Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T22:55:35.568Z Has data issue: false hasContentIssue false

3 - Antimicrobial Agents and Biofilms

Published online by Cambridge University Press:  23 November 2009

Michael R. W. Brown
Affiliation:
Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
Anthony W. Smith
Affiliation:
Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
Michael Wilson
Affiliation:
University College London
Deirdre Devine
Affiliation:
Leeds Dental Institute, University of Leeds
Get access

Summary

INTRODUCTION: THE PROBLEMS

There is increasing concern over the role played by microbial biofilms in infection. These include well-known examples of medical device-related infections such as those associated with artificial joints, prosthetic heart valves, and catheters. Indeed, recent surveys indicate that catheter-associated bacteraemia, consequent from catheter-related infection, is by far the leading cause of nosocomial bloodstream infection in intensive care units (Brub-Buisson, 2001). Many chronic infections, not related to medical devices, are now recognised to be due to bacteria either not growing and relatively dormant or growing slowly as biomasses or adherent biofilms on mucosal surfaces. Thus, the question of how to treat biofilm infections extends to many aspects of medicine. Indeed, the issue of biofilm eradication extends way beyond the infected patient, since bacteria in the environment typically exist as biofilms. These are commonly complex multispecies ecosystems associated with protozoa (Brown and Barker, 1999). The biofilm mode of growth greatly enhances the survival of the constituent microbes.

Growth as a biofilm almost always leads to a large increase in resistance to antimicrobial agents, including antibiotics, biocides, and preservatives, compared with cultures grown in suspension (planktonic) in conventional liquid media (Gilbert, Collier, and Brown, 1990; Stewart and Costerton, 2001). However, a recent paper with high density planktonic cultures indicated similar resistance to antimicrobials as did biofilm cultures (Spoering and Lewis, 2001). Currently, there is no generally agreed mechanism to account for the broad resistance to chemical agents.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. L. and McLean, R. J. C. (1999). Impact of rpoS deletion on Escherichia coli biofilms. Applied and Environmental Microbiology, 65, 4285–4287Google ScholarPubMed
Al-Bakri, A. G., Gilbert, P. and Allison, D. G. (1999). Mixed species biofilms of Burkholderia cepacia and Pseudomonas aeruginosa. In: Biofilms: The Good, the Bad and the Ugly, 327–337. Edited by Wimpenny, J., Gilbert, P., Walker, J., Brading, M. and Bayston, R. Cardiff: BioLine
Allison, D., Maira-Litrán, T. and Gilbert, P. (1999). Perfused biofilm fermenters. Methods in Enzymology, 310, 232–248CrossRefGoogle ScholarPubMed
Allison, D. G., Brown, M. R. W., Evans, D. J., and Gilbert, P. (1990a). Surface hydrophobicity and dispersal of Pseudomonas aeruginosa from biofilms. FEMS Microbiology Letters, 71, 101–104CrossRefGoogle Scholar
Allison, D. G., Evans, D. J., Brown, M. R. W. and Gilbert, P. (1990b). Possible involvement of the division cycle in dispersal of Escherichia coli from biofilms. Journal of Bacteriology, 172, 1667–1669CrossRefGoogle Scholar
An, Y. H., Dickinson, R. B. and Doyle, R. J. (2000). Mechanisms of bacterial adhesion and pathogenesis of implant and tissue infections. In Handbook of Bacterial Adhesion: Principles, Methods, and Applications, 1–27. Edited by An, Y. H. and Friedman, R. J. Totowa, NJ: Humana PressCrossRef
Anderl, J. N., Franklin, M. J. and Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44, 1818–1824CrossRefGoogle ScholarPubMed
Anwar, H., Brown, M. R. W. and Lambert, P. A. (1983). Effect of nutrient depletion on sensitivity of Pseudomonas cepacia to phagocytosis and serum bactericidal activity at different temperatures. Journal of General Microbiology, 129, 2021–2027Google ScholarPubMed
Bagge, N., Ciofu, O., Skovgaard, L. T. and Høiby, N. (2000). Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase. APMIS, 108, 589–600CrossRefGoogle ScholarPubMed
Boland, T., Latour, R. A. and Stutzenberger, F. J. (2000). Molecular basis of bacterial adhesion. In: Handbook of Bacterial Adhesion: Principles, Methods, and Applications, 29–41. Edited by An, Y. H. and Friedman, R. J. Totowa, NJ: Humana PressCrossRef
Brooun, A., Liu, S. and Lewis, K. (2000). A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 44, 640–646CrossRefGoogle ScholarPubMed
Brown, M. R. W. (1977). Nutrient depletion and antibiotic susceptibility. Journal of Antimicrobial Chemotherapy, 3, 198–201CrossRefGoogle ScholarPubMed
Brown, M. R. W., Allison, D. and Gilbert, P. (1988). Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? Journal of Antimicrobial Chemotherapy, 22, 777–780CrossRefGoogle ScholarPubMed
Brown, M. R. W. and Barker, J. (1999). Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends in Microbiology, 7, 46–50CrossRefGoogle ScholarPubMed
Brown, M. R. W., Collier, P. J., Courcol, R. J. and Gilbert, P. (1995). Definition of phenotype in batch culture. In: Microbiological Quality Assurance. A Guide towards Relevance and Reproducibility of Inocula, 13–20. Edited by Brown, M. R. W. and Gilbert, P. Boca Raton: CRC Press
Brown, M. R. W., Collier, P. J. and Gilbert, P. (1990). Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope and batch and continuous culture studies. Antimicrobial Agents and Chemotherapy, 34, 1623–1628CrossRefGoogle ScholarPubMed
Brown, M. R. W. and Gilbert, P. (1995). Microbiological Quality Assurance: A Guide towards Relevance and Reproducibility of Inocula, Boca Raton: CRC Press
Brown, M. R. W. and Smith, A. W., (2001). Dormancy and persistence in chronic infection: role of the general stress response in resistance to chemotherapy. Journal of Antimicrobial Chemotherapy, 48, 141–142CrossRefGoogle ScholarPubMed
Brown, M. R. W. and Williams, P. (1985). The influence of environment on envelope properties affecting survival of bacteria in infections. Annual Review of Microbiology, 39, 527–556CrossRefGoogle ScholarPubMed
Brub-Buisson, C. (2001). New technologies and infection control practices to prevent intravascular catheter-related infections. American Journal of Respiratory and Critical Care Medicine, 164, 1557–1558CrossRefGoogle Scholar
Bühler, T., Ballestero, S., Desai, M. and Brown, M. R. W. (1998). Generation of a reproducible nutrient-depleted biofilm of Escherichia coli and Burkholderia cepacia. Journal of Applied Bacteriology, 85, 457–462CrossRefGoogle ScholarPubMed
Cashel, M., Gentry, D. R., Hernandez, V. J. and Vinella, D. (1996). The stringent response. In Escherichia coli and Salmonella, 1458–1496. Edited by Neidhardt, F. C., Curtiss, R., III, Ingraham, J. L., Lin, E. C. C., Low, K. B., Magasanik, B., Reznikoff, W. S., Riley, M., Schaechter, M. and Umbarger, H. E. Washington DC: ASM Press
Chan, P. F., Foster, S. J., Ingham, E. and Clements, M. O. (1998). The Staphylococcus aureus alternative sigma factor sigma B controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. Journal of Bacteriology, 180, 6082–6089Google Scholar
Clements, M. O., and Foster, S. J. (1999). Stress resistance in Staphylococcus aureus. Trends in Microbiology, 7, 458–462CrossRefGoogle ScholarPubMed
Clewell, D. B. (1999). Sex pheromone systems in Enterococci. In Cell-Cell Signaling in Bacteria, 47–66. Edited by Dunny, G. M. and Winans, S. C. Washington DC: ASM Press
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. and Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745CrossRefGoogle ScholarPubMed
Costerton, J. W., Stewart, P. S. and Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284, 1318–1322CrossRefGoogle ScholarPubMed
Cramton, S. E., Gerke, C., Nichols, W. W. and Gotz, F. (1999). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm. Infection and Immunity, 67, 5427–5433Google ScholarPubMed
Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. and Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298CrossRefGoogle ScholarPubMed
Kievit, T. R., Gillis, R., Marx, S., Brown, C. and Iglewski, B. H. (2001). Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Applied and Environmental Microbiology, 67, 1865–1873CrossRefGoogle ScholarPubMed
Kievit, T. R., Parkins, M. D., Gillis, R. J., Srikumar, R., Ceri, H., Poole, K., Iglewski, B. H. and Storey, D. G. (2001). Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 45, 1761–1770CrossRefGoogle ScholarPubMed
DeMaio, J., Zhang, Y., Ko, C., Young, D. B. and Bishai, W. R., (1996). A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the USA, 93, 2790–2794CrossRefGoogle ScholarPubMed
Desai, M., Bühler, T., Weller, P. H. and Brown, M. R. W. (1998). Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. Journal of Antimicrobial Chemotherapy, 42, 153–160CrossRefGoogle ScholarPubMed
Dibdin, G. and Wimpenny, J. (1999). Steady-state biofilm: practical and theoretical models. Methods in Enzymology, 310, 296–322CrossRefGoogle ScholarPubMed
Dodd, C. E. R., Sharman, R. L., Bloomfield, S. F., Booth, I. R. and Stewart, G. S. A. B. (1997). Inimical processes: bacterial self destruction and sub-lethal injury. Trends in Food Science & Technology, 8, 238–241CrossRefGoogle Scholar
Domingue, P. A. G., Lambert, P. A. and Brown, M. R. W. (1989). Iron depletion alters surface-associated properties of Staphylococcus aureus and its association to human neutrophils in chemiluminescence. FEMS Microbiology Letters, 59, 265–268CrossRefGoogle Scholar
Duguid, I. G., Evans, E., Brown, M. R. W. and Gilbert, P. (1992a). Growth-rate-independent killing by ciprofloxacin of biofilm-derived Staphylococcus epidermidis: evidence for cell-cycle dependency. Journal of Antimicrobial Chemotherapy, 30, 791–802CrossRefGoogle Scholar
Duguid, I. G., Evans, E., Brown, M. R. W. and Gilbert, P. (1992b). Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin. Journal of Antimicrobial Chemotherapy, 30, 803–810CrossRefGoogle Scholar
Evans, D. J., Allison, D. G., Brown, M. R. W. and Gilbert, P. (1991). Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. Journal of Antimicrobial Chemotherapy, 27, 177–184CrossRefGoogle ScholarPubMed
Evans, K., Passador, L., Srikumar, R., Tsang, E., Nezezon, J. and Poole, K. (1998). Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology, 180, 5443–5447Google ScholarPubMed
Finch, J. E. and Brown, M. R. W. (1978). Effect of growth environment on Pseudomonas aeruginosa killing by rabbit polymorphonuclear leukocytes and cationic proteins. Infection and Immunity, 20, 340–346Google ScholarPubMed
Foley, I., Marsh, P., Wellington, E. M. H., Smith, A. W. and Brown, M. R. W. (1999). General stress response master regulator rpoS is expressed in human infection: a possible role in chronicity. Journal of Antimicrobial Chemotherapy, 43, 164–165CrossRefGoogle ScholarPubMed
Gilbert, P., Allison, D. G., Evans, D. J., Handley, P. S., and Brown, M. R. W. (1989). Growth rate control of adherent bacterial populations. Applied and Environmental Microbiology, 55, 1308–1311Google ScholarPubMed
Gilbert, P., Allison, D. G., Jacob, A., Korner, D., Wolfaa, G. and Foley, I. (1997). Immigration of planktonic Enterococcus faecalis cells into mature E. faecalis biofilms. In Biofilms: Community Interactions and Control, 133–142. Edited by Wimpenny, J. T., Handley, P., Gilbert, P. and Lappin-Scott, H. M. Cardiff: Bioline
Gilbert, P., Collier, P. J. and Brown, M. R. W. (1990). Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrobial Agents and Chemotherapy, 34, 1865–1868CrossRefGoogle ScholarPubMed
Gilbert, P., Coplan, F. and Brown, M. R. W. (1991). Centrifugation injury of Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 27, 550–551CrossRefGoogle ScholarPubMed
Gilbert, P., Hodgson, A. E. and Brown, M. R. W. (1995). Influence of the environment on the properties of microorganisms grown in association with surfaces. In Microbiological Quality Assurance: A Guide towards Relevance and Reproducibility of Inocula, 61–82. Edited by Brown, M. R. W. and Gilbert, P. Boca Raton: CRC Press
Giwercman, B., Jensen, E. T., Høiby, N., Kharazmi, A. and Costerton, J. W. (1991). Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrobial Agents and Chemotherapy, 35, 1008–1010CrossRefGoogle ScholarPubMed
Gottenbos, B., Grijpma, D. W., Mei, H. C., Feijen, J. and Busscher, H. J. (2001). Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 48, 7–13CrossRefGoogle ScholarPubMed
Gross, M., Cramton, S. E., Gotz, F. and Peschel, A. (2001). Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infection and Immunity, 69, 3423–3426CrossRefGoogle ScholarPubMed
Hassett, D. J., Ma, J. F., Elkins, J. G., McDermott, T. R., Ochsner, U. A., West, S. E. H., Huang, C. T., Fredericks, J., Burnett, S., Stewart, P. S., McFeters, G., Passador, L. and Iglewski, B. H. (1999). Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Molecular Microbiology, 34, 1082–1093CrossRefGoogle ScholarPubMed
Havarstein, L. S. and Morrison, D. A. (1999). Quorum sensing and peptide pheromones in Streptococcal competence for genetic transformation. In Cell-Cell Signaling in Bacteria, 9–26. Edited by Dunny, G. M. and Winans, S. C. Washington DC: ASM Press
Hengge-Aronis, R. (1996). Regulation of gene expression during entry into stationary phase. In Escherichia coli and Salmonella. Cellular and Molecular Biology, 1497–1512. Edited by Neidhardt, F. C., Curtiss, R., III, Ingraham, J. K., Lin, E. C. C., Low, K. B., Magasanik, B., Reznikoff, W. S., Riley, M., Schaechter, M. and Umbarger, H. E. Washington DC: ASM Press
Hengge-Aronis, R. (1999). Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Current Opinion in Microbiology, 2, 148–152CrossRefGoogle ScholarPubMed
Heys, S. J. D., Gilbert, P., Eberhard, A. and Allison, D. G. (1997). Homoserine lactones and bacterial biofilms. In Biofilms: Community Interactions and Control, 103–112. Edited by Wimpenny, J., Handley, P., Gilbert, P., Lappin-Scott, H. M. and Jones, M. Cardiff: Bioline
Hopelman, A. I. M. and Tuomanen, E. (1992). Consequences of microbial attachment: directing host cell functions with adhesins. Infection and Immunity, 60, 1729–1733Google Scholar
Jørgensen, F., Bally, M., Chapon-Herve, V., Stewart, G. S. A. B., Michel, G., Lazdunski, A. and Williams, P. (1999). RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology, 145, 835–844CrossRefGoogle ScholarPubMed
Karthikeyan, S., Korber, D. R., Wolfaardt, G. M. and Caldwell, D. E. (2000). Monitoring the organization of microbial biofilm communities. In Handbook of Bacterial Adhesion: Principles, Methods, and Applications, 171–188. Edited by An, Y. H. and Friedman, R. J. Totowa, NJ: Humana PressCrossRef
Kharazmi, A., Giwercman, B. and Høiby, N. (1999). Robbins device in biofilm research. Methods in Enzymology, 310, 207–215CrossRefGoogle ScholarPubMed
Kimmitt, P. T., Harwood, C. R. and Barer, M. R. (2000). Toxin gene expression by shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerging Infectious Diseases, 6, 458–465CrossRefGoogle ScholarPubMed
Kornberg, A., Rao, N. N. and Ault-Richie, D. (1999). Inorganic polyphosphate: a molecule of many functions. Annual Review of Biochemistry, 68, 89–125CrossRefGoogle ScholarPubMed
Lazazzera, B. A., Palmer, T., Quisle, J. and Grossman, A. D. (1999). Cell-density control of gene expression and development in Bacillus subtilis. In Cell-Cell Signaling in Bacteria, 27–46. Edited by Dunny, G. M. and Winans, S. C. Washington DC: ASM Press
Lessard, I. A. and Walsh, C. T. (1999). VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Proceedings of the National Academy of Sciences of the USA, 96, 11028–11032CrossRefGoogle ScholarPubMed
Lewis, K. (2001). Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy, 45, 999–1007CrossRefGoogle ScholarPubMed
Mah, T.-F. C. and O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9, 34–39CrossRefGoogle ScholarPubMed
Maira-Litrán, T., Allison, D. G. and Gilbert, P. (2000). Expression of the multiple antibiotic resistance operon (mar) during growth of Escherichia coli as a biofilm. Journal of Applied Microbiology, 88, 243–247CrossRefGoogle ScholarPubMed
Matin, A. (1991). The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Molecular Microbiology, 5, 3–10CrossRefGoogle ScholarPubMed
McLeod, G. I. and Spector, M. P. (1996). Starvation- and stationary-phase-induced resistance to the antimicrobial peptide polymyxin B in Salmonella typhimurium is RpoS (sigma(S)) independent and occurs through both phoP-dependent and -independent pathways. Journal of Bacteriology, 178, 3683–3688CrossRefGoogle ScholarPubMed
Moken, M. C., McMurray, L. M. and Levy, S. B., (1997). Selection of multiple-antibiotic-resistant (Mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrobial Agents and Chemotherapy, 41, 2770–2772Google ScholarPubMed
Nichols, W. W. (1991). Biofilms, antibiotics and penetration. Reviews of Medical Microbiology, 2, 177–181Google Scholar
Novick, R. P. (1999). Regulation of pathogenicity in Staphylococcus aureus by a peptide-based density-sensing system. In Cell-Cell Signaling in Bacteria, 129–146. Edited by Dunny, G. M. and Winans, S. C. Washington DC: ASM Press
O'Toole, G. A. and Kolter, R. (1998). Flagella and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295–304CrossRefGoogle ScholarPubMed
Pearson, J. P., Delden, C. and Iglewski, B. H. (1999). Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. Journal of Bacteriology, 181, 1203–1210Google ScholarPubMed
Pier, G. B., Saunders, J. M., Ames, P., Edwards, M. S., Auerbach, H., Speert, D. P. and Hurwitch, S. (1987). Opsonophagocytic killing antibody to Pseudomonas aeruginosa mucoid exopolysaccharide in older noncolonized patients with cystic fibrosis. New England Journal of Medicine, 317, 793–798CrossRefGoogle ScholarPubMed
Pomposiello, P. J. and Demple, B. (2001). Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends in Biotechnology, 19, 109–114CrossRefGoogle ScholarPubMed
Pratt, L. A. and Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 30, 285–293CrossRefGoogle ScholarPubMed
Rachid, S., Ohlsen, K., Wallner, U., Hacker, J., Hecker, M. and Ziebuhr, W. (2000a). Alternative transcription factor sigma B is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. Journal of Bacteriology, 182, 6824–6826CrossRefGoogle Scholar
Rachid, S., Ohlsen, K., Witte, W., Hacker, J. and Ziebuhr, W. (2000b). Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 44, 3357–3363CrossRefGoogle Scholar
Rao, N. N., Liu, S. J. and Kornberg, A. (1998). Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. Journal of Bacteriology, 180, 2186–2193Google ScholarPubMed
Rashid, M. H., Rumbaugh, K., Passador, L., Davies, D. G., Hamood, A. N., Iglewski, B. H. and Kornberg, A. (2000a). Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the USA, 97, 9636–9641CrossRefGoogle Scholar
Scott, J. M., Mitchell, T. and Haldenwang, W. G., (2000). Stress triggers a process that limits activation of the Bacillus subtilis stress transcription factor sigma B. Journal of Bacteriology, 182, 1452–1456CrossRefGoogle ScholarPubMed
Shiba, T., Tsutsumi, K., Yano, H., Iahara, Y., Yameda, A., Tanaka, T., Takahashia, M., Munekata, M., Rao, N. N. and Kornberg, A. (1997). Inorganic polyphosphate and the induction of rpoS expression. Proceedings of the National Academy of Sciences of the USA, 94, 11210–11215CrossRefGoogle ScholarPubMed
Sihorkar, V. and Vyas, S. P. (2001). Biofilm consortia on biomedical and biological surfaces: delivery and targeting strategies. Pharmaceutical Research, 18, 1247–1254CrossRefGoogle ScholarPubMed
Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J., and Greenberg, E. P. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407, 762–764CrossRefGoogle ScholarPubMed
Sissons, C. H., Wong, L. and An, Y. H. (2000). Laboratory culture and analysis of biofilms. In Handbook of Microbial Adhesion: Principles, Methods, and Applications, 133–169. Edited by An, Y. H. and Friedman, R. J. Totowa, NJ: Humana Press
Spector, M. P. (1998). The starvation-stress response (SSR) of Salmonella. Advances in Microbial Physiology, 40, 233–279CrossRefGoogle ScholarPubMed
Sperandio, V., Mellies, J. L., Nguyen, W., Shin, S. and Kaper, J. B. (1999). Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the USA, 96, 15196–15201CrossRefGoogle ScholarPubMed
Spoering, A. L. and Lewis, K. (2001). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. Journal of Bacteriology, 182, 6746–6751CrossRefGoogle Scholar
Stewart, P. S. (1996). Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrobial Agents and Chemotherapy, 38, 2125–2133Google Scholar
Stewart, P. S. and Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358, 135–138CrossRefGoogle ScholarPubMed
Stewart, P. S., Roe, F., Rayner, J., Elkins, J. G., Lewandowski, Z., Ochsner, U. A. and Hassett, D. J. (2000). Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 66, 836–838CrossRefGoogle ScholarPubMed
Stickler, D. J., Morris, N. S., McLean, R. J., and Fuqua, C. (1998). Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Applied and Environmental Microbiology, 64, 3486–3490Google ScholarPubMed
Stoodley, P., Wilson, S., Hall-Stoodley, L., Lappin-Scott, H. M. and Costerton, J. W. (2001). Growth and detachment of cell clusters from mature mixed-species biofilms. Applied and Environmental Microbiology, 67, 5608–5613CrossRefGoogle ScholarPubMed
Surette, M. G., Miller, M. B. and Bassler, B. L. (1999). Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proceedings of the National Academy of Sciences of the USA, 96, 1639–1644CrossRefGoogle ScholarPubMed
Sutherland, I. W. (2001). The biofilm matrix – an immobilised but dynamic environment. Trends in Microbiology, 9, 222–227CrossRefGoogle Scholar
Sutton, M. D., Smith, B. T., Godoy, V. G. and Walker, G. C. (2000). The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annual Review of Genetics, 34, 479–497CrossRefGoogle ScholarPubMed
Taddei, F., Matic, I. and Radman, M. (1995). cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proceedings of the National Academy of Sciences of the USA, 92, 11736–11740CrossRefGoogle ScholarPubMed
Tsutsumi, K., Munekata, M. and Shiba, T. (2000). Involvement of inorganic polyphosphate in expression of SOS genes. Biochimica Biophysica Acta, 1493, 73–81CrossRefGoogle ScholarPubMed
Bambeke, F., Balzi, E. and Tulkens, P. M. (2000). Antibiotic efflux pumps. Biochemical Pharmacology, 60, 457–470CrossRefGoogle ScholarPubMed
Belt, H., Neut, D., Schenk, W., Horn, J. W., Mei, H. C. and Busscher, H. J. (2001). Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials, 22, 1607–1611CrossRefGoogle ScholarPubMed
Mei, H. C., Free, R. H., Elving, G. J., Weissenbruch, R. and Busscher, H. J. (2000). Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. Journal of Medical Microbiology, 49, 713–718Google ScholarPubMed
Vuong, C., Saenz, H. L., Gotz, F. and Otto, M. (2000). Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. Journal of Infectious Diseases, 182, 1688–1693CrossRefGoogle ScholarPubMed
Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. and Greenberg, E. P. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413, 860–864CrossRefGoogle ScholarPubMed
Whiteley, M., Parsek, M. R. and Greenberg, E. P. (2000). Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. Journal of Bacteriology, 182, 4356–4360CrossRefGoogle ScholarPubMed
Williams, P., Lambert, P. A., Haigh, C. G. and Brown, M. R. W. (1986). The influence of the O and K antigens of Klebsiella aerogenes on surface hydrophobicity and susceptibility to phagocytosis and antimicrobial agents. Journal of Medical Microbiology, 21, 125–132CrossRefGoogle Scholar
Wilson, M. (2002). Bacterial Adhesion to Host Tissues: Mechanisms and Consequences. Cambridge: Cambridge University Press
Wu, H., Song, Z., Givskov, M., Doring, G., Worlitzsch, D., Rygaard, J. and Høiby, N. (2001). Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology, 147, 1105–1113CrossRefGoogle ScholarPubMed
Xu, K. D., McFeters, G. and Stewart, P. S. (2000). Biofilm resistance to antimicrobial agents. Microbiology, 146, 547–549CrossRefGoogle ScholarPubMed
Yasuda, H., Koga, T. and Fukoka, T. (1999). In vitro and in vivo models of bacterial biofilms. Methods in Enzymology, 310, 577–595CrossRefGoogle ScholarPubMed
Zgurskaya, H. I. and Nikaido, H. (2000). Multidrug resistance mechanisms: drug efflux across two membranes. Molecular Microbiology, 37, 219–225CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×