Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T07:00:07.028Z Has data issue: false hasContentIssue false

24 - Surgery in the patient with renal disease

Published online by Cambridge University Press:  12 January 2010

Jane Y. Yeun
Affiliation:
Department of Veterans Affairs Northern California Health Care System, Mather, CA
Burl R. Don
Affiliation:
University of California Davis, Sacramento, CA
Michael F. Lubin
Affiliation:
Emory University, Atlanta
Robert B. Smith
Affiliation:
Emory University, Atlanta
Thomas F. Dodson
Affiliation:
Emory University, Atlanta
Nathan O. Spell
Affiliation:
Emory University, Atlanta
H. Kenneth Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

Introduction

Kidney disease encompasses a wide spectrum of diseases: nephrotic syndrome or nephritic syndrome, mild chronic kidney disease (CKD) (Stage 1 and 2 CCr ≥ 0 ml/min), moderate CKD (Stage 3 CCr 30–59 ml/min), severe CKD (Stage 4 CCr 15–29 ml/min), end-stage renal disease (ESRD) or CKD (Stage 5 CCr < 15 ml/min) on some form of renal replacement therapy, and acute renal failure (ARF). Since CKD, ESRD, and ARF are more common and have more associated perioperative complications, this discussion will focus on patients with renal failure.

In general, patients with CKD, ESRD, and ARF are subject to the same potential complications perioperatively. In the patients with ESRD, there are the added considerations of the dialysis modalities or kidney allograft. Where appropriate, these also will be addressed. However, a thorough discussion of the perioperative management of patients with functioning kidney allografts is beyond the scope of this chapter. Therefore, we will focus on general principles in managing transplant patients.

End-stage renal disease (ESRD) develops in about 3.3 in 10 000 Americans each year and has a four times higher incidence in blacks than in whites. Diabetes mellitus and hypertension are the major causes of CKD and ESRD. More than 275 000 patients are now on dialysis, and the incidence is increasing by 3%–5% a year. Patients with CKD and ESRD are becoming increasingly common as the patient population ages, concomitant with a potential need for more surgical interventions for coronary artery disease, peripheral vascular disease, and vascular access for dialysis.

Type
Chapter
Information
Medical Management of the Surgical Patient
A Textbook of Perioperative Medicine
, pp. 327 - 352
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

United States Renal Data System. United States Renal Data System 2002 Annual Data Report: Incidence and prevalence. Am. J. Kidney Dis. 2003; 41(4 Suppl. 2): S41–S56.
Kellerman, P. S.Perioperative care of the renal patient. Arch. Intern. Med. 1994; 154: 1674–1688.CrossRefGoogle ScholarPubMed
Brenowitz, J. B., Williams, C. D., & Edwards, W. S.Major surgery in patients with chronic renal failure. Am. J. Surg. 1977; 134: 765–769.CrossRefGoogle ScholarPubMed
Pinson, C. W., Schuman, E. S., Gross, G. F.et al. Surgery in long-term dialysis patients. Experience with more than 300 cases. Am. J. Surg. 1986; 151: 567–571.CrossRefGoogle ScholarPubMed
United States Renal Data System. United States Renal Data System 2002 Annual Data Report: Survival, mortality, and causes of death. Am. J. Kidney Dis. 2003; 41(4 Suppl. 2): S151–S164.
Foley, R. N., Parfrey, P. S., & Sarnak, M. J.Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 1998; 9: S16–S23.Google ScholarPubMed
Foley, R. N., Parfrey, P. S., & Sarnak, M. J.Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 1998; 32: S112–S119.CrossRefGoogle ScholarPubMed
Foley, R. N., Parfrey, P. S., Harnett, J. D.et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995; 47: 186–192.CrossRefGoogle ScholarPubMed
Kasiske, B. L., Guijarro, C., Massy, Z. A.et al. Cardiovascular disease after renal transplantation. J. Am. Soc. Nephrol. 1996; 7: 158–165.Google ScholarPubMed
Nally, J. V. Jr. Cardiac disease in chronic uremia: investigation. Adv. Renal Replacem. Ther. 1997; 4: 225–233.CrossRefGoogle ScholarPubMed
Koch, M., Gradaus, F., Schoebel, F. C.et al. Relevance of conventional cardiovascular risk factors for the prediction of coronary artery disease in diabetic patients on renal replacement therapy. Nephrol. Dialysis Transpl. 1997; 12: 1187–1191.CrossRefGoogle ScholarPubMed
Rostand, S. G., Brunzell, J. D., Cannon, R. O. III, et al. Cardiovascular complications in renal failure. J. Am. Soc. Nephrol. 1991; 2: 1053–1062.Google ScholarPubMed
Mistry, B. M., Bastani, B., Solomon, H.et al. Prognostic value of dipyridamole thallium-201 screening to minimize perioperative cardiac complications in diabetics undergoing kidney or kidney-pancreas transplantation. Clin. Transpl. 1998; 12: 130–135.Google ScholarPubMed
Holley, J. L., Fenton, R. A., & Arthur, R. S.Thallium stress testing does not predict cardiovascular risk in diabetic patients with end-stage renal disease undergoing cadaveric renal transplantation. Am. J. Med. 1991; 90: 563–570.CrossRefGoogle Scholar
Iqbal, A., Gibbons, R. J., McGoon, M. D.et al. Noninvasive assessment of cardiac risk in insulin-dependent diabetic patients being evaluated for pancreatic transplantation using thallium-201 myocardial perfusion scintigraphy. Clin. Transpl. 1991; 5: 13–19.Google ScholarPubMed
Marwick, T. H., Steinmuller, D. R., Underwood, D. A.et al. Ineffectiveness of dipyridamole SPECT thallium imaging as a screening technique for coronary artery disease in patients with end-stage renal failure. Transplantation 1990; 49: 100–103.CrossRefGoogle ScholarPubMed
Dahan, M., Viron, B. M., Poiseau, E.et al. Combined dipyridamole-exercise stress echocardiography for detection of myocardial ischemia in hemodialysis patients: an alternative to stress nuclear imaging. Am. J. Kidney Dis. 2002; 40: 737–744.CrossRefGoogle ScholarPubMed
Rostand, S. G., Kirk, K. A. & Rutsky, E. A.Dialysis-associated ischemic heart disease: insights from coronary angiography. Kidney Int. 1984; 25: 653–659.CrossRefGoogle ScholarPubMed
Cottier, C., Pfisterer, M., Muller-Brand, J.et al. Cardiac evaluation of candidates for kidney transplantation: value of exercise radionuclide angiocardiography. Eur. Heart J. 1990; 11: 832–838.CrossRefGoogle ScholarPubMed
Le, A., Wilson, R., Douek, K.et al. Prospective risk stratification in renal transplant candidates for cardiac death. Am. J. Kidney Dis. 1994; 24: 65–71.CrossRefGoogle ScholarPubMed
Kasiske, B. L., Ramos, E. L., Gaston, R. S.et al. The evaluation of renal transplant candidates: clinical practice guidelines. Patient Care and Education Committee of the American Society of Transplant Physicians. J. Am. Soc. Nephrol. 1995; 6: 1–34.Google ScholarPubMed
Verani, M. S.Myocardial perfusion imaging versus two-dimensional echocardiography: comparative value in the diagnosis of coronary artery disease. J. Nucl. Cardiol. 1994; 1: 399–414.CrossRefGoogle Scholar
Philipson, J. D., Carpenter, B. J., Itzkoff, J.et al. Evaluation of cardiovascular risk for renal transplantation in diabetic patients. Am. J. Med. 1986; 81: 630–634.CrossRefGoogle ScholarPubMed
Morrow, C. E., Schwartz, J. S., Sutherland, D. E.et al. Predictive value of thallium stress testing for coronary and cardiovascular events in uremic diabetic patients before renal transplantation. Am. J. Surg. 1983; 146: 331–335.CrossRefGoogle ScholarPubMed
Brown, J. H., Vites, N. P., Testa, H. J.et al. Value of thallium myocardial imaging in the prediction of future cardiovascular events in patients with end-stage renal failure. Nephrol. Dialysis Transpl. 1993; 8: 433–437.Google ScholarPubMed
Vandenberg, B. F., Rossen, J. D., Grover-McKay, M.et al. Evaluation of diabetic patients for renal and pancreas transplantation: noninvasive screening for coronary artery disease using radionuclide methods. Transplantation 1996; 62: 1230–1235.CrossRefGoogle ScholarPubMed
Camp, A. D., Garvin, P. J., Hoff, J.et al. Prognostic value of intravenous dipyridamole thallium imaging in patients with diabetes mellitus considered for renal transplantation. Am. J. Cardiol. 1990; 65: 1459–1463.CrossRefGoogle ScholarPubMed
Derfler, K., Kletter, K., Balcke, P.et al. Predictive value of thallium-201-dipyridamole myocardial stress scintigraphy in chronic hemodialysis patients and transplant recipients. Clin. Nephrol. 1991; 36: 192–202.Google ScholarPubMed
Brown, K. A., Rimmer, J., & Haisch, C.Noninvasive cardiac risk stratification of diabetic and nondiabetic uremic renal allograft candidates using dipyridamole-thallium-201 imaging and radionuclide ventriculography. Am. J. Cardiol. 1989; 64: 1017–1021.CrossRefGoogle ScholarPubMed
Lewis, M. S., Wilson, R. A., Walker, K. W.et al. Validation of an algorithm for predicting cardiac events in renal transplant candidates. Am. J. Cardiol. 2002; 89: 847–850.CrossRefGoogle ScholarPubMed
Dahan, M., Viron, B. M., Faraggi, M.et al. Diagnostic accuracy and prognostic value of combined dipyridamole-exercise thallium imaging in hemodialysis patients. Kidney Int. 1998; 54: 255–262.CrossRefGoogle ScholarPubMed
Reis, G., Marcovitz, P. A., Leichtman, A. B.et al. Usefulness of dobutamine stress echocardiography in detecting coronary artery disease in end-stage renal disease. Am. J. Cardiol. 1995; 75: 707–710.CrossRefGoogle ScholarPubMed
Schmidt, A., Stefenelli, T., Schuster, E.et al. Informational contribution of noninvasive screening tests for coronary artery disease in patients on chronic renal replacement therapy. Am. J. Kidney Dis. 2001; 37: 56–63.CrossRefGoogle ScholarPubMed
Herzog, C. A., Marwick, T. H., Pheley, A. M.et al. Dobutamine stress echocardiography for the detection of significant coronary artery disease in renal transplant candidates. Am. J. Kidney Dis. 1999; 33: 1080–1090.CrossRefGoogle ScholarPubMed
Boudreau, R. J., Strony, J. T., duCret, R. P.et al. Perfusion thallium imaging of type I diabetes patients with end stage renal disease: comparison of oral and intravenous dipyridamole administration. Radiology 1990; 175: 103–105.CrossRefGoogle ScholarPubMed
Bates, J. R., Sawada, S. G., Segar, D. S.et al. Evaluation using dobutamine stress echocardiography in patients with insulin-dependent diabetes mellitus before kidney and/or pancreas transplantation. Am. J. Cardiol. 1996; 77: 175–179.CrossRefGoogle ScholarPubMed
West, J. C., Napoliello, D. A., Costello, J. M.et al. Preoperative dobutamine stress echocardiography versus cardiac arteriography for risk assessment prior to renal transplantation. Transpl. Int. 2000; 13 Suppl. 1: S27–S30.CrossRefGoogle Scholar
Manske, C. L., Thomas, W., Wang, Y.et al. Screening diabetic transplant candidates for coronary artery disease: identification of a low risk subgroup. Kidney Int. 1993; 44: 617–621.CrossRefGoogle ScholarPubMed
Trochu, J. N., Cantarovich, D., Renaudeau, J.et al. Assessment of coronary artery disease by thallium scan in type-1 diabetic uremic patients awaiting combined pancreas and renal transplantation. Angiology 1991; 42: 302–307.CrossRefGoogle ScholarPubMed
Auerbach, A. D., Goldman, L.β-blockers and reduction of cardiac events in noncardiac surgery. J. Am. Med. Assoc. 2002; 287: 1435–1444.Google ScholarPubMed
Suki, W. N.Use of diuretics in chronic renal failure. Kidney Int. Suppl 1997; 59: S33–S35.Google ScholarPubMed
Greenberg, A.Diuretic complications. Am. J. Med. Sci. 2000; 319: 10–24.CrossRefGoogle ScholarPubMed
Yee, J., Parasuraman, R., & Narins, R. G.Selective review of key perioperative renal–electrolyte disturbances in chronic renal failure patients. Chest 1999; 115: 149S–157S.CrossRefGoogle ScholarPubMed
Rindone, J. P. & Sloane, E. P.Cyanide toxicity from sodium nitroprusside: risks and management. Ann. Pharmacother. 1992; 26: 515–519.CrossRefGoogle ScholarPubMed
Burke, J. F. Jr. & Francos, G. C.Surgery in the patient with acute or chronic renal failure. Med. Clin. North Am. 1987; 71: 489–497.CrossRefGoogle ScholarPubMed
Bia, M. J. & DeFronzo, R. A.Extrarenal potassium homeostasis. Am. J. Physiol. 1981; 240: F257–F268.Google ScholarPubMed
Salem, M. M., Rosa, R. M., & Batlle, D. C.Extrarenal potassium tolerance in chronic renal failure: implications for the treatment of acute hyperkalemia. Am. J. Kidney Dis. 1991; 18: 421–440.CrossRefGoogle ScholarPubMed
Martin, R. S., Panese, S., Virginillo, M.et al. Increased secretion of potassium in the rectum of humans with chronic renal failure. Am. J. Kidney Dis. 1986; 8: 105–110.CrossRefGoogle ScholarPubMed
Ferrannini, E., Taddei, S., Santoro, D.et al. Independent stimulation of glucose metabolism and Na+–K+ exchange by insulin in the human forearm. Am. J. Physiol. 1988; 255: E953–E958.Google ScholarPubMed
Allon, M., Takeshian, A., & Shanklin, N.Effect of insulin-plus-glucose infusion with or without epinephrine on fasting hyperkalemia. Kidney Int. 1993; 43: 212–217.CrossRefGoogle ScholarPubMed
Blumberg, A., Weidmann, P., Shaw, S.et al. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am. J. Med. 1988; 85: 507–512.CrossRefGoogle ScholarPubMed
Allon, M. & Shanklin, N.Effect of bicarbonate administration on plasma potassium in dialysis patients: interactions with insulin and albuterol. Am. J. Kidney Dis. 1996; 28: 508–514.CrossRefGoogle ScholarPubMed
Pirenne, J., Lledo-Garcia, E., Benedetti, E.et al. Colon perforation after renal transplantation: a single-institution review. Clin. Transpl. 1997; 11: 88–93.Google ScholarPubMed
Klooster, J. M., Wiel, H. E., Saase, J. L.et al. Asystole during combination chemotherapy for non-Hodgkin's lymphoma: the acute tumor lysis syndrome. Neth. J. Med. 2000; 56: 147–152.CrossRefGoogle Scholar
Levin, N. W. & Hoenich, N. A.Consequences of hyperphosphatemia and elevated levels of the calcium–phosphorus product in dialysis patients. Curr. Opin. Nephrol. Hypertens. 2001; 10: 563–568.CrossRefGoogle ScholarPubMed
Schiller, L. R., Santa Ana, C. A., Sheikh, M. S.et al. Effect of the time of administration of calcium acetate on phosphorus binding. N. Engl. J. Med. 1989; 320: 1110–1113.CrossRefGoogle ScholarPubMed
Sheikh, M. S., Maguire, J. A., Emmett, M.et al. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J. Clin. Invest. 1989; 83: 66–73.CrossRefGoogle ScholarPubMed
Cannata-Andia, J. B., Fernandez-Martin, J. L.The clinical impact of aluminium overload in renal failure. Nephrol. Dial. Transpl. 2002; 17 Suppl. 2: 9–12.CrossRefGoogle ScholarPubMed
Molitoris, B. A., Froment, D. H., Mackenzie, T. A.et al. Citrate: a major factor in the toxicity of orally administered aluminum compounds. Kidney Int. 1989; 36: 949–953.CrossRefGoogle Scholar
Kumar, V. A., Yeun, J. Y., Vu, J. T.et al. Extended daily dialysis (EDD) rapidly reduces serum phosphate levels in intensive care unit (ICU) patients with acute renal failure (ARF). ASAIO J. 2001; 47(2): 150.Google Scholar
Tan, H. K., Bellomo, R., M'Pis, D. A.et al. Phosphatemic control during acute renal failure: intermittent hemodialysis versus continuous hemodiafiltration. Int. J. Artif. Organs 2001; 24: 186–191.CrossRefGoogle ScholarPubMed
Crook, M. A., Hally, V., & Panteli, J. V.The importance of the refeeding syndrome. Nutrition 2001; 17: 632–637.CrossRefGoogle ScholarPubMed
Hemstreet, B. A.Use of sucralfate in renal failure. Ann. Pharmacother. 2001; 35: 360–364.CrossRefGoogle ScholarPubMed
Mechanick, J. I. & Brett, E. M.Endocrine and metabolic issues in the management of the chronically critically ill patient. Crit. Care Clin. 2002; 18: 619–641.CrossRefGoogle ScholarPubMed
Gallacher, S. J., Ralston, S. H., Dryburgh, F. J.et al. Immobilization-related hypercalcaemia – a possible novel mechanism and response to pamidronate. Postgrad. Med. J. 1990; 66: 918–922.CrossRefGoogle ScholarPubMed
Cruz, D. N. & Perazella, M. A.Biochemical aberrations in a dialysis patient following parathyroidectomy. Am. J. Kidney Dis. 1997; 29: 759–762.CrossRefGoogle Scholar
Mitchell, J. H., Wildenthal, K., & Johnson, R. L.The effects of acid–base disturbances on cardiovascular and pulmonary function. Kidney Int. 1972; 1: 375–389.CrossRefGoogle ScholarPubMed
Orchard, C. H. & Ketnish, J. C.Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. 1990; 258: C967–C981.CrossRefGoogle ScholarPubMed
Goyal, P., Puri, G. D., Pandey, C. K.et al. Evaluation of induction doses of propofol: comparison between endstage renal disease and normal renal function patients. Anaesth. Intens. Care 2002; 30: 584–587.Google ScholarPubMed
Posner, J. B. & Plum, F.Spinal-fluid pH and neurologic symptoms in systemic acidosis. N. Engl. J. Med. 1967; 277: 605–613.CrossRefGoogle ScholarPubMed
Adrogue, H. J. & Madias, N. E.Management of life-threatening acid–base disorders. N. Engl. J. Med. 1998; 338: 26–34.CrossRefGoogle ScholarPubMed
Narins, R. G. & Cohen, J. J.Bicarbonate therapy for organic acidosis: the case for its continued use. Ann. Intern. Med. 1987; 106: 615–618.CrossRefGoogle ScholarPubMed
Rose, B. D. & Post, T. W. Metabolic acidosis. In Rose, B. D. & Post, T. W., eds. Clinical Physiology of Acid–Base and Electrolyte Disorders, 5th edn. New York: McGraw Hill, 2001: 578–646.Google Scholar
Holmdahl, M. H., Wiklund, L., Wetterberg, T.et al. The place of THAM in the management of acidemia in clinical practice. Acta Anaesthesiol. Scand. 2000; 44: 524–527.CrossRefGoogle ScholarPubMed
Swartz, R. D., Rubin, J. E., Brown, R. S.et al. Correction of postoperative metabolic alkalosis and renal failure by hemodialysis. Ann. Intern. Med. 1977; 86: 52–55.CrossRefGoogle ScholarPubMed
Hakim, R. M. & Levin, N.Malnutrition in hemodialysis patients. Am. J. Kidney Dis. 1993; 21: 125–137.CrossRefGoogle ScholarPubMed
Lowrie, E. G. & Lew, N. L.Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am. J. Kidney Dis. 1990; 15: 458–482.CrossRefGoogle ScholarPubMed
Don, B. R. & Kaysen, G. A.Assessment of inflammation and nutrition in patients with end-stage renal disease. J. Nephrol. 2000; 13: 249–259.Google ScholarPubMed
Rocco, R. V. & Blumenkrantz, M. J. Nutrition. In Daugirdas, J. T., Blake, P. G., & Ing, T. S., eds. Handbook of Dialysis, 3rd edn. Philadelphia: Lippincott, Williams & Wilkins, 2001: 420–445.Google Scholar
Anonymous. National Kidney Foundation Dialysis Outcomes Quality Initiative: Clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2000; 35(6 Suppl. 2): S1–S140.
Feinstein, E. I., Kopple, J. D., Silberman, H.et al. Total parenteral nutrition with high and low nitrogen intakes in patients with acute renal failure. Kidney Int. 1983; 24: S319–S323.Google Scholar
Eschbach, J. W. & Adamson, J. W.Anemia of end-stage renal disease. Kidney Int. 1985; 28: 1–5.CrossRefGoogle ScholarPubMed
Eschbach, J. W., Egrie, J. C., Downing, M. R.et al. Correction of the anemia of end-stage renal disease with recombinant human erthyropoietin: results of combined phase I and II clinical trial. N. Engl. J. Med. 1987; 316: 73–78.CrossRefGoogle Scholar
Anonymous. National Kidney Foundation Dialysis Outcomes Quality Initiative: Clinical practice guidelines for anemia of chronic kidney disease: update 2000. Am. J. Kidney Dis. 2001; 37(1 Suppl. 1): S182–238.CrossRef
Eberst, M. E. & Berkowitz, L. R.Hemostasis in renal disease. Am. J. Med. 1994; 96: 168–179.CrossRefGoogle ScholarPubMed
Rabelink, R. W., Zwaginga, J. J., Koomans, H. A.et al. Thrombosis and hemostasis in renal disease. Kidney Int. 1994; 46: 287–296.CrossRefGoogle ScholarPubMed
Escolar, G., Cases, A., Bastida, E.et al. Uremic platelets have a functional defect affecting the interaction of von Willebrand factor with glycoprotein IIb–IIIa. Blood 1990; 76: 1336–1340.Google ScholarPubMed
Noris, M. & Remuzzi, G.Uremic bleeding: Closing the circle after 30 years of controversies. Blood 1999; 94: 2569–2574.Google ScholarPubMed
Steiner, R. W., Coggins, C., & Carvalho, A. C. A.Bleeding time in uremia: a useful test to assess clinical bleeding. Am. J. Hematol. 1979; 7: 107–117.CrossRefGoogle ScholarPubMed
Lindsay, R. M., Friesen, M., Aronstam, A.et al. Improvement in platelet function by increased frequency of hemodialysis. Clin. Nephrol. 1978; 10: 67–70.Google ScholarPubMed
Mannucci, P. M.Hemostatic drugs. N. Engl. J. Med. 1998; 339: 245–253.CrossRefGoogle ScholarPubMed
Vigano, G., Gaspari, F., Locatelli, M.et al. Dose–effect and pharmacokinetics of estrogens given to correct bleeding time in uremia. Kidney Int. 1988; 34: 853–858.CrossRefGoogle ScholarPubMed
Barrett, B. J.Contrast nephrotoxicity. J. Am. Soc. Nephrol. 1994; 5: 125–137.Google ScholarPubMed
Solomon, R.Contrast-medium-induced acute renal failure. Kidney Int. 1998; 53: 230–242.CrossRefGoogle ScholarPubMed
Morcos, S. K., Thomsen, H. S., & Webb, J. A.Contrast Media Safety Committee of the European Society of Urogenital Radiology. Dialysis and contrast media. Eur. Radiol. 2002; 12: 3026–3030.Google ScholarPubMed
Tombach, B., Bremer, C., Reimer, P.et al. Renal tolerance of a neutral gadolinium chelate (gadoburtol) in patients with chronic renal failure: results of a randomized study. Radiology 2001; 218: 651–657.CrossRefGoogle Scholar
Solomon, R., Werner, C., Mann, D.et al. Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N. Engl. J. Med. 2003; 331: 1416–1420.CrossRefGoogle Scholar
Aspelin, P., Aubry, P., Frannson, S. G.et al. Nephrotoxic effects in high-risk patients undergoing angiography. N. Engl. J. Med. 2003; 348: 491–499.CrossRefGoogle ScholarPubMed
Tepel, M., Giet, M., Schwartfeld, C.et al. Prevention of radiographic-contrast-agent-induced reduction in renal function by acetylcysteine. N. Engl. J. Med. 2003; 343: 180–184.CrossRefGoogle Scholar
Diaz-Sandoval, L. J., Kosowsky, B. D., Losordo, D. W.Acetylcysteine to prevent angiography-related renal tissue injury (The APART trial). Am. J. Cardiol. 2002; 89: 356–358.CrossRefGoogle Scholar
Boccalandro, F., Amhad, M., Smalling, R. W.et al. Oral acetylcysteine does not protect renal function from moderate to high doses of intravenous radiographic contrast. Catheter Cardiovasc. Interv. 2003; 58: 336–341.CrossRefGoogle Scholar
Durham, J. D., Caputo, C., Dokko, J.et al. A randomized controlled trial of N-acetylcysteine to prevent contrast nephropathy in cardiac angiography. Kidney Int. 2002; 62: 2202–2207.CrossRefGoogle ScholarPubMed
Briguori, C., Manganelli, F., Scarpato, P.et al. Acetylcysteine and contrast agent-associated nephrotoxicity. J. Am. Coll. Cardiol. 2002; 40: 298–303.CrossRefGoogle ScholarPubMed
Merten, G. J., Burgess, W. P., Gray, L. V.et al. Prevention of contrast-induced nephropathy with sodium bicarbonate. J. Am. Med. Assoc. 2004; 291: 2328–2334.CrossRefGoogle ScholarPubMed
Conger, J. D.Interventions in clinical acute renal failure: what are the data. Am. J. Kidney Dis. 1995; 26: 565–576.CrossRefGoogle ScholarPubMed
Star, R. A.Treatment of acute renal failure. Kidney Int. 1998; 42: 1817–1831.CrossRefGoogle Scholar
Myers, B. D. & Morelli, S. M.Hemodynamically mediated acute renal failure. N. Engl. J. Med. 1986; 314: 97–105.Google ScholarPubMed
Schulman, G., Fogo, A., Gung, A.et al. Complement activation retards resolution of acute ischemic renal failure. Kidney Int. 1991; 40: 1069–1074.CrossRefGoogle ScholarPubMed
Hakim, R. A., Wingard, R. L., & Parker, R. A.Effect of the dialysis membrane in the treatment of patients with acute renal failure. N. Engl. J. Med. 1994; 331: 1338–1342.CrossRefGoogle ScholarPubMed
Schiffl, H., Lang, S. M., & Konig, A.Biocompatible membranes in acute renal failure. Lancet 1994; 344: 570–572.CrossRefGoogle ScholarPubMed
Schiffl, H., Lang, S. M., & Fischer, R.Daily hemodialysis and the outcome of acute renal failure. N. Engl. J. Med. 2002; 346: 305–310.CrossRefGoogle ScholarPubMed
Paganini, E. P., Tapolyai, M., Goormastic, M.et al. Establishing a dialysis therapy/patient outcome link in intensive care acute dialysis for patients with acute renal failure. Am. J. Kidney Dis. 1996; 28: S81.CrossRefGoogle Scholar
Kumar, V. A., Yeun, J. Y., Craig, M.et al. A new approach to renal replacement therapy for acute renal failure in the intensive care unit. Am. J. Kidney Dis. 2000; 36: 294–300.CrossRefGoogle ScholarPubMed
Golper, T. A. Continuous renal replacement therapy in acute renal failure. In Rose, B. D.Up To Date (10.3). 2003. Wellesley, MA.Google Scholar
Hertel, J., Keep, D. M., & Caruana, R. J. Anticoagulation. In Daugirdas, J. T., Blake, P. G., & Ing, T. S., eds. Handbook of Dialysis, 3rd edn. Philadelphia: Lippincott, Williams & Wilkins, 2001: 182–198.Google Scholar
Miller, C. F. Renal Failure. In Breslow, M. J., Miller, C. F., & Rogers, M., eds. Perioperative Management. St. Louis: C. V. Mosby Co., 1990: 327–342.Google Scholar
Chertow, G. M., Lazarus, J. M., Paganini, E. P.et al. Predictors of mortality and the provision of dialysis in patients with acute tubular necrosis. J. Am. Soc. Nephrol. 1998; 9: 692–698.Google ScholarPubMed
Rose, B. D. Postischemic and postoperative acute tubular necrosis. In Rose, B. D.Up To Date. (10.3). 2002. Wellesley, MA.Google Scholar
Wardle, E. N.Acute renal failure and multiorgan failure. Nephron 1994; 66: 380–385.CrossRefGoogle ScholarPubMed
Perazella, M. A. & Eras, L.Are COX-2 selective inhibitors nephrotoxic? Am. J. Kidney Dis. 2000; 35: 937–940.CrossRefGoogle ScholarPubMed
Patrono, C. & Dunn, M. J.The clinical significance of inhibition of renal prostaglandin synthesis. Kidney Int. 1987; 32: 1–12.CrossRefGoogle ScholarPubMed
Bakris, G. L. & Weir, M. R.Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch. Intern. Med. 2000; 160: 685–693.CrossRefGoogle ScholarPubMed
Oster, J. R. & Materson, B. J.Renal and electrolyte complications of congestive heart failure and effects with angiotensin-converting enzyme inhibitors. Ann. Intern. Med. 1992; 152: 704–710.CrossRefGoogle Scholar
Humes, H. D.Aminoglycoside nephrotoxicity. Kidney Int. 1988; 33: 900–911.CrossRefGoogle ScholarPubMed
Moore, R. D., Smith, C. R., & Lipsky, J. J.Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann. Intern. Med. 1984; 100: 352–357.CrossRefGoogle ScholarPubMed
Meyer, R. D.Risk factors and comparisons of clinical nephrotoxicity of aminoglycosides. Am. J. Med. 1986; 80: 119–125.CrossRefGoogle ScholarPubMed
Zager, R. A.Studies of mechanisms and protective maneuvers in myoglobinuric acute renal injury. Lab. Invest. 1989; 60: 619–629.Google ScholarPubMed
Zager, R. A.Rhabdomyolysis and myohemoglobinuric acute renal failure [editorial]. Kidney Int. 1996; 49: 314–326.CrossRefGoogle Scholar
Don, B. R., Rodriguez, R. A., & Humphreys, M. H. Acute renal failure associated with pigmenturia or crystal deposits. In Schrier, R. W., ed. Diseases of the Kidney and Urinary Tract, 7th edn. Philadelphia: Lippincott, Williams & Wilkins, 2001: 1299–1326.Google Scholar
Bywaters, E. G. & Beall, D.Crush injuries with impairment of renal function. J. Am. Soc. Nephrol. 1998; 9: 322–332.Google ScholarPubMed
Better, O. S. & Stein, J. H.Early management of shock and prophylaxis of acute renal failure in traumatic rhabdomyolysis. N. Engl. J. Med. 1990; 322: 825–829.Google ScholarPubMed
Zager, R. A.Combined mannitol and deferoxamine therapy for myohemoglobinuric renal injury and oxidant tubular stress. Mechanistic and therapeutic implications. J. Clin. Invest. 1992; 90: 711–719.CrossRefGoogle ScholarPubMed
Eneas, J. F., Schoenfeld, P. Y., & Humphreys, M. H.The effect of infusion of mannitol-sodium bicarbonate on the clinical course of myoglobinuria. Arch. Intern. Med. 1979; 139: 801–805.CrossRefGoogle ScholarPubMed
Connolly, S. J. & Kates, R. E.Clinical pharmacokinetics of N-acetylprocainamide. Clin. Pharmacokinet. 1982; 7: 206–220.CrossRefGoogle ScholarPubMed
Vlasses, P. H., Ferguson, R. K., Rocci, M. L. Jr.et al. Lethal accumulation of procainamide metabolite in severe renal insufficiency. Am. J. Nephrol. 1986; 6: 112–116.CrossRefGoogle ScholarPubMed
Pruchnicki, M. C., Coyle, J. D., Hoshaw-Woodard, S.et al. Effect of phosphate binders on supplemental iron absorption in healthy subjects. J. Clin. Pharmacol. 2002; 42: 1171–1176.CrossRefGoogle ScholarPubMed
Maton, P. N. & Burton, M. E.Antacids revisited: a review of their clinical pharmacology and recommended therapeutic use. Drugs 1999; 57: 855–870.CrossRefGoogle ScholarPubMed
Cheng, J. W., Charland, S. L., Shaw, L. M.et al. Is the volume of distribution of digoxin reduced in patients with renal dysfunction? Determining digoxin pharmacokinetics by fluorescence polarization immunoassay. Pharmacotherapy 1997; 17: 584–590.Google ScholarPubMed
Borga, O., Hoppel, C., Odar-Cederlof, I.et al. Plasma levels and renal excretion of phenytoin and its metabolites in patients with renal failure. Clin. Pharmacol. Ther. 1979; 26: 306–314.CrossRefGoogle ScholarPubMed
Levey, A. S., Bosch, J. P., Lewis, J. B.et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999; 130: 461–470.CrossRefGoogle ScholarPubMed
Hu, K. T., Matayoshi, A., & Stevenson, F. T.Calculation of the estimated creatinine clearance in avoiding drug dosing errors in the older patient. Am. J. Med. Sci. 2001; 322: 133–136.CrossRefGoogle ScholarPubMed
Aronoff, G. R., Berns, J. S., Brier, M. E.et al. Drug Prescribing in Renal Failure: Dosing Guidelines for Adults, 4th edn. Philadelphia, 1999.Google Scholar
Sladen, R. N.Anesthetic considerations for the patient with renal failure. Anesthesiol. Clin. North Am. 2000; 18: 863–882.CrossRefGoogle ScholarPubMed
Cranshaw, J. & Holland, D.Anaesthesia for patients with renal impairment. Br. J. Hosp. Med. 1996; 55: 171–175.Google ScholarPubMed
Nishimori, A., Tanaka, K., Ueno, K.et al. Effects of sevoflurane anaesthesia on renal function. J. Int. Med. Res. 1997; 25: 87–91.CrossRefGoogle ScholarPubMed
Conzen, P. F., Nuscheler, M., Melotte, A.et al. Renal function and serum fluoride concentrations in patients with stable renal insufficiency after anesthesia with sevoflurane or enflurane. Anesth. Analg. 1995; 81: 569–575.Google ScholarPubMed
Litz, R. J., Hubler, M., Lorenz, W.et al. Renal responses to desflurane and isoflurane in patients with renal insufficiency. Anesthesiology 2002; 97: 1133–1136.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×