Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T18:04:01.663Z Has data issue: false hasContentIssue false

Part I - Pharmacology of Cannabis and the Endocannabinoid System

Published online by Cambridge University Press:  12 May 2023

Deepak Cyril D'Souza
Affiliation:
Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine
David Castle
Affiliation:
University of Tasmania, Australia
Sir Robin Murray
Affiliation:
Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

de Almeida, D. L., and Devi, L. A. (2020). Diversity of molecular targets and signaling pathways for CBD. Pharmacol Res Perspect, 8, e00682.CrossRefGoogle ScholarPubMed
Amin, M. R., and Ali, D. W. (2019). Pharmacology of medical cannabis. Adv Exp Med Biol, 1162, 151165.Google Scholar
Atakan, Z. (2012). Cannabis, a complex plant: Different compounds and different effects on individuals. Ther Adv Psychopharmacol, 2, 241254.CrossRefGoogle ScholarPubMed
Atwood, B. K., and Mackie, K. (2010). CB2: A cannabinoid receptor with an identity crisis. Br J Pharmacol, 160, 467479.CrossRefGoogle ScholarPubMed
Benard, G., Massa, F., Puente, N., et al. (2012). Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nat Neurosci, 15, 558564.Google Scholar
Billakota, S., Devinsky, O., and Marsh, E. (2019). Cannabinoid therapy in epilepsy. Curr Opin Neurol, 32, 220226.Google Scholar
Cutando, L., Busquets-Garcia, A., Puighermanal, E., et al. (2013). Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest, 123, 28162831.CrossRefGoogle ScholarPubMed
Da Silva, T., Hafizi, S., Watts, J. J., et al. (2019). In vivo imaging of translocator protein in long-term cannabis users. JAMA Psychiatry, 76, 13051313.CrossRefGoogle ScholarPubMed
Diana, M. A., and Marty, A. (2004). Endocannabinoid-mediated short-term synaptic plasticity: Depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br J Pharmacol, 142, 919.CrossRefGoogle ScholarPubMed
Dujourdy, L., and Besacier, F. (2017). A study of cannabis potency in France over a 25 years period (1992–2016). Forensic Sci Int, 272, 7280.Google Scholar
Egertova, M., and Elphick, M. R. (2000) Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol, 422, 159171.Google Scholar
ElSohly, M. A., Mehmedic, Z., Foster, S., et al. (2016). Changes in cannabis potency over the last 2 decades (1995–2014): Analysis of current data in the United States. Biol Psychiatry, 79, 613619.Google Scholar
Farrell, J. S., Colangeli, R., Dong, A., et al. (2021). In vivo endocannabinoid dynamics at the timescale of physiological and pathological neural activity. Neuron, 109, 23982403 e4.CrossRefGoogle ScholarPubMed
Gaoni, Y., and Mechoulam, R. (1964). Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc, 86, 16461647.CrossRefGoogle Scholar
Grotenhermen, F. (2003). Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet, 42, 327360.Google Scholar
Gulck, T., and Moller, B. L. (2020). Phytocannabinoids: Origins and biosynthesis. Trends Plant Sci, 25, 9851004.Google Scholar
Han, J., Kesner, P., Metna-Laurent, M., et al. (2012). Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell, 148, 10391050.CrossRefGoogle ScholarPubMed
Herkenham, M., Lynn, A. B., Johnson, M. R., et al. (1991). Characterization and localization of cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. J Neurosci, 11, 563583.Google Scholar
Howlett, A. C., Barth, F., Bonner, T. I., et al. (2002). International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev, 54, 161202.Google Scholar
Huestis, M. A. (2007). Human cannabinoid pharmacokinetics. Chem Biodivers, 4, 17701804.CrossRefGoogle ScholarPubMed
Huestis, M. A., Boyd, S. J., Heishman, S. J., et al. (2007). Single and multiple doses of rimonabant antagonize acute effects of smoked cannabis in male cannabis users. Psychopharmacology (Berl), 194, 505515.CrossRefGoogle ScholarPubMed
Huestis, M. A., Gorelick, D. A., Heishman, S. J., et al. (2001). Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch Gen Psychiatry, 58, 322328.Google Scholar
Itami, C., Huang, J. Y., Yamasaki, M., et al. (2016). Developmental switch in spike timing-dependent plasticity and cannabinoid-dependent reorganization of the thalamocortical projection in the barrel cortex. J Neurosci, 36, 70397054.Google Scholar
Kenakin, T. (2019). Emergent concepts of receptor pharmacology. Handb Exp Pharmacol, 260, 1741.CrossRefGoogle ScholarPubMed
Laaris, N., Good, C. H., and Lupica, C. R. (2010). Delta9-tetrahydrocannabinol is a full agonist at CB1 receptors on GABA neuron axon terminals in the hippocampus. Neuropharmacology, 59, 121127.Google Scholar
Laprairie, R. B., Bagher, A. M., Kelly, M. E., et al. (2015). Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol, 172, 47904805.CrossRefGoogle ScholarPubMed
Lu, H. C., and Mackie, K. (2016). An introduction to the endogenous cannabinoid system. Biol Psychiatry, 79, 516525.CrossRefGoogle Scholar
Lucas, C. J., Galettis, P., and Schneider, J. (2018). The pharmacokinetics and the pharmacodynamics of cannabinoids. Br J Clin Pharmacol, 84, 24772482.CrossRefGoogle ScholarPubMed
Mackie, K. (2008). Signaling via CNS cannabinoid receptors. Mol Cell Endocrinol, 286, S60S65.Google Scholar
Marinelli, S., Pacioni, S., Bisogno, T., et al. (2008). The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self- inhibition in neocortical interneurons. J Neurosci, 28, 1353213541.Google Scholar
Marsicano, G., and Lutz, B. (1999). Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci, 11, 42134225.Google Scholar
Matsuda, L. A., Bonner, T. I., and Lolait, S. J. (1993). Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol, 327, 535550.CrossRefGoogle ScholarPubMed
McPartland, J. M., Duncan, M., Di Marzo, V., et al. (2015). Are cannabidiol and Delta(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol, 172, 737753.Google Scholar
Mechoulam, R., and Shvo, Y. (1963). Hashish. I. The structure of cannabidiol. Tetrahedron, 19, 20732078.CrossRefGoogle Scholar
Millar, S. A., Stone, N. L., Yates, A. S., et al. (2018). A systematic review on the pharmacokinetics of cannabidiol in humans. Front Pharmacol, 9, 1365.Google Scholar
Nadulski, T., Pragst, F., Weinberg, G., et al. (2005). Randomized, double-blind, placebo-controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of Delta9-tetrahydrocannabinol (THC) after oral application of THC verses standardized cannabis extract. Ther Drug Monit, 27, 799810.Google Scholar
O’Sullivan, S. E., Stevenson, C. W., and Laviolette, S. R. (2021) Could cannabidiol be a treatment for coronavirus disease-19-related anxiety disorders? Cannabis Cannabinoid Res, 6, 718.CrossRefGoogle ScholarPubMed
Sharma, P., Murthy, P., and Bharath, M. M. (2012). Chemistry, metabolism, and toxicology of cannabis: Clinical implications. Iran J Psychiatry, 7, 149156.Google ScholarPubMed
Spindle, T. R., Cone, E. J., Goffi, E., et al. (2020). Pharmacodynamic effects of vaporized and oral cannabidiol (CBD) and vaporized CBD-dominant cannabis in infrequent cannabis users. Drug Alcohol Depend, 211, 107937.Google Scholar
Straiker, A., Dvorakova, M., Zimmowitch, A., et al. (2018). Cannabidiol inhibits endocannabinoid signaling in autaptic hippocampal neurons. Mol Pharmacol, 94, 743748.Google Scholar
Straiker, A., and Mackie, K. (2005). Depolarization-induced suppression of excitation in murine autaptic hippocampal neurones. J Physiol, 569, 501517.Google Scholar
Tahir, M. N., Shahbazi, F., Rondeau-Gagne, S., et al. (2021). The biosynthesis of the cannabinoids. J Cannabis Res, 3, 7.CrossRefGoogle ScholarPubMed
Tsou, K., Brown, S., Sanudo-Pena, M. C., et al. (1998). Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience, 83, 393411.CrossRefGoogle ScholarPubMed
Turner, S. E., Williams, C. M., Iversen, L., et al. (2017). Molecular pharmacology of phytocannabinoids. Prog Chem Org Nat Prod, 103, 61101.Google Scholar
Zamberletti, E., Gabaglio, M., Prini, P., et al. (2015). Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur Neuropsychopharmacol, 25, 24042415.Google Scholar
Zou, S., and Kumar, U. (2018). Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int J Mol Sci, 19, 833.Google Scholar

References

Acuna-Goycolea, C., Obrietan, K., and Van Den Pol, A. N. (2010). Cannabinoids excite circadian clock neurons. J Neurosci, 30, 1006110066.Google Scholar
Agarwal, N., Pacher, P., Tegeder, I., et al. (2007). Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci, 10, 870879.Google Scholar
Bakas, T., van Nieuwenhuijzen, P. S., Devenish, S. O., et al. (2017). The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors. Pharmacol Res, 119, 358370.Google Scholar
Bedse, G., Hartley, N. D., Neale, E., et al. (2017). Functional redundancy between canonical endocannabinoid signaling systems in the modulation of anxiety. Biol Psychiatry, 82, 488499.Google Scholar
Bedse, G., Hill, M. N., and Patel, S. (2020). 2-Arachidonoylglycerol modulation of anxiety and stress adaptation: From grass roots to novel therapeutics. Biol Psychiatry, 88, 520530.Google Scholar
Bénard, G., Massa, F., Puente, N., et al. (2012). Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat Neurosci, 15, 558564.CrossRefGoogle ScholarPubMed
Blázquez, C., Chiarlone, A., Bellocchio, L., et al. (2015). The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differ, 22, 16181629.Google Scholar
Bluett, R. J., Báldi, R., Haymer, A., et al. (2017). Endocannabinoid signalling modulates susceptibility to traumatic stress exposure. Nat Commun, 8, 14782.CrossRefGoogle ScholarPubMed
Bonn-Miller, M. O., Boden, M. T., Bucossi, M. M., et al. (2014). Self-reported cannabis use characteristics, patterns and helpfulness among medical cannabis users. Am J Drug Alcohol Abuse, 40, 2330.Google Scholar
den Boon, F. S., Chameau, P., Schaafsma-Zhao, Q., et al. (2012). Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci USA, 109, 35343539.Google Scholar
Carriba, P., Ortiz, O., Patkar, K., et al. (2007). Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology, 32, 22492259.Google Scholar
Cascio, M. G., and Marini, P. (2015). Biosynthesis and fate of endocannabinoids. Handb Exp Pharmacol, 231, 3958.Google Scholar
Congreve, M., de Graaf, C., Swain, N. A., et al. (2020). Impact of GPCR structures on drug discovery. Cell, 181, 8191.Google Scholar
Covelo, A., Eraso-Pichot, A., Fernández-Moncada, I., et al. (2021). CB1R-dependent regulation of astrocyte physiology and astrocyte-neuron interactions. Neuropharmacology, 195, 108678.Google Scholar
Covey, D. P., Mateo, Y., Sulzer, D., et al. (2017). Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology, 124, 5261.CrossRefGoogle ScholarPubMed
Devane, W. A., Dysarz, F. A., Johnson, M. R., et al. (1988). Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol, 34, 605613.Google Scholar
Eldeeb, K., Leone-Kabler, S., and Howlett, A. C. (2016). CB1 cannabinoid receptor-mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function. J Basic Clin Physiol Pharmacol, 27, 311322.Google Scholar
Feinberg, I., Jones, R., Walker, J., et al. (1976). Effects of marijuana extract and tetrahydrocannabinol on electroencephalographic sleep patterns. Clin Pharmacol Ther, 19, 782794.CrossRefGoogle ScholarPubMed
Finlay, D. B., Cawston, E. E., Grimsey, N. L., et al. (2017). s signalling of the CB1 receptor and the influence of receptor number. Br J Pharmacol, 174, 25452562.Google Scholar
Finn, D. P., Haroutounian, S., Hohmann, A. G., et al. (2021). Cannabinoids, the endocannabinoid system, and pain: A review of preclinical studies. Pain, 162, S525.Google Scholar
Gantz, S. C., and Bean, B. P. (2017). Cell-autonomous excitation of midbrain dopamine neurons by endocannabinoid-dependent lipid signaling. Neuron, 93, 13751387.Google Scholar
Gaoni, Y., and Mechoulam, R. (1964). Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc, 86, 16461647.Google Scholar
Garcia-Ovejero, D., Arevalo-Martin, A., Petrosino, S., et al. (2009). The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiol Dis, 33, 5771.Google Scholar
Guindon, J., and Beaulieu, P. (2006). Antihyperalgesic effects of local injections of anandamide, ibuprofen, rofecoxib and their combinations in a model of neuropathic pain, Neuropharmacology, 50, 814823.CrossRefGoogle Scholar
Guindon, J., Desroches, J., and Beaulieu, P. (2007). The antinociceptive effects of intraplantar injections of 2-arachidonoyl glycerol are mediated by cannabinoid CB 2 receptors. Br J Pharmacol, 150, 693701.Google Scholar
Guindon, J., and Hohmann, A. (2009) The endocannabinoid system and pain. CNS Neurol Disord – Drug Targets, 8, 403421.CrossRefGoogle ScholarPubMed
Hablitz, L. M., Gunesch, A. N., Cravetchi, O., et al. (2020). Cannabinoid signaling recruits astrocytes to modulate presynaptic function in the suprachiasmatic nucleus. eNeuro, 7, ENEURO.0081-19.2020.Google Scholar
Haj-Dahmane, S., Shen, R. Y., Elmes, M. W., et al. (2018) Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proc Natl Acad Sci USA, 115, 34823487.Google Scholar
Haspula, D., and Clark, M. A. (2020) Cannabinoid receptors: An update on cell signaling, pathophysiological roles and therapeutic opportunities in neurological, cardiovascular, and inflammatory diseases. Int J Mol Sci, 21, 7693.Google Scholar
Hebert-Chatelain, E., Desprez, T., Serrat, R., et al. (2016) A cannabinoid link between mitochondria and memory. Nature, 539, 555559.Google Scholar
Hill, M. N., Campolongo, P., Yehuda, R., et al. (2017). Integrating endocannabinoid signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology, 43, 80102.Google Scholar
Hill, M. N., and McEwen, B. S. (2010). Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuro-Psychopharmacology Biol Psychiatry, 34, 791797.CrossRefGoogle ScholarPubMed
Hill, M. N., McLaughlin, R. J., Bingham, B., et al. (2010). Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci USA, 107, 94069411.Google Scholar
Hojo, M., Sudo, Y., Ando, Y., et al. (2008). μ-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: Electrophysiological and fret assay analysis. J Pharmacol Sci, 108, 308319.Google Scholar
Howlett, A. C., and Fleming, R. M. (1984). Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membrane. Mol Pharmacol, 26, 532538.Google Scholar
Howlett, A. C., Qualy, J. M., and Khachatrian, L. L. (1986). Involvement of G(i) in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol, 29, 307313.Google Scholar
Hua, T., Li, X., Wu, L., et al. (2020). Activation and signaling mechanism revealed by cannabinoid receptor-Gi complex structures. Cell, 180, 655665.Google Scholar
Hua, T., Vemuri, K., Nikas, S. P., et al. (2017). Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature, 547, 468471.Google Scholar
Hua, T., Vemuri, K., Pu, M., et al. (2016). Crystal structure of the human cannabinoid receptor CB1. Cell, 167, 750762.CrossRefGoogle Scholar
Ibeas Bih, C., Chen, T., Nunn, A. V., et al. (2015). Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics, 12, 699730.Google Scholar
Kesner, A. J., and Lovinger, D. M. (2020). Cannabinoids, endocannabinoids and sleep. Front Mol Neurosci, 13, 125.CrossRefGoogle ScholarPubMed
Khan, S. S., and Lee, F. J. S. (2014). Delineation of domains within the cannabinoid CB1 and dopamine D2 receptors that mediate the formation of the heterodimer complex. J Mol Neurosci, 53, 1021.Google Scholar
Kruk-Slomka, M., Dzik, A., Budzynska, B., et al. (2017). Endocannabinoid system: The direct and indirect involvement in the memory and learning processes – A short review. Mol Neurobiol, 54, 83328347.CrossRefGoogle ScholarPubMed
Laprairie, R. B., Bagher, A. M., Kelly, M. E., et al. (2015). Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol, 172, 47904805.CrossRefGoogle ScholarPubMed
Lauckner, J. E., Hille, B., and Mackie, K. (2005). The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci USA, 102, 1914419149.CrossRefGoogle ScholarPubMed
Lauckner, J. E., Jensen, J. B., Chen, H.-Y., et al. (2008). GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA, 105, 26992704.Google Scholar
Lawrence, D. K., and Gill, E. W. (1975). The effects of Δ1 tetrahydrocannabinol and other cannabinoids on spin labeled liposomes and their relationship to mechanisms of general anesthesia. Mol Pharmacol, 11, 595602.Google ScholarPubMed
Li, X., Hua, T., Vemuri, K., et al. (2019). Crystal structure of the human cannabinoid receptor CB2. Cell, 176, 459467.Google Scholar
Marcus, D. J., Bedse, G., Gaulden, A. D., et al. (2020). Endocannabinoid signaling collapse mediates stress-induced amygdalo-cortical strengthening. Neuron, 105, 10621076.e6.Google Scholar
Martin-Fernandez, M., Jamison, S., Robin, L. M., et al. (2017). Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci, 20, 15401548.Google Scholar
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., et al. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346, 561564.Google Scholar
Mechoulam, R., Lander, N., Srebnik, M., et al. (1980). Stereochemical requirements for cannabinoid activity. J Med Chem, 23, 10681072.Google Scholar
Mechoulam, R., and Shvo, Y. (1963). Hashish-I. The structure of cannabidiol. Tetrahedron, 19, 20732078.Google Scholar
Mendizabal-Zubiaga, J., Melser, S., Bénard, G., et al. (2016). Cannabinoid CB1 receptors are localized in striated muscle mitochondria and regulate mitochondrial respiration. Front Physiol, 7, 476.Google Scholar
Moreno, E., Chiarlone, A., Medrano, M., et al. (2018). Singular location and signaling profile of adenosine A2A-cannabinoid CB1 receptor heteromers in the dorsal striatum. Neuropsychopharmacology, 43, 964977.Google Scholar
Navarrete, M., and Araque, A. (2008). Endocannabinoids mediate neuron-astrocyte communication. Neuron, 57, 883893.CrossRefGoogle ScholarPubMed
Navarrete, M., and Araque, A. (2010). Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron, 68, 113126.Google Scholar
Niehaus, J. L., Liu, Y., Wallis, K. T., et al. (2007). CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol Pharmacol, 72, 15571566.Google Scholar
Nogueras-Ortiz, C., and Yudowski, G. A. (2016). The multiple waves of cannabinoid 1 receptor signaling. Mol Pharmacol, 90, 620626.Google Scholar
Nyilas, R., Gregg, L. C., Mackie, K., et al. (2009). Molecular architecture of endocannabinoid signaling at nociceptive synapses mediating analgesia. Eur J Neurosci, 29, 19641978.Google Scholar
O’Sullivan, S. E. (2007). Cannabinoids go nuclear: Evidence for activation of peroxisome proliferator-activated receptors. Br J Pharmacol, 152, 576582.Google Scholar
Ohno-Shosaku, T., Hashimotodani, Y., Ano, M., et al. (2007). Endocannabinoid signalling triggered by NMDA receptor-mediated calcium entry into rat hippocampal neurons. J Physiol, 584, 407418.Google Scholar
Oubraim, S., Wang, R., Hausknecht, K. A., et al. (2021). Tonic endocannabinoid signaling gates synaptic plasticity in dorsal raphe nucleus serotonin neurons through peroxisome proliferator-activated receptors. Front Pharmacol, 12, 114.Google Scholar
Palazzo, E., Luongo, L., Novellis, V., et al. (2010). The role of cannabinoid receptors in the descending modulation of pain. Pharmaceuticals, 3, 26612673.Google Scholar
Parsons, L. H., and Hurd, Y. L. (2015). Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci, 16, 579594.CrossRefGoogle ScholarPubMed
Patel, S., Hill, M. N., Cheer, J. F., et al. (2017). The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev, 76, 5666.Google Scholar
Patel, S., Roelke, C. T., Rademacher, D. J., et al. (2004). Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology, 145, 54315438.Google Scholar
Pava, M. J., Makriyannis, A., and Lovinger, D. M. (2016). Endocannabinoid signaling regulates sleep stability. PLoS ONE, 11, e0152473.Google Scholar
Pertwee, R. G., Howlett, A. C., Abood, M. E., et al. (2010). International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. Pharmacol Rev, 62, 588631.Google Scholar
Pertwee, R. G., and Ross, R. A. (2002). Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fat Acids, 66, 101121.Google Scholar
Petrie, G. N., Nastase, A. S., Aukema, R. J., et al. (2021). Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology, 195, 108626.Google Scholar
Petrosino, S., Schiano Moriello, A., Cerrato, S., et al. (2016). The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br J Pharmacol, 173, 11541162.Google Scholar
Piette, C., Cui, Y., Gervasi, N., et al. (2020). Lights on endocannabinoid-mediated synaptic potentiation. Front Mol Neurosci, 13, 132.Google Scholar
Ren, M., Tang, Z., Wu, X., et al. (2019). The origins of cannabis smoking: Chemical residue evidence from the first millennium BCE in the Pamirs. Sci Adv, 5, 18.Google Scholar
Ryberg, E., Larsson, N., Sjögren, S., et al. (2007). The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol, 152, 10921101.Google Scholar
Shao, Z., Yin, J., Chapman, K., et al. (2016). High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature, 540, 602606.CrossRefGoogle ScholarPubMed
Smith, P. B., and Martin, B. R. (1992). Spinal mechanisms of Δ9-tetrahydrocannabinol-induced analgesia. Brain Res, 578, 812.Google Scholar
Soria-Gomez, E., Pagano Zottola, A. C., Mariani, Y., et al. (2021). Subcellular specificity of cannabinoid effects in striatonigral circuits. Neuron, 109, 15131526.CrossRefGoogle ScholarPubMed
Turner, S. E., Williams, C. M., Iversen, L., et al. (2017). Molecular pharmacology of phytocannabinoids. Prog Chem Org Nat Prod, 103, 61101.Google Scholar
Valenti, M., Viganò, D., Casico, M. G., et al. (2004). Differential diurnal variations of anandamide and 2-arachidonoyl-glycerol levels in rat brain. Cell Mol Life Sci, 61, 945950.Google Scholar
Vaughn, L. K., Denning, G., Stuhr, K. L., et al. (2010). Endocannabinoid signalling: Has it got rhythm? Br J Pharmacol, 160, 530543.Google Scholar
Walker, J. M., and Huang, S. M. (2002). Cannabinoid analgesia. Pharmacol Ther, 95, 127135.Google Scholar
Watkins, B. A., and Kim, J. (2015). The endocannabinoid system: Directing eating behavior and macronutrient metabolism. Front Psychol, 5, 1506.Google Scholar
Xing, C., Zhuang, Y., Xu, T. H., et al. (2020). Cryo-EM structure of the human cannabinoid receptor CB2-Gi signaling complex. Cell, 180, 645654.Google Scholar
Zygmunt, P. M., Petersson, J., Andersson, D. A., et al. (1999). Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 400, 452457.CrossRefGoogle ScholarPubMed

References

Akram, H., Mokrysz, C., and Curran, H. V. (2019). What are the psychological effects of using synthetic cannabinoids? A systematic review. J Psychopharmacol, 33, 271283.Google Scholar
Alexandre, J., Carmo, H., Carvalho, F., et al. (2020). Synthetic cannabinoids and their impact on neurodevelopmental processes. Addict Biol, 25, e12824.Google Scholar
Altintas, M., Inanc, L., Oruc, G. A., et al. (2016). Clinical characteristics of synthetic cannabinoid-induced psychosis in relation to schizophrenia: A single-center cross-sectional analysis of concurrently hospitalized patients. Neuropsychiatr Dis Treat, 12, 18931900.Google Scholar
Altintop, I. (2020). A 4-year retrospective analysis of patients presenting at the emergency department with synthetic cannabinoid intoxication in Turkey. J Clin Psychopharmacol, 40, 464467.Google Scholar
van Amsterdam, J., Brunt, T., and van den Brink, W. (2015). The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects. J Psychopharmacol, 29, 254263.Google Scholar
Angerer, V., Franz, F., Moosmann, B., et al. (2019). 5F-Cumyl-PINACA in ‘e-liquids’ for electronic cigarettes: Comprehensive characterization of a new type of synthetic cannabinoid in a trendy product including investigations on the in vitro and in vivo phase I metabolism of 5F-Cumyl-PINACA and its non-fluorinated analog Cumyl-PINACA. Forensic Toxicol, 37, 186196.Google Scholar
Argamany, J. R., Reveles, K. R., and Duhon, B. (2016). Synthetic cannabinoid hyperemesis resulting in rhabdomyolysis and acute renal failure. Am J Emerg Med, 34, 765.e12.Google Scholar
Auwärter, V., Dresen, S., Weinmann, W., et al. (2009). ‘Spice’ and other herbal blends: Harmless incense or cannabinoid designer drugs? J Mass Spectrom, 44, 832837.CrossRefGoogle ScholarPubMed
Barbieri, M., Ossato, A., Canazza, I., et al. (2016). Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair novel object recognition in mice: Behavioral, electrophysiological and neurochemical evidence. Neuropharmacology, 109, 254269.Google Scholar
Basavarajappa, B. S., and Subbanna, S. (2019). Potential mechanisms underlying the deleterious effects of synthetic cannabinoids found in spice/K2 products. Brain Sci, 9, 14.Google Scholar
Benford, D. M., and Caplan, J. P. (2011). Psychiatric sequelae of spice, k2, and synthetic cannabinoid receptor agonists. Psychosomatics, 52, 295.Google Scholar
Besli, G. E., Ikiz, M. A., Yildirim, S., et al. (2015). Synthetic cannabinoid abuse in adolescents: A case series. J Emerg Med, 49, 644650.Google Scholar
Bilel, S., Tirri, M., Arfè, R., et al. (2019). Pharmacological and behavioral effects of the synthetic cannabinoid AKB48 in rats. Front Neurosci, 13, 1163.Google Scholar
Bilel, S., Tirri, M., Arfè, R., et al. (2020). Novel halogenated synthetic cannabinoids impair sensorimotor functions in mice. Neurotoxicology, 76, 1732.Google Scholar
Brents, L. K., Gallus-Zawada, A., Radominska-Pandya, A., et al. (2012). Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochem Pharmacol, 83, 952961.Google Scholar
Brents, L. K., Reichard, E. E., Zimmerman, S. M., et al. (2011). Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS ONE, 6, e21917.Google Scholar
Canazza, I., Ossato, A., Trapella, C., et al. (2016). Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on ‘tetrad’, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology, 233, 36853709.Google Scholar
Canazza, I., Ossato, A., Vincenzi, F., et al. (2017). Pharmaco-toxicological effects of the novel third-generation fluorinate synthetic cannabinoids, 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice. In vitro and in vivo studies. Hum Psychopharmacol, 32, 3.Google Scholar
Castellanos, D., Singh, S., Thornton, G., et al. (2011). Synthetic cannabinoid use: A case series of adolescents. J Adolesc Health, 49, 347349.Google Scholar
Caviness, C. M., Tzilos, G., Anderson, B. J., et al. (2015). Synthetic cannabinoids: Use and predictors in a community sample of young adults. Subst Abus, 36, 368373.Google Scholar
Coccini, T., De Simone, U., Lonati, D., et al. (2021). MAM-2201, one of the most potent-naphthoyl indole derivative-synthetic cannabinoids, exerts toxic effects on human cell-based models of neurons and astrocytes. Neurotox Res, 39, 12511273.Google Scholar
Cohen, K., Kapitány-Fövény, M., Mama, Y., et al. (2017). The effects of synthetic cannabinoids on executive function. Psychopharmacology, 234, 11211134.Google Scholar
Cohen, K., and Weinstein, A. M. (2018). Synthetic and non-synthetic cannabinoid drugs and their adverse effects: A review from public health prospective. Front Public Health, 6, 162.Google Scholar
Cooper, Z. D. (2016). Adverse effects of synthetic cannabinoids: Management of acute toxicity and withdrawal. Curr Psychiatry Rep, 18, 52.Google Scholar
Cooper, Z. D., and Craft, R. M. (2018). Sex-dependent effects of cannabis and cannabinoids: A translational perspective. Neuropsychopharmacology, 43, 3451.Google Scholar
Cooper, Z. D., Evans, S. M., and Foltin, R. W. (2021). Self-administration of inhaled delta-9-tetrahydrocannabinol and synthetic cannabinoids in non-human primates. Exp Clin Psychopharmacol, 29, 137146.CrossRefGoogle ScholarPubMed
DAWN. (2012). The DAWN Report: Drug-Related Emergency Department Visits Involving Synthetic Cannabinoids; Substance Abuse and Mental Health Services Administration (SAMHSA), Center for Behavioral Health Statistics and Quality: Rockville, MD.Google Scholar
De Luca, M. A., Bimpisidis, Z., Melis, M., et al. (2015). Stimulation of in vivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology, 99, 705714.Google Scholar
De Luca, M. A., and Fattore, L. (2018). Therapeutic use of synthetic cannabinoids: Still an open issue? Clin Ther, 40, 14571466.Google Scholar
Dresen, S., Ferreirós, N., Pütz, M., et al. (2010). Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom, 45, 10951232.Google Scholar
Egan, K. L., Suerken, C. K., Reboussin, B. A., et al. (2015). K2 and spice use among a cohort of college students in southeast region of the USA. Am J Drug Alcohol Abuse, 41, 317322.Google Scholar
Elmore, J. S., and Baumann, M. H. (2018). Repeated exposure to the ‘spice’ cannabinoid JWH-018 induces tolerance and enhances responsiveness to 5-HT1A receptor stimulation in male rats. Front Psychiatry, 9, 55.Google Scholar
Escelsior, A., Belvederi Murri, M., Corsini, G. P., et al. (2021). Cannabinoid use and self-injurious behaviours: A systematic review and meta-analysis. J Affect Disord, 278, 8598.Google Scholar
Fasih, A. (2021). Lethal coagulopathy resulting from the consumption of contaminated synthetic cannabinoids: The story of a public health crisis. J Public Health (Oxf), 43, e1e6.Google Scholar
Fattore, L. (2013). Considering gender in cannabinoid research: A step towards personalized treatment of marijuana addicts. Drug Test Anal, 5, 5761.Google Scholar
Fattore, L. (2016). Synthetic cannabinoids: Further evidence supporting the relationship between cannabinoids and psychosis. Biol Psychiatry, 79, 539548.Google Scholar
Fattore, L., and Fratta, W. (2010). How important are sex differences in cannabinoid action? Br J Pharmacol, 160, 544548.Google Scholar
Fattore, L., and Fratta, W. (2011). Beyond THC: The new generation of cannabinoid designer drugs. Front Behav Neurosci, 5, 60.Google Scholar
Fattore, L., Marti, M., Mostallino, R., et al. (2020). Sex and gender differences in the effects of novel psychoactive substances. Brain Sci, 10, 606.Google Scholar
Ferk, F., Gminski, R., Al-Serori, H., et al. (2016). Genotoxic properties of XLR-11, a widely consumed synthetic cannabinoid, and of the benzoyl indole RCS-4. Arch Toxicol, 90, 31113123.Google Scholar
Forrester, M. B., Kleinschmidt, K., Schwarz, E., et al. (2011). Synthetic cannabinoid exposures reported to Texas poison centers. J Addict Dis, 30, 351358.Google Scholar
Gampfer, T. M., Wagmann, L., Belkacemi, A., et al. (2021). Cytotoxicity, metabolism, and isozyme mapping of the synthetic cannabinoids JWH-200, A-796260, and 5F-EMB-PINACA studied by means of in vitro systems. Arch Toxicol, 95, 35393557.Google Scholar
Grafinger, K. E., Cannaert, A., Ametovski, A., et al. (2021a). Systematic evaluation of a panel of 30 synthetic cannabinoid receptor agonists structurally related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA using a combination of binding and different CB1 receptor activation assays-Part II: Structure activity relationship assessment via a β-arrestin recruitment assay. Drug Test Anal, 13, 14021411.Google Scholar
Grafinger, K. E., Vandeputte, M. M., Cannaert, A., et al. (2021b). Systematic evaluation of a panel of 30 synthetic cannabinoid receptor agonists structurally related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA using a combination of binding and different CB1 receptor activation assays. Part III: The G protein pathway and critical comparison of different assays. Drug Test Anal, 13, 14121429.Google Scholar
Guler, E. M., Bektay, M. Y., Akyildiz, A. G., et al. (2020). Investigation of DNA damage, oxidative stress, and inflammation in synthetic cannabinoid users. Hum Exp Toxicol, 39, 14541462.Google Scholar
Gunderson, E. W., Haughey, H. M., Ait-Daoud, N., et al. (2012). ‘Spice’ and ‘K2’ herbal highs: A case series and systematic review of the clinical effects and biopsychosocial implications of synthetic cannabinoid use in humans. Am J Addict, 21, 320326.Google Scholar
Gutierrez, K. M., and Cooper, T. V. (2014). Investigating correlates of synthetic marijuana and salvia use in light and intermittent smokers and college students in a predominantly Hispanic sample. Exp Clin Psychopharmacol, 22, 524529.Google Scholar
Haden, M., Archer, J. R., Dargan, P. I., et al. (2017). MDMB-CHMICA: Availability, patterns of use, and toxicity associated with this novel psychoactive substance. Subst Use Misuse, 52, 223232.Google Scholar
Hermanns-Clausen, M., Kneisel, S., Szabo, B., et al. (2013). Acute toxicity due to the confirmed consumption of synthetic cannabinoids: Clinical and laboratory findings. Addiction, 108, 534544.Google Scholar
Hiranita, T. (2015). Self-administration of JWH-018 a synthetic cannabinoid in experimentally naïve rats. J Alcohol Drug Depend, 3, e128.Google Scholar
Hobbs, M., Kalk, N. J., Morrison, P. D., et al. (2018). Spicing it up: Synthetic cannabinoid receptor agonists and psychosis: A systematic review. Eur Neuropsychopharmacol, 28, 12891304.Google Scholar
Hurst, D., Loeffler, G., and McLay, R. (2011). Psychosis associated with synthetic cannabinoid agonists: A case series. Am J Psychiatry, 168, 1119.Google Scholar
Joseph, A. M., Manseau, M. W., Lalane, M., et al. (2017). Characteristics associated with synthetic cannabinoid use among patients treated in a public psychiatric emergency setting. Am J Drug Alcohol Abuse, 43, 117122.Google Scholar
Kaneko, S. (2017). Motor vehicle collisions caused by the ‘super-strength’ synthetic cannabinoids, MAM-2201, 5F-PB-22, 5F-AB-PINACA, 5F-AMB and 5F-ADB in Japan experienced from 2012 to 2014. Forensic Toxicol, 35, 244251.Google Scholar
Karinen, R., Tuv, S. S., Øiestad, E. L., et al. (2015). Concentrations of APINACA, 5F-APINACA, UR-144 and its degradant product in blood samples from six impaired drivers compared to previous reported concentrations of other synthetic cannabinoids. Forensic Sci Int, 246, 98103.Google Scholar
Koller, V. J., Auwärter, V., Grummt, T., et al. (2014). Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497-C8. Toxicol Appl Pharmacol, 277, 164171.Google Scholar
Koller, V. J., Ferk, F., Al-Serori, H., et al. (2015). Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids. Food Chem Toxicol, 80, 130136.Google Scholar
Langer, N., Lindigkeit, R., Schiebel, H. M., et al. (2016). Identification and quantification of synthetic cannabinoids in ‘spice-like’ herbal mixtures: Update of the German situation for the spring of 2016. Forensic Sci Int, 269, 3141.Google Scholar
Lapoint, J., James, L. P., Moran, C. L., et al. (2011). Severe toxicity following synthetic cannabinoid ingestion. Clin Toxicol, 49, 760764.Google Scholar
Lemos, N. P. (2014). Driving under the influence of synthetic cannabinoid receptor agonist XLR-11. J Forensic Sci, 59, 16791683.Google Scholar
Lenzi, M., Cocchi, V., Cavazza, L., et al. (2020). Genotoxic properties of synthetic cannabinoids on TK6 human cells by flow cytometry. Int J Mol Sci, 21, 1150.Google Scholar
Louis, A., Peterson, B. L., and Couper, F. J. (2014). XLR-11 and UR-144 in Washington state and state of Alaska driving cases. J Anal Toxicol, 38, 563568.Google Scholar
Martinotti, G., Santacroce, R., Papanti, D., et al. (2017). Synthetic cannabinoids: Psychopharmacology, clinical aspects, psychotic onset. CNS Neurol Disord Drug Targets, 16, 567575.Google Scholar
McCain, K. R., Jones, J. O., Chilbert, K. T., et al. (2018). Impaired driving associated with the synthetic cannabinoid 5F-Adb. J Forensic Sci Criminol, 6, 10.15744/2348-9804.6.105.Google Scholar
Meijer, K. A., Russo, R. R., and Adhvaryu, D. V. (2014). Smoking synthetic marijuana leads to self-mutilation requiring bilateral amputations. Orthopedics, 37, 391394.Google Scholar
Miliano, C., Margiani, G., Fattore, L., et al. (2018). Sales and advertising channels of new psychoactive substances (NPS): Internet, social networks, and smartphone apps. Brain Sci, 8, 123.Google Scholar
Morbiato, E., Bilel, S., Tirri, M., et al. (2020). Potential of the zebrafish model for the forensic toxicology screening of NPS: A comparative study of the effects of APINAC and methiopropamine on the behavior of zebrafish larvae and mice. Neurotoxicology, 78, 3646.Google Scholar
Münster-Müller, S., Matzenbach, I., Knepper, T., et al. (2020). Profiling of synthesis-related impurities of the synthetic cannabinoid Cumyl-5F-PINACA in seized samples of e-liquids via multivariate analysis of UHPLC-MSn data. Drug Test Anal, 12, 119126.Google Scholar
Musshoff, F., Madea, B., Kernbach-Wighton, G., et al. (2014). Driving under the influence of synthetic cannabinoids (‘Spice’): A case series. Int J Legal Med, 128, 5964.Google Scholar
Nia, A. B., Mann, C., Kaur, H., et al. (2018). Cannabis use: Neurobiological, behavioral, and sex/gender considerations. Curr Behav Neurosci Rep, 5, 271280.Google Scholar
Nia, A. B., Mann, C. L., Spriggs, S., et al. (2019). The relevance of sex in the association of synthetic cannabinoid use with psychosis and agitation in an inpatient population. J Clin Psychiatry, 80, 18m12539.Google Scholar
Ossato, A., Canazza, I., Trapella, C., et al. (2016). Effect of JWH-250, JWH-073 and their interaction on ‘tetrad’, sensorimotor, neurological and neurochemical responses in mice. Prog Neuropsychopharmacol Biol Psychiatry, 67, 3150.Google Scholar
Ossato, A., Uccelli, L., Bilel, S., et al. (2017). Psychostimulant effect of the synthetic cannabinoid JWH-018 and AKB48: Behavioral, neurochemical, and dopamine transporter scan imaging studies in mice. Front Psychiatry, 8, 130.Google Scholar
Ossato, A., Vigolo, A., Trapella, C., et al. (2015). JWH-018 impairs sensorimotor functions in mice. Neuroscience, 300, 174188.Google Scholar
Palamar, J. J., Acosta, P., Calderón, F. F., et al. (2017). Assessing self-reported use of new psychoactive substances: The impact of gate questions. Am J Drug Alcohol Abuse, 43, 609617.Google Scholar
Palamar, J. J., Martins, S. S., Su, M. K., et al. (2015). Self-reported use of novel psychoactive substances in a US nationally representative survey: Prevalence, correlates, and a call for new survey methods to prevent underreporting. Drug Alcohol Depend, 156, 112119.Google Scholar
Peglow, S., Buchner, J., and Briscoe, G. (2012). Synthetic cannabinoid induced psychosis in a previously nonpsychotic patient. Am J Addict, 21, 287288.Google Scholar
Peterson, B. L., and Couper, F. J. (2015). Concentrations of AB-CHMINACA and AB-PINACA and driving behavior in suspected impaired driving cases. J Anal Toxicol, 39, 642647.Google Scholar
Rajasekaran, M., Brents, L. K., Franks, L. N., et al. (2013). Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors. Toxicol Appl Pharmacol, 269, 100108.Google Scholar
Riley, S. B., Sochat, M., Moser, K., et al. (2019). Case of brodifacoum-contaminated synthetic cannabinoid. Clin Toxicol, 57, 143144.Google Scholar
Roberto, A. J., Lorenzo, A., Li, K. J., et al. (2016). First-episode of synthetic cannabinoid-induced psychosis in a young adult, successfully managed with hospitalization and risperidone. Case Rep Psychiatry, 2016, 7257489.Google Scholar
Schifano, F., Corazza, O., Deluca, P., et al. (2009). Psychoactive drug or mystical incense? Overview of the online available information on spice products. Int J Cult Ment Health, 2, 137144.Google Scholar
Seely, K. A., Lapoint, J., Moran, J. H., et al. (2012). Spice drugs are more than harmless herbal blends: A review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry, 39, 234243.Google Scholar
Sevinc, M. M., Kinaci, E., Bayrak, S., et al. (2015). Extraordinary cause of acute gastric dilatation and hepatic portal venous gas: Chronic use of synthetic cannabinoid. World J Gastroenterol, 21, 1070410708.Google Scholar
Sezer, Y., Jannuzzi, A. T., Huestis, M. A., et al. (2020). In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol Res, 9, 734740.Google Scholar
Solimini, R., Busardò, F. P., Rotolo, M. C., et al. (2017). Hepatotoxicity associated to synthetic cannabinoids use. Eur Rev Med Pharmacol Sci, 21, 16.Google Scholar
Sud, P., Gordon, M., Tortora, L., et al. (2018). Retrospective chart review of synthetic cannabinoid intoxication with toxicologic analysis. West J Emerg Med, 19, 567572.Google Scholar
Sweeney, B., Talebi, S., Toro, D., et al. (2016). Hyperthermia and severe rhabdomyolysis from synthetic cannabinoids. Am J Emerg Med, 34, 121.e12.Google Scholar
Tai, S., and Fantegrossi, W. E. (2017). Pharmacological and toxicological effects of synthetic cannabinoids and their metabolites. Curr Top Behav Neurosci, 32, 249262.Google Scholar
Theunissen, E. L., Reckweg, J. T., Hutten, N. R. P. W., et al. (2022). Psychotomimetic symptoms after a moderate dose of a synthetic cannabinoid (JWH-018): Implications for psychosis. Psychopharmacology, 239, 12511261.Google Scholar
Thomas, S., Bliss, S., and Malik, M. (2012). Suicidal ideation and self-harm following K2 use. J Okla State Med Assoc, 105, 430433.Google Scholar
Tomiyama, K. I., and Funada, M. (2021). Synthetic cannabinoid CP-55,940 induces apoptosis in a human skeletal muscle model via regulation of CB1 receptors and L-type Ca2+ channels. Arch Toxicol, 95, 617630.Google Scholar
Uchiyama, N., Kikura-Hanajiri, R., Ogata, J., et al. (2010). Chemical analysis of synthetic cannabinoids as designer drugs in herbal products. Forensic Sci Int, 198, 3138.Google Scholar
Ukaigwe, A., Karmacharya, P., and Donato, A. (2014). A gut gone to pot: A case of cannabinoid hyperemesis syndrome due to K2, a synthetic cannabinoid. Case Rep Emerg Med, 167098.CrossRefGoogle Scholar
Van der Veer, N., and Friday, J. (2011). Persistent psychosis following the use of Spice. Schizophr Res, 130, 285286.Google Scholar
Vidourek, R. A., King, K. A., and Burbage, M. L. (2013). Reasons for synthetic THC use among college students. J Drug Educ, 43, 353363.Google Scholar
Wang, X. F., Galaj, E., Bi, G. H., et al. (2020). Different receptor mechanisms underlying phytocannabinoid- versus synthetic cannabinoid-induced tetrad effects: Opposite roles of CB1 /CB2 versus GPR55 receptors. Br J Pharmacol, 177, 18651880.CrossRefGoogle ScholarPubMed
Weinstein, A. M., Rosca, P., Fattore, L., et al. (2017). Synthetic cathinone and cannabinoid designer drugs pose a major risk for public health. Front Psychiatry, 8, 156.Google Scholar
Wells, D. L., and Ott, C. A. (2011). The ‘new’ marijuana. Ann Pharmacother, 45, 414417.Google Scholar
Wu, N., Danoun, S., Balayssac, S., et al. (2021). Synthetic cannabinoids in e-liquids: A proton and fluorine NMR analysis from a conventional spectrometer to a compact one. Forensic Sci Int, 324, 110813.Google Scholar
Yalçın, M., Tunalı, N., Yıldız, H., et al. (2018). Sociodemographic and clinical characteristics of synthetic cannabinoid users in a large psychiatric emergency department in Turkey. J Addict Dis, 37, 259267.Google Scholar
Zarifi, C., and Vyas, S. (2017). Spice-y kidney failure: A case report and systematic review of acute kidney injury attributable to the use of synthetic cannabis. Perm J, 21, 16160.CrossRefGoogle Scholar
Zimmermann, U. S., Winkelmann, P. R., Pilhatsch, M., et al. (2009). Withdrawal phenomena and dependence syndrome after the consumption of ‘spice gold’. Dtsch Artzebl Int, 106, 464467.Google Scholar
Zorlu, N., Di Biase, A. M., Kalaycı, Ç. Ç., et al. (2016). Abnormal white matter integrity in synthetic cannabinoid users. Eur Neuropsychopharmacol, 26, 18181825.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×