent users. Drug Alcohol Depend, 131, 171174.CrossRefGoogle ScholarPubMed
Desrosiers, N. A., Himes, S. K., Scheidweiler, K. B., et al. (2014). Phase I and II cannabinoid disposition in blood and plasma of occasional and frequent smokers following controlled smoked cannabis. Clin Chem, 60, 631643.Google Scholar
Dinis-Oliveira, R. J. (2016). Metabolomics of δ9-tetrahydrocannabinol: Implications in toxicity. Drug Metab Rev, 48, 8087.Google Scholar
Doss, M. K., Weafer, J., Gallo, D. A., et al. (2018). Δ9-tetrahydrocannabinol at retrieval drives false recollection of neutral and emotional memories. Biol Psychiatry, 84, 743750.Google Scholar
Duperrouzel, J. C., Hawes, S. W., Lopez-Quintero, C., et al. (2019). Adolescent cannabis use and its associations with decision-making and episodic memory: Preliminary results from a longitudinal study. Neuropsychology, 33, 701710.Google Scholar
ElSohly, M. A., Mehmedic, Z., Foster, S., et al. (2016). Changes in cannabis potency over the last 2 decades (1995–2014): Analysis of current data in the united states. Biol Psychiatry, 79, 613619.Google Scholar
Englund, A., Atakan, Z., Kralj, A., et al. (2015). The effect of five day dosing with THCV on THC-induced cognitive, psychological and physiological effects in healthy male human volunteers: A placebo-controlled, double-blind, crossover pilot trial. J Psychopharmacol, 30, 140151.Google Scholar
Englund, A., Freeman, T. P., Murray, R. M., et al. (2017). Can we make cannabis safer? Lancet Psychiatry, 4, 643648.Google Scholar
Englund, A., Morrison, P. D., Nottage, J., et al. (2013). Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol (Oxford), 27, 1927.Google Scholar
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). (2015). European Drug Report 2015: Trends and Developments. Luxembourg: Publications Office of the European Union.Google Scholar
Fan, N., Yang, H., Zhang, J., et al. (2010). Reduced expression of glutamate receptors and phosphorylation of creb are responsible for in vivo δ9-THC exposure-impaired hippocampal synaptic plasticity. J Neurochem, 112, 691702.Google Scholar
Filbey, F. M., Aslan, S., Calhoun, V. D., et al. (2014). Long-term effects of marijuana use on the brain. PNAS, 111, 16913.Google Scholar
Fishbein, M., Gov, S., Assaf, F., et al. (2012). Long-term behavioral and biochemical effects of an ultra-low dose of δ9-tetrahydrocannabinol (THC): Neuroprotection and erk signaling. Exp Brain Res, 221, 437448.Google Scholar
Fontes, M. A., Bolla, K. I., Cunha, P. J., et al. (2018). Cannabis use before age 15 and subsequent executive functioning. Br J Psychiatry, 198, 442447.Google Scholar
Freeman, A. M., Petrilli, K., Lees, R., et al. (2019). How does cannabidiol (CBD) influence the acute effects of delta-9-tetrahydrocannabinol (THC) in humans? A systematic review. Neurosci Biobehav Rev, 107, 696712.Google Scholar
Freeman, T. P., Craft, S., Wilson, J., et al. (2021). Changes in delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) concentrations in cannabis over time: Systematic review and meta-analysis. Addiction, 116, 10001010.Google Scholar
Freeman, T. P., Hindocha, C., Green, S. F., et al. (2019). Medicinal use of cannabis based products and cannabinoids. BMJ, 365, l1141.Google Scholar
Freeman, T. P., Morgan, C. J., Hindocha, C., et al. (2014). Just say ‘know’: How do cannabinoid concentrations influence users’ estimates of cannabis potency and the amount they roll in joints? Addiction, 109, 16861694.Google Scholar
Fried, P. A., Watkinson, B., and Gray, R. (2005). Neurocognitive consequences of marihuana: A comparison with pre-drug performance. Neurotoxicol Teratol, 27, 231239.Google Scholar
Frolli, A., Ricci, M. C., Cavallaro, A., et al. (2021). Cognitive development and cannabis use in adolescents. Behav Sci (Basel), 11, 37.Google Scholar
Gajewski, P. D., Hanisch, E., Falkenstein, M., et al. (2018). What does the N-back task measure as we get older? Relations between working-memory measures and other cognitive functions across the lifespan. Front Psychol, 9, 2208.Google Scholar
Ganzer, F., Bröning, S., Kraft, S., et al. (2016). Weighing the evidence: A systematic review on long-term neurocognitive effects of cannabis use in abstinent adolescents and adults. Neuropsychol Rev, 26, 186222.Google Scholar
Gessa, G. L., Casu, M. A., Carta, G., et al. (1998). Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by sr 141716a. Eur J Pharmacol, 355, 119124.Google Scholar
van de Giessen, E., Weinstein, J. J., Cassidy, C. M., et al. (2017). Deficits in striatal dopamine release in cannabis dependence. Mol Psychiatry, 22, 6875.Google Scholar
Gonzalez, R., Schuster, R. M., Mermelstein, R. J., et al. (2012). Performance of young adult cannabis users on neurocognitive measures of impulsive behavior and their relationship to symptoms of cannabis use disorders. J Clin Exp Neuropsychol, 34, 962976.Google Scholar
Gorey, C., Kuhns, L., Smaragdi, E., et al. (2019). Age-related differences in the impact of cannabis use on the brain and cognition: A systematic review. Eur Arch Psychiatry Clin Neurosci, 269, 3758.Google Scholar
Government of Canada (GOC). (2019). Canadian tobacco, alcohol and drugs survey (CTADS): Summary of results for 2017. Available at: www.canada.ca/en/health-canada/services/canadian-tobacco-alcohol-drugs-survey/2017-summary.html (Last accessed 9 April 2021).Google Scholar
Grant, J. E., Chamberlain, S. R., Schreiber, L., et al. (2012). Neuropsychological deficits associated with cannabis use in young adults. Drug Alcohol Depend, 121, 159162.Google Scholar
Griffith-Lendering, M. F. H., Huijbregts, S. C. J., Vollebergh, W. A. M., et al. (2012). Motivational and cognitive inhibitory control in recreational cannabis users. J Clin Exp Neuropsychol, 34, 688697.Google Scholar
Gunasekera, B., Diederen, K., and Bhattacharyya, S. (2022). Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl), 239, 11571177.Google Scholar
Hall, W., Hoch, E., and Lorenzetti, V. (2019). Cannabis use and mental health: Risks and benefits. Eur Arch Psychiatry Clin Neurosci, 269, 13.Google Scholar
Herzig, D. A., Nutt, D. J., and Mohr, C. (2014). Alcohol and relatively pure cannabis use, but not schizotypy, are associated with cognitive attenuations. Front Psychiatry, 5, 133.Google Scholar
Hill, S. Y., Sharma, V., and Jones, B. L. (2016). Lifetime use of cannabis from longitudinal assessments, cannabinoid receptor (CNR1) variation, and reduced volume of the right anterior cingulate. Psychiatry Res Neuroimaging, 255, 2434.Google Scholar
Hirvonen, J. (2015). In vivo imaging of the cannabinoid CB1 receptor with positron emission tomography. Clin Pharmacol Ther, 97, 565567.Google Scholar
Hirvonen, J., Goodwin, R. S., Li, C. T., et al. (2012). Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol Psychiatry, 17, 642649.Google Scholar
Hooper, S. R., Woolley, D., and De Bellis, M. D. (2014). Intellectual, neurocognitive, and academic achievement in abstinent adolescents with cannabis use disorder. Psychopharmacology (Berl), 231, 14671477.Google Scholar
Hughes, A., Lipari, R. N., and Williams, M. R. (2016). Marijuana use and perceived risk of harm from marijuana use varies within and across states. In: The CBHSQ Report. Rockville, MD: Substance Abuse and Mental Health Services Administration (US). Available at: www.ncbi.nlm.nih.gov/books/NBK396156/. Last accessed 30 October 2022.Google Scholar
Hurd, Y. L., Manzoni, O. J., Pletnikov, M. V., et al. (2019). Cannabis and the developing brain: Insights into its long-lasting effects. J Neurosci, 39, 8250.Google Scholar
Jacobs, D. S., Kohut, S. J., Jiang, S., et al. (2016). Acute and chronic effects of cannabidiol on δ⁹-tetrahydrocannabinol (δ⁹-THC)-induced disruption in stop signal task performance. Exp Clin Psychopharmacol, 24, 320330.Google Scholar
Kaczkurkin, A. N., Raznahan, A., and Satterthwaite, T. D. (2019). Sex differences in the developing brain: Insights from multimodal neuroimaging. Neuropsychopharmacology, 44, 7185.Google Scholar
Khan, R., Naveed, S., Mian, N., et al. (2020). The therapeutic role of cannabidiol in mental health: A systematic review. J Cannabis Res, 2, 2.Google Scholar
Kloft, L., Otgaar, H., Blokland, A., et al. (2020). Cannabis increases susceptibility to false memory. PNAS, 117, 4585.Google Scholar
Koob, G. F. D., and Volkow, N. D. M. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry, 3, 760773.Google Scholar
Kroon, E., Kuhns, L., and Cousijn, J. (2021). The short-term and long-term effects of cannabis on cognition: Recent advances in the field. Curr Opin Psychol, 38, 4955.Google Scholar
Krzyzanowski, D. J., and Purdon, S. E. (2020). Duration of abstinence from cannabis is positively associated with verbal learning performance: A systematic review and meta-analysis. Neuropsychology, 34, 359372.Google Scholar
Larsen, B., and Luna, B. (2018). Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev, 94, 179195.Google Scholar
Lisdahl, K. M., and Price, J. S. (2012). Increased marijuana use and gender predict poorer cognitive functioning in adolescents and emerging adults. J Int Neuropsychol Soc, 18, 678688.Google Scholar
Lorenzetti, V., Chye, Y., Silva, P., et al. (2019). Does regular cannabis use affect neuroanatomy? An updated systematic review and meta-analysis of structural neuroimaging studies. Eur Arch Psychiatry Clin Neurosci, 269, 5971.Google Scholar
Lorenzetti, V., Chye, Y., Suo, C., et al. (2020a). Neuroanatomical alterations in people with high and low cannabis dependence. Aust NZ J Psychiatry, 54, 6875.Google Scholar
Lorenzetti, V., Hoch, E., and Hall, W. (2020b). Adolescent cannabis use, cognition, brain health and educational outcomes: A review of the evidence. Eur Neuropsychopharmacol, 36, 169180.Google Scholar
Lorenzetti, V., Takagi, M., Van Dalen, Y., et al. (2021). Investigating the residual effects of chronic cannabis use and abstinence on verbal and visuospatial learning. Front Psychiatry, 12, 663701.Google Scholar
Lovell, M. E., Akhurst, J., Padgett, C., et al. (2020). Cognitive outcomes associated with long-term, regular, recreational cannabis use in adults: A meta-analysis. Exp Clin Psychopharmacol, 28, 471494.Google Scholar
Lubman, D. I., Cheetham, A., and Yücel, M. (2015). Cannabis and adolescent brain development. Pharmacol Ther, 148, 116.Google Scholar
Ma, L., Steinberg, J. L., Bjork, J. M., et al. (2018). Fronto-striatal effective connectivity of working memory in adults with cannabis use disorder. Psychiatry Res Neuroimaging, 278, 2134.Google Scholar
Mason, N. L., Theunissen, E. L., Hutten, N. R. P. W., et al. (2021). Reduced responsiveness of the reward system is associated with tolerance to cannabis impairment in chronic users. Addict Biol, 26, e12870.Google Scholar
Matheson, J., and Le Foll, B. (2020). Cannabis legalization and acute harm from high potency cannabis products: A narrative review and recommendations for public health. Front Psychiatry, 11, 1017.Google Scholar
McCartney, D., Arkell, T. R., Irwin, C., et al. (2021). Determining the magnitude and duration of acute δ(9)-tetrahydrocannabinol (δ(9)-THC)-induced driving and cognitive impairment: A systematic and meta-analytic review. Neurosci Biobehav Rev, 126, 175193.Google Scholar
Medina, K. L., Hanson, K. L., Schweinsburg, A. D., et al. (2007). Neuropsychological functioning in adolescent marijuana users: Subtle deficits detectable after a month of abstinence. J Int Neuropsychol Soc, 13, 807820.Google Scholar
Meier, M. H., Caspi, A., Ambler, A., et al. (2012). Persistent cannabis users show neuropsychological decline from childhood to midlife. PNAS, 109, E2657E2664.Google Scholar
Metrik, J., Kahler, C. W., Reynolds, B., et al. (2012). Balanced placebo design with marijuana: Pharmacological and expectancy effects on impulsivity and risk taking. Psychopharmacology (Berl), 223, 489499.Google Scholar
Mizrahi, R., Watts, J. J., and Tseng, K. Y. (2017). Mechanisms contributing to cognitive deficits in cannabis users. Neuropharmacology, 124, 8488.Google Scholar
Moeller, S. J., Bederson, L., Alia-Klein, N., et al. (2016). Neuroscience of inhibition for addiction medicine: From prediction of initiation to prediction of relapse. Prog Brain Res, 223, 165188.Google Scholar
Moreno, M., Estevez, A. F., Zaldivar, F., et al. (2012). Impulsivity differences in recreational cannabis users and binge drinkers in a university population. Drug Alcohol Depend, 124, 355362.Google Scholar
Morgan, C. J. A., Freeman, T. P., Hindocha, C., et al. (2018). Individual and combined effects of acute delta-9-tetrahydrocannabinol and cannabidiol on psychotomimetic symptoms and memory function. Transl Psychiatry, 8, 181.Google Scholar
Morgan, C. J. A., Freeman, T. P., Schafer, G. L., et al. (2010). Cannabidiol attenuates the appetitive effects of δ9-tetrahydrocannabinol in humans smoking their chosen cannabis. Neuropsychopharmacology, 35, 18791885.Google Scholar
Morin, J.-F. G., Afzali, M. H., Bourque, J., et al. (2018). A population-based analysis of the relationship between substance use and adolescent cognitive development. Am J Psychiatry, 176, 98106.Google Scholar
Muetzel, R. L., Marjańska, M., Collins, P. F., et al. (2013). In vivo 1h magnetic resonance spectroscopy in young-adult daily marijuana users. Neuroimage Clin, 2, 581589.Google Scholar
Murray, R. M., Englund, A., Abi-Dargham, A., et al. (2017). Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology, 124, 89104.Google Scholar
Nader, D. A., and Sanchez, Z. M. (2018). Effects of regular cannabis use on neurocognition, brain structure, and function: A systematic review of findings in adults. Am J Drug Alcohol Abuse, 44, 418.Google Scholar
Niesink, R. J., and van Laar, M. W. (2013). Does cannabidiol protect against adverse psychological effects of THC? Front Psychiatry, 4, 130.Google Scholar
O’Neill, A., Bachi, B., and Bhattacharyya, S. (2020). Attentional bias towards cannabis cues in cannabis users: A systematic review and meta-analysis. Drug Alcohol Depend, 206, 107719.Google Scholar
Oomen, P. P., Van Hell, H. H., and Bossong, M. G. (2018). The acute effects of cannabis on human executive function. Behav Pharmacol, 29, 605616.Google Scholar
Ortega-Mora, I. E., Caballero-Sánchez, U., Román-López, T. V., et al. (2021). The alerting and orienting systems of attention are modified by cannabis dependence. J Int Neuropsychol Soc, 27, 520532.Google Scholar
Owens, M. M., Mcnally, S., Petker, T., et al. (2019). Urinary tetrahydrocannabinol is associated with poorer working memory performance and alterations in associated brain activity. Neuropsychopharmacology, 44, 613619.Google Scholar
Paige, K. J., and Colder, C. R. (2020). Long-term effects of early adolescent marijuana use on attentional and inhibitory control. J Stud Alcohol Drugs, 81, 164172.Google Scholar
Petker, T., Owens, M. M., Amlung, M. T., et al. (2019). Cannabis involvement and neuropsychological performance: Findings from the human connectome project. J Psychiatry Neurosci, 44, 414422.Google Scholar
Plitman, E., Nakajima, S., De La Fuente-Sandoval, C., et al. (2014). Glutamate-mediated excitotoxicity in schizophrenia: A review. Eur Neuropsychopharmacol, 24, 15911605.Google Scholar
Potter, D. J., Hammond, K., Tuffnell, S., et al. (2018). Potency of δ(9)-tetrahydrocannabinol and other cannabinoids in cannabis in England in 2016: Implications for public health and pharmacology. Drug Testing Anal, 10, 628635.Google Scholar
Prescot, A. P., Renshaw, P. F., and Yurgelun-Todd, D. A. (2013). γ-amino butyric acid and glutamate abnormalities in adolescent chronic marijuana smokers. Drug Alcohol Depend, 129, 232239.Google Scholar
Prini, P., Zamberletti, E., Manenti, C., et al. (2020). Neurobiological mechanisms underlying cannabis-induced memory impairment. Eur Neuropsychopharmacol, 36, 181190.Google Scholar
Ramaekers, J. G., Mason, N. L., Kloft, L., et al. (2021). The why behind the high: Determinants of neurocognition during acute cannabis exposure. Nat Rev Neurosci, 22, 439454.Google Scholar
Ramaekers, J. G., Mason, N. L., and Theunissen, E. L. (2020). Blunted highs: Pharmacodynamic and behavioral models of cannabis tolerance. Eur Neuropsychopharmacol, 36, 191205.Google Scholar
Ramaekers, J. G., Van Wel, J. H., Spronk, D. B., et al. (2016). Cannabis and tolerance: Acute drug impairment as a function of cannabis use history. Sci Rep, 6, 2684326843.Google Scholar
Ranganathan, M., Radhakrishnan, R., Addy, P. H., et al. (2017). Tetrahydrocannabinol (THC) impairs encoding but not retrieval of verbal information. Prog Neuropsychopharmacol Biol Psychiatry, 79, 176183.Google Scholar
Rangel-Pacheco, A., Lew, B. J., Schantell, M. D., et al. (2021). Altered fronto-occipital connectivity during visual selective attention in regular cannabis users. Psychopharmacology (Berl), 238, 13511361.Google Scholar
Riba, J., Valle, M., Sampedro, F., et al. (2015). Telling true from false: Cannabis users show increased susceptibility to false memories. Mol Psychiatry, 20, 772777.Google Scholar
Roten, A., Baker, N. L., and Gray, K. M. (2015). Cognitive performance in a placebo-controlled pharmacotherapy trial for youth with marijuana dependence. Addict Behav, 45, 119123.Google Scholar
Sagar, K. A., and Gruber, S. A. (2018). Marijuana matters: Reviewing the impact of marijuana on cognition, brain structure and function, & exploring policy implications and barriers to research. Int Rev Psychiatry, 30, 251267.Google Scholar
Sami, M. B., Rabiner, E. A., and Bhattacharyya, S. (2015). Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date. Eur Neuropsychopharmacol, 25, 12011224.Google Scholar
Schlienz, N. J., Spindle, T. R., Cone, E. J., et al. (2020). Pharmacodynamic dose effects of oral cannabis ingestion in healthy adults who infrequently use cannabis. Drug Alcohol Depend, 211, 107969.Google Scholar
Schoedel, K. A., Addy, C., Chakraborty, B., et al. (2012). Human abuse potential and cognitive effects of taranabant, a cannabinoid 1 receptor inverse agonist: A randomized, double-blind, placebo- and active-controlled, crossover study in recreational polydrug users. J Clin Psychopharmacol, 32, 492502.Google Scholar
Schoedel, K. A., Chen, N., Hilliard, A., et al. (2011). A randomized, double-blind, placebo-controlled, crossover study to evaluate the subjective abuse potential and cognitive effects of nabiximols oromucosal spray in subjects with a history of recreational cannabis use. Hum Psychopharmacol Clin Exp, 26, 224236.Google Scholar
Schoeler, T., Kambeitz, J., Behlke, I., et al. (2016). The effects of cannabis on memory function in users with and without a psychotic disorder: Findings from a combined meta-analysis. Psychol Med, 46, 177188.Google Scholar
Scofield, M. D., Heinsbroek, J. A., Gipson, C. D., et al. (2016). The nucleus accumbens: Mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev, 68, 816.Google Scholar
Scott, J. C., Slomiak, S. T., Jones, J. D., et al. (2018). Association of cannabis with cognitive functioning in adolescents and young adults: A systematic review and meta-analysis. JAMA Psychiatry, 75, 585595.Google Scholar
Scott, J. C., Wolf, D. H., Calkins, M. E., et al. (2017). Cognitive functioning of adolescent and young adult cannabis users in the Philadelphia neurodevelopmental cohort. Psychol Addict Behav, 31, 423434.Google Scholar
Sholler, D. J., Strickland, J. C., Spindle, T. R., et al. (2021). Sex differences in the acute effects of oral and vaporized cannabis among healthy adults. Addict Biol, 26, e12968.Google Scholar
Smith, J. L., De Blasio, F. M., Iredale, J. M., et al. (2017). Verbal learning and memory in cannabis and alcohol users: An event-related potential investigation. Front Psychol, 8, 2129.Google Scholar
Sneider, J. T., Gruber, S. A., Rogowska, J., et al. (2013). A preliminary study of functional brain activation among marijuana users during performance of a virtual water maze task. J Addict, 2013, 461029.Google Scholar
Solowij, N., Broyd, S., Greenwood, L.-M., et al. (2019). A randomised controlled trial of vaporised δ9-tetrahydrocannabinol and cannabidiol alone and in combination in frequent and infrequent cannabis users: Acute intoxication effects. Eur Arch Psychiatry Clin Neurosci, 269, 1735.Google Scholar
Solowij, N., Jones, K. A., Rozman, M. E., et al. (2011). Verbal learning and memory in adolescent cannabis users, alcohol users and non-users. Psychopharmacology (Berl), 216, 131144.Google Scholar
Solowij, N., Jones, K. A., Rozman, M. E., et al. (2012). Reflection impulsivity in adolescent cannabis users: A comparison with alcohol-using and non-substance-using adolescents. Psychopharmacology (Berl), 219, 575586.Google Scholar
Solowij, N., and Pesa, N. (2011). Cannabis and cognition: Short- and long-term effects. In Castle, D., Murray, R., and D’Souza, D. (eds.) Marijuana and Madness (pp. 91102). Cambridge: Cambridge University Press.Google Scholar
Spindle, T. R., Kuwabara, H., Eversole, A., et al. (2021). Brain imaging of cannabinoid type I (CB1) receptors in women with cannabis use disorder and male and female healthy controls. Addict Biol, 26, e13061.Google Scholar
Spronk, D. B., De Bruijn, E. R. A., Van Wel, J. H. P., et al. (2016). Acute effects of cocaine and cannabis on response inhibition in humans: An erp investigation. Addict Biol, 21, 11861198.Google Scholar
Subbaraman, M. S., and Kerr, W. C. (2021). Cannabis use frequency, route of administration, and co-use with alcohol among older adults in Washington State. J Cannabis Res, 3, 17.Google Scholar
Tait, R. J., Mackinnon, A., and Christensen, H. (2011). Cannabis use and cognitive function: 8-year trajectory in a young adult cohort. Addiction, 106, 21952203.Google Scholar
Takakuwa, K. M., and Schears, R. M. (2021). The emergency department care of the cannabis and synthetic cannabinoid patient: A narrative review. Int J Emerg Med, 14, 10.Google Scholar
Tamnes, C. K., Herting, M. M., Goddings, A. L., et al. (2017). Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J Neurosci, 37, 34023412.Google Scholar
Thames, A. D., Arbid, N., and Sayegh, P. (2014). Cannabis use and neurocognitive functioning in a non-clinical sample of users. Addict Behav, 39, 994999.Google Scholar
Theunissen, E. L., Heckman, P., de Sousa Fernandes Perna, E. B., et al. (2015). Rivastigmine but not vardenafil reverses cannabis-induced impairment of verbal memory in healthy humans. Psychopharmacology (Berl), 232, 343353.Google Scholar
Theunissen, E. L., Kauert, G. F., Toennes, S. W., et al. (2012). Neurophysiological functioning of occasional and heavy cannabis users during THC intoxication. Psychopharmacology (Berl), 220, 341350.Google Scholar
United Nations Office on Drugs and Crime. (2016). World Drug Report 2016 (United Nations publication, Sales No. E.16.XI.7). New York: United Nations.Google Scholar
United Nations Office on Drugs and Crime. (2020). World Drug Report 2020 (United Nations publication, Sales No. E.20.XI.6). New York: United Nations.Google Scholar
Van Kampen, A.D., Cousijn, J., Engel, C., et al. (2020). Attentional bias, craving and cannabis use in an inpatient sample of adolescents and young adults diagnosed with cannabis use disorder: The moderating role of cognitive control. Addict Behav, 100, 106126.Google Scholar
Van Wel, J. H. P., Kuypers, K. P. C., Theunissen, E. L., et al. (2013). Single doses of THC and cocaine decrease proficiency of impulse control in heavy cannabis users. Br J Pharmacol, 170, 14101420.Google Scholar
Vandrey, R., Herrmann, E. S., Mitchell, J. M., et al. (2017). Pharmacokinetic profile of oral cannabis in humans: Blood and oral fluid disposition and relation to pharmacodynamic outcomes. J Anal Toxicol, 41, 8399.Google Scholar
Vandrey, R., Stitzer, M. L., Mintzer, M. Z., et al. (2013). The dose effects of short-term dronabinol (oral THC) maintenance in daily cannabis users. Drug Alcohol Depend, 128, 6470.Google Scholar
Volkow, N. D., Baler, R. D., Compton, W. M., et al. (2014). Adverse health effects of marijuana use. N Engl J Med, 370, 22192227.Google Scholar
Vujanovic, A. A., Wardle, M. C., Liu, S., et al. (2016). Attentional bias in adults with cannabis use disorders. J Addict Dis, 35, 144153.Google Scholar
Wadsworth, E. J., Moss, S. C., Simpson, S. A., et al. (2006). Cannabis use, cognitive performance and mood in a sample of workers. J Psychopharmacol, 20, 1423.Google Scholar
Wallace, A. L., Maple, K. E., Barr, A. T., et al. (2020). Bold responses to inhibition in cannabis-using adolescents and emerging adults after 2 weeks of monitored cannabis abstinence. Psychopharmacology (Berl), 237, 32593268.Google Scholar
Waris, O., Soveri, A., Ahti, M., et al. (2017). A latent factor analysis of working memory measures using large-scale data. Front Psychol, 8, 1062.Google Scholar
Wesnes, K. A., Annas, P., Edgar, C. J., et al. (2009). Nabilone produces marked impairments to cognitive function and changes in subjective state in healthy volunteers. J Psychopharmacol, 24, 16591669.Google Scholar
Wittemann, M., Brielmaier, J., Rubly, M., et al. (2021). Cognition and cortical thickness in heavy cannabis users. Eur Addict Res, 27, 115122.Google Scholar
Woelfl, T., Rohleder, C., Mueller, J. K., et al. (2020). Effects of cannabidiol and delta-9-tetrahydrocannabinol on emotion, cognition, and attention: A double-blind, placebo-controlled, randomized experimental trial in healthy volunteers. Front Psychiatry, 11, 576877.Google Scholar
Wrege, J., Schmidt, A., Walter, A., et al. (2014). Effects of cannabis on impulsivity: A systematic review of neuroimaging findings. Curr Pharm Des, 20, 21262137.Google Scholar
Zachry, J. E., Nolan, S. O., Brady, L. J., et al. (2021). Sex differences in dopamine release regulation in the striatum. Neuropsychopharmacology, 46, 491499.Google Scholar
Zamberletti, E., Gabaglio, M., Grilli, M., et al. (2016). Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats. Pharmacol Res, 111, 459470.Google Scholar
Zhang, M., Fung, D. S. S., and Smith, H. (2020). A literature review of attentional biases amongst individuals with substance dependency: Individual differences and modulating factors. Psychiatry Intl, 1, 125134.CrossRefGoogle Scholar
Zhornitsky, S., Pelletier, J., Assaf, R., et al. (2021). Acute effects of partial CB(1) receptor agonists on cognition: A meta-analysis of human studies. Prog Neuropsychopharmacol Biol Psychiatry, 104, 110063.Google Scholar

References

Abush, H., Ghose, S., van Enkevort, E. A., et al. (2018). Associations between adolescent cannabis use and brain structure in psychosis. Psychiatry Res Neuroimaging, 276, 5364.Google Scholar
Aguiar, D. C., Moreira, F. A., Terzian, A. L., et al. (2014). Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) channels. Neurosci Biobehav Rev, 46, 418428.Google Scholar
Alemany, S. (2014). Psychosis-inducing effects of cannabis are related to both childhood abuse and COMT genotypes. Acta Psychiatr Scand, 129, 5462.Google Scholar
Antoniades, M., Schoeler, T., Radua, J., et al. (2018). Verbal learning and hippocampal dysfunction in schizophrenia: A meta-analysis. Neurosci Biobehav Rev, 86, 166175.Google Scholar
Atakan, Z., Bhattacharyya, S., Allen, P., et al. (2013). Cannabis affects people differently: Inter-subject variation in the psychotogenic effects of D9-tetrahydrocannabinol: A functional magnetic resonance imaging study with healthy volunteers. Psychol Med, 43, 12551267.Google Scholar
Benetti, S., Mechelli, A., Picchioni, M., et al. (2009). Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain, 132, 24262436.Google Scholar
Bloomfield, M. A., Ashok, A. H., Volkow, N. D., et al. (2016). The effects of Delta(9)-tetrahydrocannabinol on the dopamine system. Nature, 539, 369377.Google Scholar
Bloomfield, M. A., Morgan, C. J., Egerton, A., et al. (2014). Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry, 75, 470478.Google Scholar
Bolo, N., Zeng, V., Clementz, B. A., et al. (2021). Hippocampal glutamate, verbal episodic memory and intrinsic neural activity in the psychosis spectrum Soc Biol Psychiatry, 89, S345.Google Scholar
Bossong, M. G., Mehta, M. A., van Berckel, B. N., et al. (2015). Further human evidence for striatal dopamine release induced by administration of 9-tetrahydrocannabinol (THC): Selectivity to limbic striatum. Psychopharmacology (Berl), 232, 27232729.Google Scholar
Boydell, J., Dean, K., Dutta, R., et al. (2007). A comparison of symptoms and family history in schizophrenia with and without prior cannabis use: Implications for the concept of cannabis psychosis. Schizophr Res, 93, 203210.Google Scholar
Carr, C. P., Martins, C. M., Stingel, A. M., et al. (2013). The role of early life stress in adult psychiatric disorders: A systematic review according to childhood trauma subtypes. J Nerv Ment Dis, 201, 10071020.Google Scholar
Cheer, J. F., Wassum, K. M., Heien, M. L., et al. (2004). Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci, 24, 43934400.Google Scholar
Clementz, B. A., Parker, D. A., Trotti, R. L., et al. (2022). Psychosis biotypes: Replication and validation from the B-SNIP Consortium. Schizophr Bull, 48, 5668.Google Scholar
Clementz, B. A., Sweeney, J. A., Hamm, J. P., et al. (2016). Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry, 173, 373383.Google Scholar
Colizzi, M., Iyegbe, C., and Powell, J., et al. (2015). Interaction between DRD2 and AKT1 genetic variations on risk of psychosis in cannabis users: A case control study. NPJ Schizophren, 1, 15049.Google Scholar
Colizzi, M., Weltens, N., McGuire, P., et al. (2019). Does cannabis induce psychosis by altering glutamate signaling in the striatum? Schizophr Bull, 45, S166S167.Google Scholar
Crane, N. A., Schuster, R. M., Fusar-Poli, P., et al. (2013). Effects of cannabis on neurocognitive functioning: Recent advances, neurodevelopmental influences, and sex differences. Neuropsychol Rev, 23, 117137.Google Scholar
Cunha, P. J., Rosa, P. G. P., and Ayres Ade, M. (2013). Cannabis use, cognition and brain structure in first-episode psychosis. Schizophr Res, 147, 209215.Google Scholar
D’Souza, D. C., Perry, E., MacDougall, L., et al. (2004). The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology, 29, 15581572.Google Scholar
Danijua, Y., Bossong, M. G., Brandt, K., et al. (2020). Do the effects of cannabis on the hippocampus and striatum increase risk for psychosis? Neurosci Biobehav Rev, 112, 324335.Google Scholar
Dekker, N., Schmitz, N., and Peters, B. D. (2010). Cannabis use and callosal white matter structure and integrity in recent-onset schizophrenia. Psychiatry Res, 181, 5156.Google Scholar
Di Forti, M., Quattrone, D., Freeman, T. P., et al. (2019). The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): A multicentre case-control study. Lancet Psychiatry, 6, 427436.Google Scholar
Dow-Edwards, D., and Silva, L. (2017). Endocannabinoids in brain plasticity: Cortical maturation, HPA axis function and behavior. Brain Res, 1654, 157164.Google Scholar
Ferraro, L., La Cascia, C., Quattrone, D., et al. (2020). Premorbid adjustment and IQ in patients with first-episode psychosis: A multisite case-control study of their relationship with cannabis use. Schizophr Bull, 46, 517529.Google Scholar
Ferraro, L., Russo, M., O’Connor, J., et al. (2013). Cannabis users have higher premorbid IQ than other patients with first onset psychosis. Schizophr Res, 150, 129135.Google Scholar
French, E. D. (1997) delta9-Tetrahydrocannabinol excites rat VTA dopamine neurons through activation of cannabinoid CB1 but not opioid receptors. Neurosci Lett, 226, 159162.Google Scholar
Gage, S. H., Hickman, M., and Zammit, S. (2016). Association between cannabis and psychosis: Epidemiologic evidence. Biol Psychiatry, 79, 549556.Google Scholar
van de Giessen, E., Weinstein, J. J., Cassidy, C. M., et al. (2017). Deficits in striatal dopamine release in cannabis dependence. Mol Psychiatry, 22, 6875.Google Scholar
Grant, I., Gonzalez, R., Carey, C. L., et al. (2003). Non-acute (residual) neurocognitive effects of cannabis use: A meta-analytic study. J Int Neuropsychol Soc, 9, 679689.Google Scholar
Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry, 153, 321330.Google Scholar
Guimond, S., Gu, F., Shannon, H., et al. (2021). A diagnosis and biotype comparison across the psychosis spectrum: Investigating volume and shape amygdala-hippocampal differences from the B-SNIP study. Schizophr Bull, 47, 17061717.Google Scholar
Haney, M., and Evins, A. E. (2016). Does cannabis cause, exacerbate or ameliorate psychiatric disorders? An oversimplified debate discussed. Neuropsychopharmacology, 41, 393401.Google Scholar
Hanna, R. C., Shalvoy, A., Cullum, C. M., et al. (2016). Cognitive function in individuals with psychosis: Moderation by adolescent cannabis use. Schizophr Bull, 42, 14961503.Google Scholar
Helle, S., Gjestad, R., Johnsen, E., et al. (2013). Cognitive changes in non-affective psychosis the first 4–6 weeks after admission to a psychiatric acute ward: Effects of substance use. Schizophr Bull, 39, 262.Google Scholar
Helle, S., Gjestad, R., Johnsen, E., et al. (2014). Cognitive changes in patients with acute phase psychosis: Effects of illicit drug use. Psychiatry Res, 220, 818824.Google Scholar
Hibar, D. P., Westlye, L. T., and van Erp, T. G. M. (2016). Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry, 21, 17101716.Google Scholar
Ho, N. F., Iglesias, J. E., Sum, M. Y., et al. (2017). Progression from selective to general involvement of hippocampal subfields in schizophrenia. Mol Psychiatry, 22, 142152.Google Scholar
Houston, J. E., Murphy, J., Shevlin, M., et al. (2011). Cannabis use and psychosis: Re-visiting the role of childhood trauma. Psychol Med, 41, 23392348.Google Scholar
Hu, S. S., and Mackie, K. (2015). Distribution of the endocannabinoid system in the central nervous system. Handb Exp Pharmacol, 231, 5993.Google Scholar
Huang, J. T.-J., Leweke, F. M., Tsang, T. M., et al. (2007). CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS ONE, 2, e756.Google Scholar
Ivleva, E. I., Clementz, B. A., and Dutcher, A. M. (2017). Brain structure biomarkers in the psychosis biotypes: Findings from the bipolar-schizophrenia network for intermediate phenotypes. Biol Psychiatry, 82, 2639.Google Scholar
Keefe, R. S. E., Goldberg, T. E., Harvey, P. D., et al. (2004). The Brief Assessment of Cognition in Schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res, 68, 283297.Google Scholar
Kendler, K. S., Ohlsson, H., Sundquist, J., et al. (2019). Prediction of onset of substance-induced psychotic disorder and its progression to schizophrenia in a Swedish national sample. Am J Psychiatry, 176, 711719.Google Scholar
Keshavan, M. S., Kelly, S., and Hall, M. H. (2020). The core deficit of ‘classical’ schizophrenia cuts across the psychosis spectrum. Can J Psychiatry, 65, 231234.Google Scholar
Keshavan, M. S., Morris, D. W., Sweeney, J. A., et al. (2011). A dimensional approach to the psychosis spectrum between bipolar disorder and schizophrenia: The Schizo-Bipolar Scale. Schizophr Res, 133, 250254.Google Scholar
Koenders, L., Machielsen, M. W. J., and van der Meer, F. J. (2015). Brain volume in male patients with recent onset schizophrenia with and without cannabis use disorders. J Psychiatry Neurosci, 40, 197206.Google Scholar
Koethe, D., Giuffrida, A., Schreiber, D., et al. (2009). Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. Br J Psychiatry, 194, 371372.Google Scholar
Kraguljac, N. V., Karper, L. P., Seibyl, J. P., et al. (2017). Ketamine modulates hippocampal neurochemistry and functional connectivity: A combined magnetic resonance spectroscopy and resting-state fMRI study in healthy volunteers. Mol Psychiatry, 22, 562569.Google Scholar
Krystal, J. H., Karper, L. P., Seibyl, J. P., et al. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry, 51, 199214.Google Scholar
Ksir, C., and Hart, C. L. (2016). Correlation still does not imply causation. Lancet Psychiatry, 3, 401.Google Scholar
Lee, T. T., Hill, M. N., and Lee, F. S. (2016). Developmental regulation of fear learning and anxiety behavior by endocannabinoids. Genes Brain Behav, 15, 108124.Google Scholar
Leweke, F. M., Piomelli, D., Pahlisch, F., et al. (2012). Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry, 2, e94.Google Scholar
Lieberman, J. A., Girgis, R. R., Brucato, G., et al. (2018). Hippocampal dysfunction in the pathphysiology of schizophrenia: A selective review and hypothesis for early detection and intervention. Mol Psychiatry, 23, 17641772.Google Scholar
Loberg, E.-M., Helle, S., Nygard, M., et al. (2014). The cannabis pathway to non-affective psychosis may reflect less neurobiological vulnerability. Front Psychiatry, 5, 159.Google Scholar
Lubman, D. I., Cheetham, A., and Yucel, M. (2015). Cannabis and adolescent brain development. Pharmacol Ther, 148, 116.Google Scholar
Makowski, C., Bodnar, M., Shenker, J. J., et al. (2017). Linking persistent negative symptoms to amygdala-hippocampus structure in first-episode psychosis. Transl Psychiatry, 7, e1195.Google Scholar
Malchow, B., Hasan, A., Schneider-Axmann, T., et al. (2013). Effects of cannabis and familial loading on subcortical brain volumes in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci, 263, S155S168.Google Scholar
Mallet, J., Ramoz, N., Le Strat, Y., et al. (2017). Heavy cannabis use prior psychosis in schizophrenia: Clinical, cognitive and neurological evidences for a new endophenotype? Eur Arch Psychiatry Clin Neurosci, 267, 629638.Google Scholar
Meyer, H. C., Lee, F. S., and Gee, D. G. (2018). The role of the endocannabinoid system and genetic variation in adolescent brain development. Neuropsychopharmacology, 43, 2133.Google Scholar
Moghaddam, B., and Javitt, D. (2012). From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37, 415.Google Scholar
Morrison, P. D., Zois, V., McKeown, D. A., et al. (2009). The acute effects of synthetic intravenous Delta9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol Med, 39, 16071616.Google Scholar
O’Neill, A., Annibale, L., Blest-Hopley, G., et al. (2021). Cannabidiol modulation of hippocampal glutamate in early psychosis. J Psychopharmacol, 35, 814822.Google Scholar
Paul, S., and Bhattacharyya, S. (2021). Cannabis use-related working memory deficit mediated by lower left hippocampal volume. Addict Biol, 26, e12984.Google Scholar
Quattrone, D., Ferraro, L., Tripoli, G., et al. (2020). The Relation of the Psychosis Continuum with Schizophrenia Polygenic Risk Score and Cannabis Use. Schizophrenia International Research Society.Google Scholar
Rabin, R. A., Zakzanis, K. K., and George, T. P. (2011). The effects of cannabis use on neurocognition in schizophrenia: A meta-analysis. Schizophr Res, 128, 111116.Google Scholar
Ranganathan, M., and D’Souza, D. C. (2006). The acute effects of cannabinoids on memory in humans: A review. Psychopharmacologia, 188, 425444.Google Scholar
Rasetti, R., Sambataro, F., Chen, Q., et al. (2011). Altered cortical network dynamics: A potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry, 68, 12071217.Google Scholar
Raver, S. M., Haughwout, S. P., and Keller, A. (2013). Adolescent cannabinoid exposure permanently suppresses cortical oscillations in adult mice. Neuropsychopharmacology, 38, 23382347.Google Scholar
del Re, E. C., Yassine, W., Zeng, V., et al. (2022). Childhood trauma and cannabis interactions in affecting psychosis onset: Role of the anterior–posterior axis of the hippocampus and differences in cannabis use before or after psychosis onset. medRxiv.Google Scholar
Realini, N., Rubino, T., and Parolaro, D. (2009). Neurobiological alterations at adult age triggered by adolescent exposure to cannabinoids. Pharmacol Res, 60, 132138.Google Scholar
Renard, J., Krebs, M. O., Le Pen, G., et al. (2014). Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci, 8, 361.Google Scholar
Rentzsch, J., Stadtmann, A., Montag, C., et al. (2016). Attentional dysfunction in abstinent long-term cannabis users with and without schizophrenia. Eur Arch Psychiatry Clin Neurosci, 266, 409421.Google Scholar
Rigucci, S., Xin, L., Klauser, P., et al. (2017). Cannabis use in early psychosis is associated with reduced glutamate levels in the prefrontal cortex. Psychopharmacologia, 235, 1322.Google Scholar
Rubino, T., and Parolaro, D. (2008). Long lasting consequences of cannabis exposure in adolescence. Mol Cell Endocrinol, 286, S108S113.Google Scholar
Rubino, T., and Parolaro, D. (2016). The impact of exposure to cannabinoids in adolescence: Insights from animal models. Biol Psychiatry, 79, 578585.Google Scholar
Rubino, T., Prini, P., Piscitelli, F., et al. (2015). Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol Dis, 226, 159162.Google Scholar
Sami, M. B., Annibale, L., O’Neill, A., et al. (2021). Eye movements in patients in early psychosis with and without a history of cannabis use. NPJ Schizophrenia, 7, 17.Google Scholar
Sami, M. B., and Bhattacharyya, S. (2018). Are cannabis-using and non-using patients different groups? Towards understanding the neurobiology of cannabis use in psychotic disorders. J Psychopharmacol, 32, 825849.Google Scholar
Sami, M. B., Worker, A., Colizzi, M., et al. (2020). Association of cannabis with glutamatergic levels in patients with early psychosis: Evidence for altered volume striatal glutamate relationships in patients with a history of cannabis use in early psychosis. Transl Psychiatry, 10, 111.Google Scholar
Scheffler, F., Plessis, S. D., Asmal, L., et al. (2021). Cannabis use and hippocampal subfield volumes in males with a first episode of a schizophrenia spectrum disorder and healthy controls. Schizophr Res, 231, 1321.Google Scholar
Schneider, M. (2008). Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict Biol, 13, 253263.Google Scholar
Schnell, T., Kleiman, A., Gouzoulis-Mayfrank, E., et al. (2012). Increased gray matter density in patients with schizophrenia and cannabis use: A voxel-based morphometric study using DARTEL. Schizophr Res, 138, 183187.Google Scholar
Schoeler, T., Kambeitz, J., and Bhattacharyya, S. (2015) The effect of cannabis on memory function in users with and without a psychotic disorder: A meta-analysis. Psychol Med, 10, 112.Google Scholar
Shakory, S., Watts, J. J., Hafizi, S., et al. (2018). Hippocampal glutamate metabolites and glial activation in clinical high risk and first episode psychosis. Neuropsychopharmacology, 43, 22492255.Google Scholar
Smith, M. J., Cobia, D. J., Reilly, J. L., et al. (2015). Cannabis-related episodic memory deficits and hippocampal morphological differences in healthy individuals and schizophrenia subjects. Hippocampus, 25, 10421051.Google Scholar
Solowij, N., Malterfang, M., Lubman, D. I., et al. (2013). Alteration to hippocampal shape in cannabis users with and without schizophrenia. Schizophr Res, 143, 179184.Google Scholar
Stip, E. (2006). Cognition, schizophrenia and the effect of antipsychotics. Encephale, 32, 341350.Google Scholar
Stirling, J., Lewis, S., and Hopkins, R., et al. (2005). Cannabis use prior to first onset psychosis predicts spared neurocognition at 10-year follow-up. Schizophr Res, 75, 135137.Google Scholar
Stokes, P. R., Egerton, A., Watson, B., et al. (2012). History of cannabis use is not associated with alterations in striatal dopamine D2/D3 receptor availability. J Psychopharmacol, 26, 144149.Google Scholar
Strasser, H. C., Lilyestrom, J., Ashby, E. R., et al. (2005). Hippocampal and ventricular volumes in psychotic and nonpsychotic bipolar patients compared with schizophrenia patients and community control subjects: A pilot study. Biol Psychiatry, 57, 633639.Google Scholar
Sullivan, J. M. (2000). Cellular and molecular mechanisms underlying learning and memory impairments produced by cannabinoids. Learn Mem, 7, 132139.Google Scholar
Szallasi, A., Cortright, D. N., Blum, C. A., et al. (2007). The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov, 6, 357372.Google Scholar
Tamminga, C. A., Clementz, B. A., Pearlson, G. D., et al. (2021). Biotyping in psychosis: Using multiple computational approaches with one data set. Neuropsychopharmacology, 46, 143155.Google Scholar
Tamminga, C. A., Ivleva, E. I., Keshavan, M. S., et al. (2013). Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am J Psychiatry, 170, 12631274.Google Scholar
Tamminga, C. A., Pearlson, G. D., Keshavan, M., et al. (2014). Bipolar and schizophrenia network for intermediate phenotypes: Outcomes across the psychosis continuum. Schizophr Bull, 40, S131S137.Google Scholar
Tanda, G., and Goldberg, S. R. (2003). Cannabinoids: Reward, dependence, and underlying neurochemical mechanisms – A review of recent preclinical data. Psychopharmacology (Berl), 232, 27232729.Google Scholar
Treadway, M. T., Waskom, M. L., Dillon, D. G., et al. (2015). Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry, 77, 285294.Google Scholar
van Tricht, M. J., Harmsen, E. C., Koelman, J. H. T. M., et al. (2013). Effects of cannabis use on event related potentials in subjects at ultra high risk for psychosis and healthy controls. Int J Psychophysiol, 88, 149156.Google Scholar
Van Gastel, W. A., Schubart, C. D., Van Eijk, K. R., et al. (2013). The effect of childhood maltreatment and cannabis use on adult psychotic symptoms is modified by the COMT Val158Met polymorphism. Schizophr Res, 150, 303311.Google Scholar
Volkow, N. D., Wang, G. J., Telang, F., et al. (2014). Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci USA, 111, E3149E3156.Google Scholar
Wannan, C. M. J., Cropley, V. L., Chakravarty, M. M., et al. (2019). Evidence for network-based cortical thickness reductions in schizophrenia. Am J Psychiatry, 176, 552563.Google Scholar
Wiers, C. E., Shokri-Kojori, E., Wong, C. T., et al. (2016). Cannabis abusers show hypofrontality and blunted brain responses to a stimulant challenge in females but not in males. Neuropsychopharmacology, 41, 25962605.Google Scholar
Winterburn, J. L., Pruessner, J. C., Chavez, S., et al. (2013). A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging. Neuroimage, 74, 254265.Google Scholar
Yucel, M., Bora, E., Lubman, D. I., et al. (2012). The impact of cannabis use on cognitive functioning in patients with schizophrenia: A meta-analysis of existing findings and new data in a first-episode sample. Schizophr Bull, 38, 316330.Google Scholar
Zhou, Y., Shu, N., Liu, Y., et al. (2008). Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res, 100, 120132.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cannabis and the Brain
  • Edited by Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine, David Castle, University of Tasmania, Australia, Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
  • Book: Marijuana and Madness
  • Online publication: 12 May 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cannabis and the Brain
  • Edited by Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine, David Castle, University of Tasmania, Australia, Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
  • Book: Marijuana and Madness
  • Online publication: 12 May 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cannabis and the Brain
  • Edited by Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine, David Castle, University of Tasmania, Australia, Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
  • Book: Marijuana and Madness
  • Online publication: 12 May 2023
Available formats
×