Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T19:11:45.467Z Has data issue: false hasContentIssue false

7 - In situ analysis of microRNA expression during vertebrate development

from II - MicroRNA functions and RNAi-mediated pathways

Published online by Cambridge University Press:  22 August 2009

Diana K. Darnell
Affiliation:
Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
Stacey Stanislaw
Affiliation:
Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
Simran Kaur
Affiliation:
Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
Tatiana A. Yatskievych
Affiliation:
Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
Sean Davey
Affiliation:
Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
Jay H. Konieczka
Affiliation:
Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
Parker B. Antin
Affiliation:
Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
Get access

Summary

Introduction

A widespread class of non-coding, regulatory RNAs has been recently characterized. Because of their short length (21–22 nucleotides) they are called microRNA or miRNA. These miRNAs have been identified in diverse organisms (prokaryote, eukaryote, vertebrates, invertebrates, plants, fungi) and in viruses (Tuschl et al., 1999; Elbashir et al., 2001; Griffiths-Jones, 2004; Berezikov and Plasterk, 2005; Griffiths-Jones et al., 2006). Their apparently ancient function is to regulate specific protein concentration by inhibiting the first step of translation or by inducing specific mRNA degradation by 3′ UTR binding (He and Hannon, 2004; Pillai, 2005; Valencia-Sanchez et al., 2006). Both molecular and bioinformatics tools have been used to identify candidate miRNAs and their target mRNAs. Based on the numbers generated in these studies, it is estimated that vertebrate genomes may contain hundreds of miRNA genes that may regulate stability or translation of approximately one quarter of all mRNAs (Bentwich et al., 2005; Berezikov and Plasterk, 2005; Legendre et al., 2005; Xie et al., 2005).

Disruption of miRNA function often produces aberrations of important processes including organogenesis, and cell diversification, proliferation, and survival (Reinhart et al., 2000; Brennecke et al., 2003; Dostie et al., 2003; Ambros, 2004; Calin et al., 2004; Alvarez-Garcia and Miska, 2005; Giraldez et al., 2005). The miRNA function has also been implicated in regulating stem cell renewal and the onset of certain cancers (Hatfield et al., 2005, Lu et al., 2005). Therefore, miRNAs regulate important processes in animal development, physiology and disease.

Type
Chapter
Information
MicroRNAs
From Basic Science to Disease Biology
, pp. 102 - 114
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Garcia, I. and Miska, E. A. (2005). MicroRNA functions in animal development and human disease. Development, 132, 4653–4662.CrossRefGoogle Scholar
Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350–355.CrossRefGoogle Scholar
Ason, B., Darnell, D. K., Wittbrodt, B. et al. (2007). Differences in vertebrate microRNA expression. (In press.)
Barad, O., Meiri, E., Avniel, A.et al. (2004). MicroRNA detection by oligonucleotide microarrays: system establishment and expression profiling of human disease. Genome Research, 14, 2486–2494.CrossRefGoogle Scholar
Bell, G. W., Yatskievych, T. A. and Antin, P. B. (2004). GEISHA, A whole-mount in situ hybridization gene expression screen in chicken embryos. Developmenta Dynamics, 229, 677–687.CrossRefGoogle Scholar
Bentwich, I., Avniel, A., Karov, Y.et al. (2005). Identification of hundreds of conserved and nonconserved microRNAs. Nature Genetics, 37, 766–770.CrossRefGoogle Scholar
Berezikov, E. and Plasterk, R. H. A. (2005). Camels and zebrafish, viruses and cancer: a microRNA update. Human Molecular Genetics, 14, R183–R190.CrossRefGoogle Scholar
Brennecke, J., Hipfner, D. R., Stark, A., Russel, R. B. and Cohen, S. M. (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113, 25–36.CrossRefGoogle Scholar
Calin, G. A., Sevignani, C., Dumitru, C. D.et al. (2004). Human micro RNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences USA, 101, 2999–3004.CrossRefGoogle Scholar
Chen, C. and Okayama, H. (1987). High efficiency transformation of mammalian cells by plasmid DNA. Molecular Cell Biology, 7, 2745–2752.CrossRefGoogle Scholar
Darnell, D. K., Kaur, S., Stanislaw, S., Konieczka, J. K., Yatskievych, T. A. and Antin, P. B. (2007). MicroRNA expression during chick embryo development. (In press.)CrossRef
Dostie, J., Mourelatos, Z., Yang, M., Sharma, A. and Dreyfus, G. (2003). Numerous microRNPs in neuronal cell containing novel microRNAs. RNA, 9, 180–186.CrossRefGoogle Scholar
Duncan, L. M., Deeds, J., Hunter, J.et al. (1998). Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Research, 58, 1515–1520.Google Scholar
Elbashir, S. M., Lendeckel, W. and Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188–200.CrossRefGoogle Scholar
Elmen, J., Zhang, H. Y., Zuber, B.et al. (2004). Locked nucleic acid containing antisense oligonucleotides enhance inhibition of HIV-1 genome dimerization and inhibit virus replication. Federation of the European Biochemical Society Letters, 578, 285–290.CrossRefGoogle Scholar
Elmen, J., Thonberg, H., Ljungberg, K.et al. (2005). Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Research, 33, 439–447.CrossRefGoogle Scholar
Giraldez, A. J., Cinalli, R. M., Glasner, M. E.et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838.CrossRefGoogle Scholar
Griffiths-Jones, S. (2004). The microRNA registry. Nucleic Acids Research, 32, D109–D111.CrossRefGoogle Scholar
Griffiths-Jones, S., Grocock, R. J., Dongen, S., Bateman, A. and Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34, D140–D144.CrossRefGoogle Scholar
Hatfield, S. D., Scherbata, H. R., Fischer, K. A.et al. (2005). Stem cell division is regulated by the microRNA pathway. Nature, 435, 974–978.CrossRefGoogle Scholar
He, L. and Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews in Genetics, 5, 522–532.CrossRefGoogle Scholar
He, L., Thomson, J. M., Hemann, M. T.et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828–833.CrossRefGoogle Scholar
Hornstein, E., Mansfield, J. H., Yekta, S.et al. (2005). The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature, 438, 671–674.CrossRefGoogle Scholar
Johnson, S. M., Grosshans, H., Shingara, J.et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647.CrossRefGoogle Scholar
Kloosterman, W. P., Wienholds, E., Bruijn, E., Kauppinen, S. and Plasterk, R. H. A. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucteotide probes. Nature Methods, 3, 27–29.CrossRefGoogle Scholar
Koshkin, A. A., Singh, S. K., Nielsen, P.et al. (1998). LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine, and uracil bicyclonucleoside monomers, oligomerization, and unprecedented nucleic acid recognition. Tetrahedron, 54, 3607–3630.CrossRefGoogle Scholar
Lancman, J. J., Caruccio, N. C., Harfe, B. D.et al. (2005). Analysis of the regulation of lin-41 during chick and mouse limb development. Developmental Dynamics, 234, 948–960.CrossRefGoogle Scholar
Lee, J. H., Koyano-Nakagawa, N., Naito, Y.et al. (1993). cAMP activates the IL-5 promoter synergistically with phorbol ester through the signaling pathway involving protein kinase A in mouse thyoma line El-4. Journal of Immunity, 151, 6135–6142.Google Scholar
Lee, Y., Jeon, K., Lee, J. T., Kim, S. and Kim, V. N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. European Molecular Biology Organization Journal, 21, 4663–4670.CrossRefGoogle Scholar
Legendre, M., Lambert, A. and Gautheret, D. (2005). Profile-based detection of microRNA precursors in animal genomes. Bioinformatics, 21, 841–845.CrossRefGoogle Scholar
Lu, J., Getz, G., Miska, E. A.et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.CrossRefGoogle Scholar
Nieto, M. A., Patel, K. and Wilkinson, D. G. (1996). In situ hybridization analysis of chick embryos in whole mount and tissue sections. In Methods in Cell Biology, vol. 51. New York: Academic Press, Inc.
O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. and Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435, 839–843.CrossRefGoogle Scholar
Ohler, U., Yekta, S., Lim, L. P., Bartel, D. P. and Burge, C. B. (2004). Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA, 10, 1309–1322.CrossRefGoogle Scholar
Pillai, R. S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA?RNA, 11, 1753–1761.Google Scholar
Reinhart, B. J., Slack, F. J., Basson, M.et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901–906.CrossRefGoogle Scholar
Rougvie, A. E. (2005). Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues. Development, 132, 3787–3798.CrossRefGoogle Scholar
Stark, A., Brennecke, J., Bushati, N., Russell, R. B. and Cohen, S. M. (2005). Animal microRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell, 123, 1133–1146.CrossRefGoogle Scholar
Thomsen, R., Nielsen, P. S. and Jensen, T. H. (2005). Dramatically improved RNA in situ hybridization signals using LNA-modified probes. RNA, 11, 1745–1748.CrossRefGoogle Scholar
Thomson, J. M., Parker, J., Perou, C. M. and Hammond, S. M. (2004). A custom microarray platform for analysis of microRNA gene expression. Nature Methods, 1, 47–53.CrossRefGoogle Scholar
Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999). Targeted mRNAs degradation by double-stranded RNA in vitro. Genes & Development, 13, 3191–3197.CrossRefGoogle Scholar
Valencia-Sanchez, M. A., Liu, J. D., Hannon, G. J. and Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20, 515–524.CrossRefGoogle Scholar
Valoczi, A., Hornyik, C., Varga, N.et al. (2004). Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Research, 32, e175.CrossRefGoogle Scholar
Wahlestedt, C., Salmi, P., Good, L.et al. (2000). Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proceedings of the National Academy of Sciences USA, 97, 5633–5638.CrossRefGoogle Scholar
Watanabe, T., Takeda, A., Mise, K.et al. (2005). Stage specific expression of microRNAs during Xenopus development. Federation of the European Biochemical Society Letter, 579, 318–324.CrossRefGoogle Scholar
Weinholds, E., Kloosterman, W. P., Miska, E.et al. (2005). MicroRNA expression in zebrafish embryonic development. Science, 309, 310–311.CrossRefGoogle Scholar
Wightman, B., Ha, I. and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–862.CrossRefGoogle Scholar
Xie, X., Lu, J., Kulbokas, E. J.et al. (2005). Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature, 434, 338–345.CrossRefGoogle Scholar
Zhao, Y., Samal, E. and Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214–220.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • In situ analysis of microRNA expression during vertebrate development
    • By Diana K. Darnell, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Stacey Stanislaw, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Simran Kaur, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Tatiana A. Yatskievych, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Sean Davey, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Jay H. Konieczka, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Parker B. Antin, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
  • Edited by Krishnarao Appasani
  • Foreword by Sidney Altman, Victor R. Ambros
  • Book: MicroRNAs
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541766.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • In situ analysis of microRNA expression during vertebrate development
    • By Diana K. Darnell, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Stacey Stanislaw, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Simran Kaur, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Tatiana A. Yatskievych, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Sean Davey, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Jay H. Konieczka, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Parker B. Antin, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
  • Edited by Krishnarao Appasani
  • Foreword by Sidney Altman, Victor R. Ambros
  • Book: MicroRNAs
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541766.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • In situ analysis of microRNA expression during vertebrate development
    • By Diana K. Darnell, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Stacey Stanislaw, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Simran Kaur, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Tatiana A. Yatskievych, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Sean Davey, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Jay H. Konieczka, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA, Parker B. Antin, Department of Cell Biology and Anatomy University of Arizona PO Box 245044 Life Sciences North 462 1501 N. Campbell Avenue Tucson, AZ 85724-5044 USA
  • Edited by Krishnarao Appasani
  • Foreword by Sidney Altman, Victor R. Ambros
  • Book: MicroRNAs
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541766.010
Available formats
×